organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­benzyl-N′′-(2,6-di­fluoro­benzo­yl)phospho­ric tri­amide

aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 1 October 2012; accepted 10 October 2012; online 20 October 2012)

In the C(O)NHP(O) fragment of the title compound, C35H32F2N3O2P, the P—N bond is longer and the O—P—N angle is contracted compared with the other two P—N bonds and O—P—N angles. The P atom adopts a distorted tetra­hedral environment and the phosphoryl and carbonyl groups are anti with respect to each other. The two tertiary N atoms of the dibenzyl­amido groups show sp2 character with a slight deviation from planarity. In the crystal, pairs of N—H⋯O(P) hydrogen bonds form inversion dimers.

Related literature

For related structures with a [C(O)NH]P(O)[N]2 configuration, see: Sabbaghi et al. (2010[Sabbaghi, F., Rostami Chaijan, M. & Pourayoubi, M. (2010). Acta Cryst. E66, o1754.]); Pourayoubi et al. (2010[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o2524.]). For the geometries of the tertiary N atoms in phospho­ric triamides with a C(O)NHP(O)[N]2 core, see: Pourayoubi et al. (2012[Pourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G. & Amiri Rudbari, H. (2012). Acta Cryst. C68, o399-o404.]).

[Scheme 1]

Experimental

Crystal data
  • C35H32F2N3O2P

  • Mr = 595.61

  • Monoclinic, P 21 /c

  • a = 12.3079 (7) Å

  • b = 19.5089 (12) Å

  • c = 13.0131 (6) Å

  • β = 105.430 (3)°

  • V = 3012.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.986

  • 23928 measured reflections

  • 6199 independent reflections

  • 4332 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.01

  • 6199 reflections

  • 391 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 1.90 (2) 2.761 (2) 176 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of the title compound, [2,6-F2—C6H3C(O)NH]P(O)[N(CH2C6H5)2]2 (Fig. 1), was performed as part of a project on the synthesis of new phosphoric triamides with a [C(O)NH]P(O)[N]2 skeleton, where '[N]2' denotes two tertiary N atoms belonging to an amide group.

The phosphoryl and carbonyl groups, which are separated by an N atom, have a relative anti disposition. In the C(O)NHP(O) fragment, the P1—N1 bond is longer and the O2—P1—N1 angle is contracted compared with the other two P—N bonds and O—P—N angles, similar to what is found for related phosphoramide derivatives (Sabbaghi et al., 2010; Pourayoubi et al., 2010).

The two tertiary N atoms show sp2 character with a slight deviation from planarity, wherein one of the two dibenzylamido N atoms shows a slightly greater deviation than the other [viz N3 with the sum of the surrounding bond angles = 353.48 (2)°]. The tertiary N3 atom is more pyramidal than N2 and is oriented so that the lone pair of electrons is anti with respect to the PO group (Pourayoubi et al., 2012).

In the crystal, the hydrogen atom of the C(O)NHP(O) moiety is involved in an intermolecular N—H···O(P) hydrogen bond (see Table 1) to form an inversion dimer.

Related literature top

For related structures with a [C(O)NH]P(O)[N]2 configuration, see: Sabbaghi et al. (2010); Pourayoubi et al. (2010). For the geometries of the tertiary N atoms in phosphoric triamides with a C(O)NHP(O)[N]2 core, see: Pourayoubi et al. (2012).

Experimental top

2,6-F2—C6H3C(O)NHP(O)Cl2 was prepared according to a procedure reported by Pourayoubi et al. (2010).

To a solution of 2,6-F2—C6H3C(O)NHP(O)Cl2 (1.5 mmol) in chloroform (25 ml), a solution of dibenzylamine (6 mmol) in chloroform (5 ml) was added at 273 K. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from a mixture of CH3OH/CHCl3 (4:1 v/v) at room temperature.

Refinement top

The hydrogen atom H1N was found in a Fourier difference map and was allowed to refine isotropically with the N—H distance constrained to 0.87 (2) Å and Uiso(H) = 1.2 Ueq(N). All other hydrogen atoms were placed in calculated positions with appropriate riding parameters.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008); enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres with arbitrary radii.
N,N,N',N'-Tetrabenzyl-N''-(2,6-difluorobenzoyl)phosphoric triamide top
Crystal data top
C35H32F2N3O2PF(000) = 1248
Mr = 595.61Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3822 reflections
a = 12.3079 (7) Åθ = 2.7–25.0°
b = 19.5089 (12) ŵ = 0.14 mm1
c = 13.0131 (6) ÅT = 100 K
β = 105.430 (3)°Block, colourless
V = 3012.0 (3) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6199 independent reflections
Radiation source: fine-focus sealed tube4332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.975, Tmax = 0.986k = 2424
23928 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.6985P]
where P = (Fo2 + 2Fc2)/3
6199 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
C35H32F2N3O2PV = 3012.0 (3) Å3
Mr = 595.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3079 (7) ŵ = 0.14 mm1
b = 19.5089 (12) ÅT = 100 K
c = 13.0131 (6) Å0.18 × 0.12 × 0.10 mm
β = 105.430 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6199 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4332 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.986Rint = 0.062
23928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
6199 reflectionsΔρmin = 0.39 e Å3
391 parameters
Special details top

Experimental. IR (KBr, ν, cm-1): 3052, 2885, 1699, 1609, 1471, 1353, 1277, 1186, 1115, 1077, 1011, 930, 854, 802, 745.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.59266 (4)0.54027 (3)0.16718 (4)0.01441 (13)
F10.85267 (11)0.58682 (6)0.04221 (9)0.0281 (3)
F20.78767 (12)0.36483 (7)0.05916 (11)0.0416 (4)
O10.84569 (11)0.52129 (7)0.18588 (11)0.0207 (3)
O20.47271 (11)0.53813 (7)0.10611 (10)0.0172 (3)
N10.66497 (13)0.50969 (8)0.08388 (13)0.0156 (4)
H1N0.6240 (16)0.4957 (10)0.0232 (13)0.019*
N20.62881 (13)0.61912 (8)0.20347 (12)0.0155 (4)
N30.63429 (13)0.49405 (8)0.27580 (12)0.0149 (4)
C10.85840 (17)0.51846 (10)0.05653 (16)0.0185 (4)
C20.90366 (17)0.49400 (11)0.13495 (16)0.0226 (5)
H2A0.93100.52450.17920.027*
C30.90846 (17)0.42409 (12)0.14784 (16)0.0244 (5)
H3A0.94000.40620.20140.029*
C40.86834 (19)0.37989 (12)0.08434 (18)0.0288 (5)
H4A0.87030.33170.09410.035*
C50.82520 (18)0.40748 (11)0.00619 (17)0.0238 (5)
C60.81866 (16)0.47654 (10)0.01110 (15)0.0157 (4)
C70.77876 (17)0.50491 (10)0.10290 (16)0.0166 (4)
C80.72603 (16)0.63857 (10)0.29096 (15)0.0173 (4)
H8A0.77100.59700.31710.021*
H8B0.69840.65670.35040.021*
C90.80209 (16)0.69147 (10)0.26126 (16)0.0171 (4)
C100.84585 (16)0.74433 (10)0.33157 (16)0.0202 (5)
H10A0.82130.74960.39440.024*
C110.92460 (18)0.78945 (11)0.31167 (18)0.0253 (5)
H11A0.95460.82470.36140.030*
C120.95970 (18)0.78337 (11)0.21971 (18)0.0266 (5)
H12A1.01410.81410.20610.032*
C130.91462 (17)0.73200 (11)0.14762 (17)0.0238 (5)
H13A0.93760.72790.08370.029*
C140.83644 (17)0.68657 (10)0.16778 (16)0.0200 (5)
H14A0.80590.65170.11740.024*
C150.55331 (17)0.67630 (10)0.15645 (15)0.0173 (4)
H15A0.49780.66010.09120.021*
H15B0.59820.71330.13560.021*
C160.49147 (17)0.70473 (10)0.23293 (15)0.0187 (4)
C170.39712 (17)0.67077 (11)0.24741 (16)0.0233 (5)
H17A0.37120.63000.20860.028*
C180.34077 (19)0.69638 (12)0.31862 (17)0.0289 (5)
H18A0.27570.67350.32750.035*
C190.3792 (2)0.75492 (12)0.37635 (17)0.0314 (6)
H19A0.34120.77190.42580.038*
C200.4724 (2)0.78869 (12)0.36247 (17)0.0298 (6)
H20A0.49860.82900.40240.036*
C210.52835 (19)0.76405 (10)0.29027 (16)0.0227 (5)
H21A0.59200.78790.28020.027*
C220.67520 (17)0.42326 (10)0.27705 (16)0.0190 (4)
H22A0.70780.41680.21590.023*
H22B0.61040.39160.26750.023*
C230.76288 (17)0.40440 (10)0.37836 (16)0.0191 (5)
C240.77030 (18)0.33680 (11)0.41232 (16)0.0231 (5)
H24A0.72030.30350.37210.028*
C250.84993 (19)0.31741 (11)0.50427 (17)0.0263 (5)
H25A0.85520.27070.52580.032*
C260.92163 (18)0.36505 (12)0.56484 (18)0.0284 (5)
H26A0.97590.35140.62810.034*
C270.91417 (19)0.43264 (12)0.53319 (19)0.0330 (6)
H27A0.96230.46600.57540.040*
C280.83611 (18)0.45199 (11)0.43947 (18)0.0297 (5)
H28A0.83280.49840.41690.036*
C290.57861 (17)0.50956 (10)0.36177 (15)0.0169 (4)
H29A0.54230.55510.34800.020*
H29B0.63700.51210.43070.020*
C300.49109 (16)0.45744 (10)0.37099 (15)0.0162 (4)
C310.38563 (18)0.45573 (11)0.29768 (17)0.0235 (5)
H31A0.36820.48740.24020.028*
C320.30626 (18)0.40808 (11)0.30833 (18)0.0265 (5)
H32A0.23450.40730.25790.032*
C330.33008 (18)0.36155 (11)0.39148 (16)0.0215 (5)
H33A0.27480.32930.39870.026*
C340.43417 (17)0.36235 (10)0.46344 (16)0.0193 (4)
H34A0.45150.33030.52040.023*
C350.51438 (17)0.41011 (10)0.45299 (15)0.0184 (4)
H35A0.58640.41020.50300.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0122 (3)0.0172 (3)0.0140 (3)0.0008 (2)0.0036 (2)0.0007 (2)
F10.0412 (8)0.0198 (6)0.0268 (7)0.0001 (6)0.0154 (6)0.0029 (5)
F20.0616 (10)0.0199 (7)0.0603 (9)0.0026 (6)0.0459 (8)0.0008 (6)
O10.0142 (7)0.0271 (8)0.0198 (8)0.0020 (6)0.0027 (6)0.0038 (6)
O20.0133 (7)0.0224 (7)0.0157 (7)0.0004 (6)0.0034 (6)0.0037 (6)
N10.0120 (9)0.0202 (9)0.0142 (9)0.0008 (7)0.0028 (7)0.0015 (7)
N20.0139 (9)0.0181 (9)0.0135 (8)0.0035 (7)0.0018 (7)0.0007 (7)
N30.0147 (9)0.0157 (8)0.0154 (9)0.0019 (7)0.0060 (7)0.0011 (7)
C10.0162 (11)0.0189 (11)0.0192 (11)0.0005 (8)0.0025 (9)0.0006 (8)
C20.0170 (11)0.0335 (13)0.0169 (11)0.0037 (9)0.0039 (9)0.0060 (9)
C30.0177 (11)0.0370 (13)0.0204 (11)0.0052 (10)0.0083 (9)0.0036 (10)
C40.0289 (13)0.0242 (12)0.0370 (13)0.0029 (10)0.0152 (11)0.0055 (10)
C50.0222 (12)0.0226 (12)0.0314 (13)0.0013 (9)0.0157 (10)0.0010 (9)
C60.0098 (10)0.0202 (11)0.0170 (10)0.0014 (8)0.0033 (8)0.0012 (8)
C70.0162 (10)0.0148 (10)0.0201 (11)0.0005 (8)0.0072 (9)0.0030 (8)
C80.0189 (11)0.0177 (10)0.0131 (10)0.0012 (8)0.0002 (8)0.0017 (8)
C90.0134 (10)0.0158 (10)0.0202 (11)0.0049 (8)0.0011 (8)0.0005 (8)
C100.0177 (11)0.0188 (11)0.0219 (11)0.0050 (8)0.0014 (9)0.0027 (8)
C110.0205 (12)0.0184 (11)0.0322 (13)0.0002 (9)0.0014 (10)0.0043 (9)
C120.0164 (11)0.0210 (11)0.0418 (14)0.0001 (9)0.0066 (10)0.0042 (10)
C130.0200 (11)0.0235 (12)0.0290 (12)0.0066 (9)0.0086 (10)0.0033 (9)
C140.0209 (11)0.0172 (10)0.0213 (11)0.0026 (9)0.0043 (9)0.0004 (8)
C150.0180 (11)0.0176 (10)0.0161 (10)0.0042 (8)0.0042 (8)0.0027 (8)
C160.0194 (11)0.0202 (11)0.0153 (11)0.0084 (8)0.0026 (9)0.0062 (8)
C170.0210 (12)0.0259 (12)0.0224 (12)0.0069 (9)0.0051 (9)0.0043 (9)
C180.0230 (12)0.0399 (14)0.0265 (13)0.0113 (10)0.0115 (10)0.0094 (10)
C190.0372 (14)0.0391 (14)0.0216 (12)0.0224 (12)0.0141 (11)0.0070 (10)
C200.0453 (15)0.0234 (12)0.0193 (12)0.0135 (11)0.0063 (11)0.0026 (9)
C210.0293 (12)0.0200 (11)0.0189 (11)0.0078 (9)0.0065 (9)0.0046 (9)
C220.0185 (11)0.0183 (10)0.0220 (11)0.0013 (8)0.0085 (9)0.0002 (9)
C230.0158 (11)0.0216 (11)0.0223 (11)0.0031 (8)0.0093 (9)0.0028 (8)
C240.0275 (12)0.0204 (11)0.0235 (12)0.0035 (9)0.0104 (10)0.0012 (9)
C250.0343 (13)0.0200 (11)0.0268 (12)0.0101 (10)0.0118 (10)0.0066 (9)
C260.0221 (12)0.0338 (13)0.0289 (13)0.0105 (10)0.0060 (10)0.0104 (10)
C270.0229 (13)0.0334 (13)0.0374 (14)0.0028 (10)0.0009 (11)0.0072 (11)
C280.0225 (12)0.0242 (12)0.0383 (14)0.0030 (9)0.0009 (10)0.0122 (10)
C290.0196 (11)0.0174 (10)0.0143 (10)0.0002 (8)0.0057 (8)0.0004 (8)
C300.0175 (11)0.0174 (10)0.0151 (10)0.0003 (8)0.0068 (8)0.0030 (8)
C310.0225 (12)0.0221 (11)0.0235 (11)0.0005 (9)0.0016 (9)0.0083 (9)
C320.0187 (11)0.0280 (12)0.0290 (12)0.0033 (9)0.0003 (10)0.0050 (10)
C330.0222 (11)0.0184 (11)0.0261 (12)0.0045 (9)0.0101 (9)0.0004 (9)
C340.0239 (12)0.0180 (10)0.0184 (11)0.0030 (9)0.0097 (9)0.0035 (8)
C350.0196 (11)0.0218 (11)0.0140 (10)0.0022 (8)0.0051 (8)0.0003 (8)
Geometric parameters (Å, º) top
P1—O21.4794 (14)C16—C211.386 (3)
P1—N21.6358 (17)C16—C171.393 (3)
P1—N31.6395 (16)C17—C181.390 (3)
P1—N11.6841 (17)C17—H17A0.9500
F1—C11.351 (2)C18—C191.380 (3)
F2—C51.356 (2)C18—H18A0.9500
O1—C71.214 (2)C19—C201.376 (3)
N1—C71.359 (2)C19—H19A0.9500
N1—H1N0.860 (15)C20—C211.390 (3)
N2—C81.465 (2)C20—H20A0.9500
N2—C151.476 (2)C21—H21A0.9500
N3—C221.469 (2)C22—C231.510 (3)
N3—C291.490 (2)C22—H22A0.9900
C1—C21.372 (3)C22—H22B0.9900
C1—C61.383 (3)C23—C241.386 (3)
C2—C31.377 (3)C23—C281.387 (3)
C2—H2A0.9500C24—C251.382 (3)
C3—C41.374 (3)C24—H24A0.9500
C3—H3A0.9500C25—C261.376 (3)
C4—C51.376 (3)C25—H25A0.9500
C4—H4A0.9500C26—C271.377 (3)
C5—C61.372 (3)C26—H26A0.9500
C6—C71.512 (3)C27—C281.389 (3)
C8—C91.511 (3)C27—H27A0.9500
C8—H8A0.9900C28—H28A0.9500
C8—H8B0.9900C29—C301.509 (3)
C9—C101.389 (3)C29—H29A0.9900
C9—C141.393 (3)C29—H29B0.9900
C10—C111.384 (3)C30—C351.382 (3)
C10—H10A0.9500C30—C311.392 (3)
C11—C121.381 (3)C31—C321.382 (3)
C11—H11A0.9500C31—H31A0.9500
C12—C131.384 (3)C32—C331.383 (3)
C12—H12A0.9500C32—H32A0.9500
C13—C141.384 (3)C33—C341.371 (3)
C13—H13A0.9500C33—H33A0.9500
C14—H14A0.9500C34—C351.390 (3)
C15—C161.510 (3)C34—H34A0.9500
C15—H15A0.9900C35—H35A0.9500
C15—H15B0.9900
O2—P1—N2109.73 (8)C21—C16—C17119.32 (19)
O2—P1—N3119.07 (8)C21—C16—C15120.73 (19)
N2—P1—N3105.64 (8)C17—C16—C15119.94 (18)
O2—P1—N1105.49 (8)C18—C17—C16120.1 (2)
N2—P1—N1111.66 (8)C18—C17—H17A120.0
N3—P1—N1105.23 (8)C16—C17—H17A120.0
C7—N1—P1127.05 (14)C19—C18—C17120.1 (2)
C7—N1—H1N118.0 (14)C19—C18—H18A120.0
P1—N1—H1N115.0 (14)C17—C18—H18A120.0
C8—N2—C15114.85 (15)C20—C19—C18120.1 (2)
C8—N2—P1124.82 (13)C20—C19—H19A119.9
C15—N2—P1119.87 (13)C18—C19—H19A119.9
C22—N3—C29114.04 (15)C19—C20—C21120.2 (2)
C22—N3—P1123.66 (13)C19—C20—H20A119.9
C29—N3—P1115.78 (12)C21—C20—H20A119.9
F1—C1—C2119.50 (18)C16—C21—C20120.1 (2)
F1—C1—C6117.12 (17)C16—C21—H21A119.9
C2—C1—C6123.38 (19)C20—C21—H21A119.9
C1—C2—C3118.3 (2)N3—C22—C23113.71 (16)
C1—C2—H2A120.8N3—C22—H22A108.8
C3—C2—H2A120.8C23—C22—H22A108.8
C4—C3—C2121.0 (2)N3—C22—H22B108.8
C4—C3—H3A119.5C23—C22—H22B108.8
C2—C3—H3A119.5H22A—C22—H22B107.7
C3—C4—C5118.0 (2)C24—C23—C28118.44 (19)
C3—C4—H4A121.0C24—C23—C22118.76 (18)
C5—C4—H4A121.0C28—C23—C22122.79 (18)
F2—C5—C6117.08 (18)C25—C24—C23120.5 (2)
F2—C5—C4119.10 (19)C25—C24—H24A119.8
C6—C5—C4123.8 (2)C23—C24—H24A119.8
C5—C6—C1115.49 (18)C26—C25—C24120.7 (2)
C5—C6—C7122.33 (18)C26—C25—H25A119.7
C1—C6—C7122.03 (18)C24—C25—H25A119.7
O1—C7—N1124.51 (18)C25—C26—C27119.6 (2)
O1—C7—C6120.86 (17)C25—C26—H26A120.2
N1—C7—C6114.63 (17)C27—C26—H26A120.2
N2—C8—C9114.30 (16)C26—C27—C28119.9 (2)
N2—C8—H8A108.7C26—C27—H27A120.1
C9—C8—H8A108.7C28—C27—H27A120.1
N2—C8—H8B108.7C23—C28—C27120.9 (2)
C9—C8—H8B108.7C23—C28—H28A119.5
H8A—C8—H8B107.6C27—C28—H28A119.5
C10—C9—C14118.14 (19)N3—C29—C30113.79 (15)
C10—C9—C8119.78 (18)N3—C29—H29A108.8
C14—C9—C8121.94 (17)C30—C29—H29A108.8
C11—C10—C9121.1 (2)N3—C29—H29B108.8
C11—C10—H10A119.4C30—C29—H29B108.8
C9—C10—H10A119.4H29A—C29—H29B107.7
C12—C11—C10120.2 (2)C35—C30—C31118.50 (19)
C12—C11—H11A119.9C35—C30—C29120.37 (18)
C10—C11—H11A119.9C31—C30—C29121.12 (18)
C11—C12—C13119.2 (2)C32—C31—C30120.18 (19)
C11—C12—H12A120.4C32—C31—H31A119.9
C13—C12—H12A120.4C30—C31—H31A119.9
C14—C13—C12120.6 (2)C31—C32—C33120.8 (2)
C14—C13—H13A119.7C31—C32—H32A119.6
C12—C13—H13A119.7C33—C32—H32A119.6
C13—C14—C9120.63 (19)C34—C33—C32119.5 (2)
C13—C14—H14A119.7C34—C33—H33A120.3
C9—C14—H14A119.7C32—C33—H33A120.3
N2—C15—C16112.12 (15)C33—C34—C35119.98 (19)
N2—C15—H15A109.2C33—C34—H34A120.0
C16—C15—H15A109.2C35—C34—H34A120.0
N2—C15—H15B109.2C30—C35—C34121.09 (19)
C16—C15—H15B109.2C30—C35—H35A119.5
H15A—C15—H15B107.9C34—C35—H35A119.5
O2—P1—N1—C7176.64 (16)C10—C11—C12—C130.4 (3)
N2—P1—N1—C757.50 (19)C11—C12—C13—C140.9 (3)
N3—P1—N1—C756.63 (18)C12—C13—C14—C90.3 (3)
O2—P1—N2—C8159.51 (15)C10—C9—C14—C132.0 (3)
N3—P1—N2—C829.97 (18)C8—C9—C14—C13173.73 (19)
N1—P1—N2—C883.90 (17)C8—N2—C15—C1668.0 (2)
O2—P1—N2—C1512.28 (17)P1—N2—C15—C16104.57 (17)
N3—P1—N2—C15141.81 (14)N2—C15—C16—C2199.8 (2)
N1—P1—N2—C15104.31 (15)N2—C15—C16—C1779.4 (2)
O2—P1—N3—C2290.02 (16)C21—C16—C17—C180.1 (3)
N2—P1—N3—C22146.14 (15)C15—C16—C17—C18179.28 (18)
N1—P1—N3—C2227.88 (17)C16—C17—C18—C191.0 (3)
O2—P1—N3—C2959.88 (15)C17—C18—C19—C201.0 (3)
N2—P1—N3—C2963.95 (15)C18—C19—C20—C210.0 (3)
N1—P1—N3—C29177.79 (13)C17—C16—C21—C200.9 (3)
F1—C1—C2—C3179.99 (17)C15—C16—C21—C20178.33 (18)
C6—C1—C2—C30.8 (3)C19—C20—C21—C160.9 (3)
C1—C2—C3—C40.4 (3)C29—N3—C22—C2361.0 (2)
C2—C3—C4—C51.2 (3)P1—N3—C22—C23148.61 (14)
C3—C4—C5—F2178.4 (2)N3—C22—C23—C24150.43 (18)
C3—C4—C5—C60.8 (3)N3—C22—C23—C2829.2 (3)
F2—C5—C6—C1179.56 (18)C28—C23—C24—C250.8 (3)
C4—C5—C6—C10.3 (3)C22—C23—C24—C25179.58 (18)
F2—C5—C6—C73.9 (3)C23—C24—C25—C261.3 (3)
C4—C5—C6—C7175.3 (2)C24—C25—C26—C270.3 (3)
F1—C1—C6—C5179.63 (17)C25—C26—C27—C281.3 (4)
C2—C1—C6—C51.2 (3)C24—C23—C28—C270.8 (3)
F1—C1—C6—C74.7 (3)C22—C23—C28—C27178.8 (2)
C2—C1—C6—C7174.50 (18)C26—C27—C28—C231.8 (4)
P1—N1—C7—O11.6 (3)C22—N3—C29—C3048.9 (2)
P1—N1—C7—C6178.72 (14)P1—N3—C29—C30103.88 (17)
C5—C6—C7—O195.9 (2)N3—C29—C30—C35104.5 (2)
C1—C6—C7—O179.5 (3)N3—C29—C30—C3175.5 (2)
C5—C6—C7—N183.8 (2)C35—C30—C31—C320.8 (3)
C1—C6—C7—N1100.8 (2)C29—C30—C31—C32179.23 (19)
C15—N2—C8—C958.6 (2)C30—C31—C32—C330.0 (3)
P1—N2—C8—C9129.21 (16)C31—C32—C33—C340.7 (3)
N2—C8—C9—C10138.58 (18)C32—C33—C34—C350.6 (3)
N2—C8—C9—C1445.8 (2)C31—C30—C35—C340.9 (3)
C14—C9—C10—C112.4 (3)C29—C30—C35—C34179.13 (18)
C8—C9—C10—C11173.37 (18)C33—C34—C35—C300.2 (3)
C9—C10—C11—C121.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)1.90 (2)2.761 (2)176 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC35H32F2N3O2P
Mr595.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.3079 (7), 19.5089 (12), 13.0131 (6)
β (°) 105.430 (3)
V3)3012.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.975, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
23928, 6199, 4332
Rint0.062
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.01
No. of reflections6199
No. of parameters391
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008); enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.860 (15)1.902 (15)2.761 (2)176 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Support of this investigation by the North Tehran Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G. & Amiri Rudbari, H. (2012). Acta Cryst. C68, o399–o404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o2524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Rostami Chaijan, M. & Pourayoubi, M. (2010). Acta Cryst. E66, o1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds