organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Fluoro­phen­yl)[8-(4-fluoro­benzo­yl)-2,7-diphen­­oxy­naphthalen-1-yl]methan­one

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184.8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 18 October 2012; accepted 24 October 2012; online 31 October 2012)

In the title compound, C36H22F2O4, the aromatic rings of the benzoyl and phen­oxy groups make dihedral angles of 72.07 (5), 73.24 (5), 62.49 (5) and 77.96 (6)° with the naphthalene ring system. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π inter­actions are observed.

Related literature

For information on electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.], 2012[Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press.]). For the structures of closely related compounds, see: Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]); Sakamoto et al. (2012[Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.]).

[Scheme 1]

Experimental

Crystal data
  • C36H22F2O4

  • Mr = 556.54

  • Orthorhombic, P b c n

  • a = 22.3058 (4) Å

  • b = 14.6047 (3) Å

  • c = 16.8302 (3) Å

  • V = 5482.76 (18) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.691, Tmax = 0.925

  • 96215 measured reflections

  • 5011 independent reflections

  • 4671 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.06

  • 5011 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.40 3.3477 (15) 172
C13—H13⋯Cgii 0.95 2.87 3.6924 (15) 145
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone) backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). The poly(ether ketone)s composed of 1,8-diaroylenenaphthalene units show unique thermal properties and solubility for organic solvents. These curious features of the polymers can be explained on the basis of structural features of the 1,8-diaroylene naphthalene units. Under these circumstances, the authors have stimulated the X-ray crystal structural study of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010) and 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012). These molecules have essentially the same non-coplanar features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twistedly bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1,8-bis(4-fluorobenoyl)-2,7-diphenoxynaphthalene, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. Two benzoyl groups at 1,8-positions of the naphthalene ring are situated in opposite directions, anti orientation. The benzene rings of the benzoyl groups make dihedral angles of 72.07 (5) and 73.24 (5)° with the naphthalene ring, respectively. The dihedral angles between the phenyl rings of phenoxy groups and the naphthalene ring system are 62.49 (5) and 77.96 (6)°, respectively. The crystal packing is stabilized by an intermolecular C—H···O hydrogen bond between the oxygen atom (O3) of the carbonyl group of the adjacent molecule and one hydrogen atom (H6) on the naphthalene ring along the c axis (C6—H6···O3i = 2.40 Å; Fig. 2 and Table 1). The C—H···π interaction (C13—H13···Cgii = 2.87 Å; Fig. 3 and Table 1) also contributes to the stabilization of the aromatic ring alignments and the crystal structure.

Related literature top

For information on electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2012). For the structures of closely related compounds, see: Watanabe et al. (2010); Sakamoto et al. (2012).

Experimental top

To a 10 ml flask, 1,8-bis(4-fluorobenzoyl)-2,7-dihydroxynaphthalene (1.0 mmol, 404 mg), benzeneboronic acid (4.0 mmol, 487 mg), Cu(OAc)2 (2.0 mmol, 363 mg), activated 4 Å molecular sieves (1.0 g), pyridine (8.0 mmol, 632 mg), methylene chloride (4.0 ml) were placed. The reaction mixture was stirred at room temperature for 48 h. After the reaction, the mixture was extracted with CHCl3. The combined extracts were washed with saturated NH4Claq and 2M aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by column chromatography (silica gel, hexane/CHCl3, 1:1 v/v) to give the title compound (isolated yield 46%). Furthermore, the isolated product was crystallized from methanol to give single crystal.

1HNMR δ (300 MHz, CDCl3): 6.81(4H, d, J=7.5 Hz), 7.01(4H, t, J=8.5 Hz), 7.05(2H, t, J=7.5 Hz), 7.08(2H, d, J=8.9 Hz), 7.22(4H, t, J=7.5 Hz), 7.81(4H, dd, J=8.5, 5.5 Hz), 7.90(2H, d, J=8.9 Hz) p.p.m..

13CNMR δ (75 MHz, CDCl3): 115.18(d, 2JC—F=22.4 Hz), 117.21, 118.92, 123.92, 124.65, 127.85, 129.69, 130.65, 131.76(d, 3JC—F=10.1 Hz), 132.12, 134.87(d, 4JC—F=2.1 Hz), 153.73, 155.79, 165.64(d, 1JC—F=255.7 Hz), 194.64 p.p.m..

IR (KBr): 1666 (C=O), 1594, 1504, 1486 (Ar, naphthalene), 1262 (=C—O—C) cm-1.

HRMS (m/z): [M + H]+ calcd for C36H23F2O4, 557.1564 found, 557.1569.

m.p. 441.9–443.6 K

Refinement top

All H atoms were put in calculated positions and treated as riding on their parent atoms, with C—H = 0.95 Å, and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial crystal packing diagram of title compound. The intermolecular C—H···O interactions are shown as dashed lines.
[Figure 3] Fig. 3. A partial crystal packing diagram of title compound. The intermolecular C—H···π interactions are shown as dashed lines.
(4-Fluorophenyl)[8-(4-fluorobenzoyl)-2,7-diphenoxynaphthalen-1-yl]methanone top
Crystal data top
C36H22F2O4F(000) = 2304
Mr = 556.54Dx = 1.348 Mg m3
Orthorhombic, PbcnCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2n 2abCell parameters from 89526 reflections
a = 22.3058 (4) Åθ = 3.0–68.2°
b = 14.6047 (3) ŵ = 0.80 mm1
c = 16.8302 (3) ÅT = 193 K
V = 5482.76 (18) Å3Block, colorless
Z = 80.50 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5011 independent reflections
Radiation source: rotating anode4671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.6°
ω scansh = 2626
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1717
Tmin = 0.691, Tmax = 0.925l = 1919
96215 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.3362P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5011 reflectionsΔρmax = 0.17 e Å3
380 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00098 (6)
Crystal data top
C36H22F2O4V = 5482.76 (18) Å3
Mr = 556.54Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 22.3058 (4) ŵ = 0.80 mm1
b = 14.6047 (3) ÅT = 193 K
c = 16.8302 (3) Å0.50 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5011 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4671 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.925Rint = 0.016
96215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
5011 reflectionsΔρmin = 0.16 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.42732 (5)0.97093 (6)0.71349 (6)0.0794 (3)
F20.21941 (5)0.25563 (7)0.76820 (6)0.0814 (3)
O10.51813 (4)0.65226 (6)0.53754 (5)0.0445 (2)
O20.22348 (4)0.46286 (6)0.46362 (5)0.0476 (2)
O30.40405 (4)0.54759 (6)0.64967 (5)0.0436 (2)
O40.28295 (4)0.62180 (6)0.58844 (6)0.0485 (2)
C10.42155 (5)0.59134 (7)0.51684 (7)0.0354 (3)
C20.47700 (5)0.61326 (8)0.48603 (7)0.0392 (3)
C30.49455 (6)0.58889 (8)0.40848 (8)0.0452 (3)
H30.53360.60320.38950.054*
C40.45474 (6)0.54468 (8)0.36146 (8)0.0450 (3)
H40.46620.52840.30900.054*
C50.39650 (6)0.52212 (7)0.38826 (7)0.0393 (3)
C60.35582 (6)0.47834 (8)0.33668 (7)0.0437 (3)
H60.36790.46490.28380.052*
C70.29964 (6)0.45476 (8)0.36058 (7)0.0430 (3)
H70.27290.42440.32540.052*
C80.28201 (5)0.47632 (8)0.43851 (7)0.0389 (3)
C90.31971 (5)0.51855 (7)0.49203 (7)0.0353 (3)
C100.37908 (5)0.54365 (7)0.46804 (7)0.0351 (3)
C110.41193 (5)0.61111 (8)0.60379 (7)0.0362 (3)
C120.41448 (5)0.70744 (8)0.63178 (7)0.0380 (3)
C130.40891 (6)0.78060 (9)0.57966 (8)0.0460 (3)
H130.40220.76930.52480.055*
C140.41308 (7)0.87001 (9)0.60688 (9)0.0549 (3)
H140.40930.92030.57140.066*
C150.42273 (7)0.88356 (9)0.68609 (9)0.0542 (3)
C160.42761 (7)0.81373 (10)0.73981 (8)0.0536 (3)
H160.43380.82600.79460.064*
C170.42336 (6)0.72486 (9)0.71226 (8)0.0458 (3)
H170.42650.67520.74850.055*
C180.29239 (5)0.54231 (8)0.57138 (7)0.0364 (3)
C190.27487 (5)0.46544 (8)0.62434 (7)0.0380 (3)
C200.23468 (6)0.48195 (10)0.68603 (7)0.0466 (3)
H200.21970.54200.69460.056*
C210.21664 (6)0.41109 (11)0.73482 (8)0.0576 (4)
H210.18950.42190.77730.069*
C220.23845 (7)0.32519 (11)0.72109 (8)0.0564 (4)
C230.27865 (7)0.30606 (10)0.66188 (9)0.0555 (4)
H230.29360.24570.65440.067*
C240.29691 (6)0.37735 (9)0.61327 (8)0.0469 (3)
H240.32480.36590.57180.056*
C250.55286 (5)0.72530 (8)0.51134 (8)0.0413 (3)
C260.53493 (6)0.78388 (9)0.45175 (9)0.0541 (3)
H260.49780.77470.42540.065*
C270.57176 (7)0.85648 (10)0.43073 (10)0.0621 (4)
H270.56000.89650.38900.075*
C280.62528 (7)0.87125 (10)0.46961 (10)0.0591 (4)
H280.65040.92090.45480.071*
C290.64195 (6)0.81319 (10)0.53019 (10)0.0562 (4)
H290.67840.82380.55780.067*
C300.60613 (6)0.73941 (9)0.55138 (8)0.0473 (3)
H300.61810.69920.59280.057*
C310.18912 (6)0.39816 (9)0.42294 (7)0.0441 (3)
C320.20515 (7)0.30699 (10)0.42398 (9)0.0570 (4)
H320.23930.28730.45300.068*
C330.17099 (8)0.24501 (11)0.38237 (11)0.0675 (4)
H330.18200.18220.38190.081*
C340.12115 (9)0.27327 (12)0.34162 (10)0.0717 (5)
H340.09820.23020.31230.086*
C350.10419 (8)0.36443 (12)0.34296 (10)0.0678 (4)
H350.06900.38350.31580.081*
C360.13857 (6)0.42802 (10)0.38408 (8)0.0524 (3)
H360.12740.49080.38530.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1211 (8)0.0418 (5)0.0751 (6)0.0105 (5)0.0047 (6)0.0162 (4)
F20.0877 (7)0.0902 (7)0.0662 (6)0.0393 (6)0.0098 (5)0.0362 (5)
O10.0405 (4)0.0453 (5)0.0476 (5)0.0009 (4)0.0052 (4)0.0125 (4)
O20.0421 (5)0.0541 (5)0.0467 (5)0.0010 (4)0.0022 (4)0.0123 (4)
O30.0529 (5)0.0386 (4)0.0393 (4)0.0002 (4)0.0101 (4)0.0055 (4)
O40.0537 (5)0.0363 (5)0.0555 (6)0.0036 (4)0.0137 (4)0.0079 (4)
C10.0413 (6)0.0277 (5)0.0371 (6)0.0062 (4)0.0077 (5)0.0052 (4)
C20.0423 (6)0.0309 (5)0.0444 (7)0.0045 (5)0.0068 (5)0.0083 (5)
C30.0478 (7)0.0369 (6)0.0510 (7)0.0052 (5)0.0200 (6)0.0087 (5)
C40.0601 (8)0.0349 (6)0.0399 (6)0.0075 (5)0.0196 (6)0.0039 (5)
C50.0534 (7)0.0285 (5)0.0360 (6)0.0081 (5)0.0114 (5)0.0038 (4)
C60.0649 (8)0.0339 (6)0.0322 (6)0.0077 (5)0.0092 (5)0.0010 (5)
C70.0567 (7)0.0358 (6)0.0363 (6)0.0049 (5)0.0000 (5)0.0010 (5)
C80.0446 (6)0.0335 (6)0.0387 (6)0.0052 (5)0.0038 (5)0.0010 (5)
C90.0428 (6)0.0292 (5)0.0339 (6)0.0055 (4)0.0059 (5)0.0014 (4)
C100.0447 (6)0.0257 (5)0.0350 (6)0.0063 (4)0.0080 (5)0.0042 (4)
C110.0336 (5)0.0358 (6)0.0391 (6)0.0021 (4)0.0044 (5)0.0036 (5)
C120.0359 (6)0.0379 (6)0.0402 (6)0.0000 (5)0.0042 (5)0.0003 (5)
C130.0555 (7)0.0394 (6)0.0432 (7)0.0061 (5)0.0017 (6)0.0006 (5)
C140.0733 (9)0.0370 (7)0.0545 (8)0.0054 (6)0.0004 (7)0.0020 (6)
C150.0654 (9)0.0373 (7)0.0598 (9)0.0044 (6)0.0045 (7)0.0093 (6)
C160.0637 (9)0.0530 (8)0.0442 (7)0.0099 (7)0.0016 (6)0.0088 (6)
C170.0513 (7)0.0443 (7)0.0418 (7)0.0059 (6)0.0023 (5)0.0020 (5)
C180.0348 (6)0.0359 (6)0.0386 (6)0.0016 (4)0.0039 (5)0.0057 (5)
C190.0393 (6)0.0412 (6)0.0334 (6)0.0057 (5)0.0017 (5)0.0046 (5)
C200.0448 (7)0.0563 (8)0.0388 (6)0.0088 (6)0.0051 (5)0.0083 (6)
C210.0541 (8)0.0796 (11)0.0391 (7)0.0206 (7)0.0078 (6)0.0003 (7)
C220.0619 (8)0.0653 (9)0.0419 (7)0.0281 (7)0.0080 (6)0.0135 (6)
C230.0700 (9)0.0433 (7)0.0532 (8)0.0095 (6)0.0081 (7)0.0063 (6)
C240.0571 (8)0.0416 (7)0.0420 (7)0.0025 (6)0.0040 (6)0.0008 (5)
C250.0392 (6)0.0385 (6)0.0462 (7)0.0029 (5)0.0081 (5)0.0035 (5)
C260.0507 (7)0.0469 (7)0.0646 (9)0.0070 (6)0.0085 (6)0.0148 (6)
C270.0709 (10)0.0485 (8)0.0670 (10)0.0130 (7)0.0058 (8)0.0161 (7)
C280.0567 (8)0.0461 (8)0.0746 (10)0.0121 (6)0.0074 (7)0.0004 (7)
C290.0444 (7)0.0508 (8)0.0735 (9)0.0006 (6)0.0038 (7)0.0107 (7)
C300.0461 (7)0.0451 (7)0.0506 (7)0.0074 (6)0.0005 (6)0.0016 (6)
C310.0488 (7)0.0432 (6)0.0402 (6)0.0043 (5)0.0044 (5)0.0006 (5)
C320.0629 (9)0.0462 (8)0.0618 (9)0.0035 (6)0.0119 (7)0.0038 (7)
C330.0829 (11)0.0433 (8)0.0762 (11)0.0127 (8)0.0268 (9)0.0024 (7)
C340.0889 (12)0.0621 (10)0.0641 (10)0.0392 (9)0.0133 (9)0.0073 (8)
C350.0662 (10)0.0737 (11)0.0635 (10)0.0264 (8)0.0110 (8)0.0130 (8)
C360.0544 (8)0.0462 (7)0.0566 (8)0.0089 (6)0.0034 (6)0.0088 (6)
Geometric parameters (Å, º) top
F1—C151.3607 (15)C17—H170.9500
F2—C221.3569 (15)C18—C191.4858 (17)
O1—C21.3848 (15)C19—C241.3899 (17)
O1—C251.3902 (14)C19—C201.3928 (17)
O2—C81.3863 (14)C20—C211.3810 (19)
O2—C311.3959 (15)C20—H200.9500
O3—C111.2198 (14)C21—C221.365 (2)
O4—C181.2144 (14)C21—H210.9500
C1—C21.3788 (16)C22—C231.369 (2)
C1—C101.4343 (17)C23—C241.3854 (19)
C1—C111.5069 (16)C23—H230.9500
C2—C31.4084 (17)C24—H240.9500
C3—C41.3534 (19)C25—C261.3776 (18)
C3—H30.9500C25—C301.3815 (18)
C4—C51.4141 (17)C26—C271.3872 (19)
C4—H40.9500C26—H260.9500
C5—C61.4092 (18)C27—C281.378 (2)
C5—C101.4326 (16)C27—H270.9500
C6—C71.3605 (19)C28—C291.377 (2)
C6—H60.9500C28—H280.9500
C7—C81.4049 (17)C29—C301.388 (2)
C7—H70.9500C29—H290.9500
C8—C91.3781 (17)C30—H300.9500
C9—C101.4322 (16)C31—C361.3746 (19)
C9—C181.5084 (15)C31—C321.3788 (19)
C11—C121.4846 (16)C32—C331.375 (2)
C12—C131.3881 (17)C32—H320.9500
C12—C171.3924 (18)C33—C341.370 (3)
C13—C141.3869 (18)C33—H330.9500
C13—H130.9500C34—C351.384 (3)
C14—C151.365 (2)C34—H340.9500
C14—H140.9500C35—C361.389 (2)
C15—C161.367 (2)C35—H350.9500
C16—C171.3815 (19)C36—H360.9500
C16—H160.9500
C2—O1—C25119.09 (9)C19—C18—C9117.62 (9)
C8—O2—C31117.61 (9)C24—C19—C20119.20 (12)
C2—C1—C10119.33 (10)C24—C19—C18121.73 (11)
C2—C1—C11116.65 (11)C20—C19—C18119.06 (11)
C10—C1—C11123.72 (10)C21—C20—C19120.07 (13)
C1—C2—O1117.02 (10)C21—C20—H20120.0
C1—C2—C3122.63 (12)C19—C20—H20120.0
O1—C2—C3120.00 (11)C22—C21—C20118.95 (13)
C4—C3—C2118.69 (11)C22—C21—H21120.5
C4—C3—H3120.7C20—C21—H21120.5
C2—C3—H3120.7F2—C22—C21118.52 (14)
C3—C4—C5121.83 (11)F2—C22—C23118.52 (15)
C3—C4—H4119.1C21—C22—C23122.96 (13)
C5—C4—H4119.1C22—C23—C24117.97 (14)
C6—C5—C4120.04 (11)C22—C23—H23121.0
C6—C5—C10120.15 (11)C24—C23—H23121.0
C4—C5—C10119.80 (12)C23—C24—C19120.82 (13)
C7—C6—C5121.72 (11)C23—C24—H24119.6
C7—C6—H6119.1C19—C24—H24119.6
C5—C6—H6119.1C26—C25—C30120.81 (12)
C6—C7—C8118.50 (12)C26—C25—O1123.07 (11)
C6—C7—H7120.8C30—C25—O1116.04 (11)
C8—C7—H7120.8C25—C26—C27119.24 (13)
C9—C8—O2116.03 (10)C25—C26—H26120.4
C9—C8—C7122.67 (11)C27—C26—H26120.4
O2—C8—C7121.09 (11)C28—C27—C26120.76 (14)
C8—C9—C10119.64 (10)C28—C27—H27119.6
C8—C9—C18115.79 (10)C26—C27—H27119.6
C10—C9—C18124.36 (10)C29—C28—C27119.27 (13)
C9—C10—C5117.31 (11)C29—C28—H28120.4
C9—C10—C1124.99 (10)C27—C28—H28120.4
C5—C10—C1117.66 (10)C28—C29—C30120.85 (13)
O3—C11—C12121.69 (11)C28—C29—H29119.6
O3—C11—C1119.31 (10)C30—C29—H29119.6
C12—C11—C1118.97 (10)C25—C30—C29119.05 (13)
C13—C12—C17119.14 (11)C25—C30—H30120.5
C13—C12—C11121.70 (11)C29—C30—H30120.5
C17—C12—C11119.16 (11)C36—C31—C32121.67 (13)
C14—C13—C12120.66 (12)C36—C31—O2117.97 (12)
C14—C13—H13119.7C32—C31—O2120.34 (12)
C12—C13—H13119.7C33—C32—C31119.06 (15)
C15—C14—C13118.02 (13)C33—C32—H32120.5
C15—C14—H14121.0C31—C32—H32120.5
C13—C14—H14121.0C34—C33—C32120.42 (15)
F1—C15—C14118.62 (13)C34—C33—H33119.8
F1—C15—C16117.99 (13)C32—C33—H33119.8
C14—C15—C16123.39 (13)C33—C34—C35120.23 (15)
C15—C16—C17118.26 (13)C33—C34—H34119.9
C15—C16—H16120.9C35—C34—H34119.9
C17—C16—H16120.9C34—C35—C36120.01 (16)
C16—C17—C12120.52 (12)C34—C35—H35120.0
C16—C17—H17119.7C36—C35—H35120.0
C12—C17—H17119.7C31—C36—C35118.55 (14)
O4—C18—C19122.34 (11)C31—C36—H36120.7
O4—C18—C9119.96 (11)C35—C36—H36120.7
C10—C1—C2—O1174.65 (9)C13—C14—C15—F1179.56 (13)
C11—C1—C2—O10.77 (15)C13—C14—C15—C161.0 (2)
C10—C1—C2—C31.47 (17)F1—C15—C16—C17179.61 (13)
C11—C1—C2—C3172.42 (10)C14—C15—C16—C170.9 (2)
C25—O1—C2—C1137.78 (11)C15—C16—C17—C120.2 (2)
C25—O1—C2—C348.85 (14)C13—C12—C17—C161.10 (19)
C1—C2—C3—C42.12 (18)C11—C12—C17—C16178.19 (12)
O1—C2—C3—C4175.10 (10)C8—C9—C18—O4109.42 (13)
C2—C3—C4—C50.34 (18)C10—C9—C18—O465.25 (16)
C3—C4—C5—C6178.22 (11)C8—C9—C18—C1967.27 (14)
C3—C4—C5—C101.97 (17)C10—C9—C18—C19118.07 (12)
C4—C5—C6—C7179.33 (11)O4—C18—C19—C24165.81 (12)
C10—C5—C6—C70.47 (17)C9—C18—C19—C2417.59 (17)
C5—C6—C7—C81.01 (18)O4—C18—C19—C2015.05 (18)
C31—O2—C8—C9161.51 (11)C9—C18—C19—C20161.55 (11)
C31—O2—C8—C723.62 (16)C24—C19—C20—C210.71 (19)
C6—C7—C8—C91.41 (18)C18—C19—C20—C21178.45 (11)
C6—C7—C8—O2173.11 (11)C19—C20—C21—C220.5 (2)
O2—C8—C9—C10173.55 (10)C20—C21—C22—F2178.51 (12)
C7—C8—C9—C101.23 (17)C20—C21—C22—C231.4 (2)
O2—C8—C9—C181.38 (15)F2—C22—C23—C24178.84 (12)
C7—C8—C9—C18176.16 (10)C21—C22—C23—C241.1 (2)
C8—C9—C10—C50.63 (15)C22—C23—C24—C190.2 (2)
C18—C9—C10—C5175.11 (10)C20—C19—C24—C231.0 (2)
C8—C9—C10—C1177.13 (10)C18—C19—C24—C23178.09 (12)
C18—C9—C10—C12.65 (17)C2—O1—C25—C2626.01 (17)
C6—C5—C10—C90.26 (15)C2—O1—C25—C30157.08 (11)
C4—C5—C10—C9179.54 (10)C30—C25—C26—C271.6 (2)
C6—C5—C10—C1177.66 (10)O1—C25—C26—C27178.34 (13)
C4—C5—C10—C12.53 (15)C25—C26—C27—C281.1 (2)
C2—C1—C10—C9178.62 (10)C26—C27—C28—C290.3 (2)
C11—C1—C10—C97.96 (17)C27—C28—C29—C301.2 (2)
C2—C1—C10—C50.86 (15)C26—C25—C30—C290.7 (2)
C11—C1—C10—C5174.29 (10)O1—C25—C30—C29177.67 (12)
C2—C1—C11—O3114.60 (12)C28—C29—C30—C250.7 (2)
C10—C1—C11—O358.99 (15)C8—O2—C31—C36117.82 (13)
C2—C1—C11—C1263.22 (14)C8—O2—C31—C3263.82 (16)
C10—C1—C11—C12123.19 (12)C36—C31—C32—C332.7 (2)
O3—C11—C12—C13164.21 (12)O2—C31—C32—C33179.01 (12)
C1—C11—C12—C1318.03 (17)C31—C32—C33—C341.1 (2)
O3—C11—C12—C1716.52 (17)C32—C33—C34—C351.0 (2)
C1—C11—C12—C17161.25 (11)C33—C34—C35—C361.6 (3)
C17—C12—C13—C141.1 (2)C32—C31—C36—C352.0 (2)
C11—C12—C13—C14178.23 (12)O2—C31—C36—C35179.61 (13)
C12—C13—C14—C150.0 (2)C34—C35—C36—C310.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.403.3477 (15)172
C13—H13···Cgii0.952.873.6924 (15)145
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC36H22F2O4
Mr556.54
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)193
a, b, c (Å)22.3058 (4), 14.6047 (3), 16.8302 (3)
V3)5482.76 (18)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.50 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.691, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
96215, 5011, 4671
Rint0.016
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.06
No. of reflections5011
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.403.3477 (15)172
C13—H13···Cgii0.952.873.6924 (15)145
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOkamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press.  Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds