metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1426-m1427

Poly[(μ3-hydrogenphosphato)(4H-1,2,4-triazole-κN1)zinc]

aLaboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M'sik Casablanca, Morocco, bLaboratoire de Chimie Organique Catalyse et Environnement, Faculté des Sciences Ben M'sik Casablanca, Morocco, cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco., and eLUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
*Correspondence e-mail: h_aitenneite@yahoo.com

(Received 22 October 2012; accepted 24 October 2012; online 31 October 2012)

The asymmetric unit of the title compound, [Zn(HPO4)(C2H3N3)]n, contains one Zn2+ cation, one (HPO4)2− anion and a 1,2,4 triazole ligand. The Zn2+ cation is coordinated in a quite regular tetra­hedral geometry by O atoms from three phosphate groups and a tertiary N atom from the triazole ring. Each phosphate anion is connected to three ZnII cations, leading to a series of corrugated organic–inorganic layers parallel to the ac plane. The overall structure involves stacking of complex hybrid organic–inorganic layers along the b axis. Cohesion in the crystal is ensured by an infinite three-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds between the phosphate groups and the triazole ligands.

Related literature

For background to potential applications of similar compounds, see: Horcajada et al. (2012[Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232-1268.]); Li et al. (2012[Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.]); Wang et al. (2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]); Yoon et al. (2012[Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196-1231.]). For hybrid compounds with zinc phosphates, see: Umeyama et al. (2012[Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. (2012). J. Am. Chem. Soc. 134, 12780-12785.]); Horike et al. (2012[Horike, S., Umeyama, D., Inukai, M., Itakura, T. & Kitagawa, S. (2012). J. Am. Chem. Soc. 134, 7612-7615.]). For phospho­nate, carboxyl­ate and azolate compounds, see: Stock & Biswas (2012[Stock, N. & Biswas, S. (2012). Chem. Rev. 112, 933-969.]). For bond-valence analysis, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(HPO4)(C2H3N3)]

  • Mr = 230.42

  • Orthorhombic, P c a 21

  • a = 8.5467 (13) Å

  • b = 8.4344 (12) Å

  • c = 8.9674 (13) Å

  • V = 646.43 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.12 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.511, Tmax = 0.638

  • 8746 measured reflections

  • 3318 independent reflections

  • 3207 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.04

  • 3318 reflections

  • 100 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −1.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1184 Friedel pairs

  • Flack parameter: 0.020 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 1.99 2.8427 (15) 175
O4—H4⋯O1ii 0.82 1.80 2.5978 (12) 164
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Research into organic-inorganic hybrid materials has been an active area in recent years because of their potential applications in catalysis (Yoon et al., 2012), drug-delivery (Horcajada et al., 2012), enantio-selective separation (Li et al., 2012) and non-linear optical materials (Wang et al., 2012). A variety of new solids have been dicovered with fascinating structural architectures ranging from clusters, chains and layers to porous frameworks using phosphonates, carboxylates and/or azolates (Stock & Biswas, 2012). In this paper, we report the hydrothermal synthesis and crystal structure of a new inorganic–organic hybrid compound based on a zinc cation coordinated by three hydrogenphosphate anions and a 1,2,4-triazole ligand.

The three-dimensional structure of [(TAZ)Zn(HPO4)]n (HTAZ = 1,2,4 triazole) consists of infinite complex zinc-hydrogenphosphate layers. Each zinc cation is tetrahedrally coordinated by three O atoms belonging to three crystallographic equivalent phosphate groups and one azote from triazole ring (Fig.1). Zn–O distances range from 1.9172 (9) to 1.9635 (9) Å, and the Zn1–N1 distance is 1.988 (1) Å (see Table 1). The PO4 tetrahedron is reasonably regular with the P—O distances and O—P—O angles varying between 1.5031 (9) and 1.5730 (9) Å and 104.95 (6)° and 113.91 (6)° respectively. These values are in a good agreement with those typically observed in other phosphate based compounds (Umeyama et al., 2012; Horike, et al., 2012).

A three dimensional view of the crystal structure of the title compound is displayed on Fig.2. The structure can be described as the stacking of corrugated inorganic-organic layers parallel to (010) resulting from the connexion of vertex of PO4 groups with ZnO3N tetrahedra (Fig.2).

Bond valence sum calculations (Brown & Altermatt, 1985) for Zn2+ and P5+ ions are as expected, viz. 2.05 and 5.02 valence units, respectively. The values of the bond valence sums calculated for the oxygen atoms show low values for O4 when the contribution of H atom is not considered (i.e. 1.13 valence units). Hence this O atom is associated with a proton and is involved in O4—H4···O1 hydrogen bonding. The crystal structure cohesion is ensured by an infinite three-dimensional network of N3–H3···O2 and O4–H4···O1 hydrogen bonds between the phosphate groups and the triazole ligands (Table 1 and Fig.2).

Related literature top

For background to potential applications of similar compounds, see: Horcajada et al. (2012); Li et al. (2012); Wang et al. (2012); Yoon et al. (2012). For hybrid compounds with zinc phosphates, see: Umeyama et al. (2012); Horike et al. (2012). For phosphonate, carboxylate and azolate compounds, see: Stock & Biswas (2012). For bond-valence analysis, see: Brown & Altermatt (1985).

Experimental top

All chemicals purchased were of reagent grade and were used without further purification. The title compound was synthesized in a hydrothermal system. A mixture of H3PO4 85% (0.25 ml), zinc (II) nitrate hexahydrate Zn(NO3)2.6H2O (0.189 g), 1,2,4-triazole (0.138 g) and water (5 ml) was placed in a Parr acid digestion bomb and heated at 393 K for 48 h. The reaction vessel was allowed to cool to room temperature. Colourless crystals of (C2H3N3)ZnHPO4 were filtered off, washed with distilled water, dried in a desiccator at room temperature and manually selected for the structural determination and other characterization. The results of elemental analysis of crystals are: Zn, 28.62; P, 13.50; O, 28.02; N, 18.40; C, 10.52 and H, 0.88%.

Refinement top

The highest peak and the deepest hole in the final Fourier map are at 0.92 Å and 0.72 Å, from N1 and Zn1 respectively. H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å with Uiso(H) = 1.2 Ueq (aromatic) and Uiso(H) = 1.5 Ueq (hydroxide). The space group is not centrosymmetric and the polar axis restraint is generated automatically by the SHELXL program. The 1184 Friedel opposite reflections were not merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound showing the coordination environment of the Zn and P atoms. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) -x + 3/2, y, z + 1/2; (ii) -x + 2, -y, z + 1/2; (iii) -x + 2, -y, z - 1/2; (iv) -x + 3/2, y, z - 1/2.
[Figure 2] Fig. 2. A three dimensional view of the (C2H3N3)ZnHPO4 framework structure showing a stacking of the inorganic and organic layers. The PO4 tetrahedron is shown in pink and the ZnO3N tetrahedron is blue green. Hydrogen bonds are drawn as dashed lines.
Poly[(µ3-hydrogenphosphato)(4H-1,2,4-triazole-κN1)zinc] top
Crystal data top
[Zn(HPO4)(C2H3N3)]F(000) = 456
Mr = 230.42Dx = 2.368 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3318 reflections
a = 8.5467 (13) Åθ = 4.1–40.2°
b = 8.4344 (12) ŵ = 4.01 mm1
c = 8.9674 (13) ÅT = 296 K
V = 646.43 (16) Å3Block, colourless
Z = 40.24 × 0.18 × 0.12 mm
Data collection top
Bruker X8 APEXII
diffractometer
3318 independent reflections
Radiation source: fine-focus sealed tube3207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 40.2°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1415
Tmin = 0.511, Tmax = 0.638k = 1315
8746 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3318 reflectionsΔρmax = 0.46 e Å3
100 parametersΔρmin = 1.40 e Å3
1 restraintAbsolute structure: Flack (1983), 1184 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (6)
Crystal data top
[Zn(HPO4)(C2H3N3)]V = 646.43 (16) Å3
Mr = 230.42Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.5467 (13) ŵ = 4.01 mm1
b = 8.4344 (12) ÅT = 296 K
c = 8.9674 (13) Å0.24 × 0.18 × 0.12 mm
Data collection top
Bruker X8 APEXII
diffractometer
3318 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3207 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.638Rint = 0.029
8746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051Δρmax = 0.46 e Å3
S = 1.04Δρmin = 1.40 e Å3
3318 reflectionsAbsolute structure: Flack (1983), 1184 Friedel pairs
100 parametersAbsolute structure parameter: 0.020 (6)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.832301 (12)0.167666 (13)0.51177 (2)0.01245 (3)
P10.94990 (3)0.03491 (3)0.21240 (3)0.01101 (4)
O10.84382 (9)0.01275 (12)0.34886 (10)0.01568 (14)
O21.00560 (10)0.12805 (10)0.16133 (10)0.01765 (14)
O30.87260 (11)0.13060 (13)0.09170 (11)0.02070 (16)
O41.09420 (9)0.13727 (12)0.26275 (11)0.01867 (15)
H41.16120.07920.29880.028*
N10.85494 (13)0.39236 (14)0.44809 (12)0.01976 (17)
N20.7928 (2)0.50750 (18)0.54065 (17)0.0380 (3)
N30.90713 (16)0.62060 (15)0.35052 (15)0.0269 (2)
H30.94200.69260.29130.032*
C10.8267 (2)0.6419 (2)0.4777 (2)0.0356 (4)
H10.79880.74050.51580.043*
C20.9214 (2)0.46424 (18)0.33568 (19)0.0295 (3)
H20.97150.41360.25680.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01506 (5)0.00996 (5)0.01234 (5)0.00078 (3)0.00004 (4)0.00108 (4)
P10.01043 (8)0.00993 (9)0.01266 (9)0.00027 (7)0.00016 (8)0.00024 (8)
O10.0150 (3)0.0176 (4)0.0145 (3)0.0025 (2)0.0026 (2)0.0032 (3)
O20.0218 (3)0.0103 (3)0.0209 (3)0.0001 (3)0.0082 (3)0.0016 (3)
O30.0171 (3)0.0248 (4)0.0202 (4)0.0019 (3)0.0041 (3)0.0069 (3)
O40.0130 (3)0.0132 (3)0.0298 (4)0.0019 (2)0.0056 (3)0.0002 (3)
N10.0269 (4)0.0113 (4)0.0212 (4)0.0000 (3)0.0032 (3)0.0026 (3)
N20.0693 (10)0.0169 (5)0.0279 (7)0.0023 (6)0.0179 (6)0.0004 (4)
N30.0365 (6)0.0144 (4)0.0299 (5)0.0042 (4)0.0016 (5)0.0081 (4)
C10.0667 (13)0.0122 (5)0.0279 (7)0.0014 (6)0.0031 (6)0.0021 (5)
C20.0412 (7)0.0161 (5)0.0312 (7)0.0034 (5)0.0128 (5)0.0091 (5)
Geometric parameters (Å, º) top
Zn1—O3i1.9179 (9)O4—H40.8200
Zn1—O2ii1.9570 (8)N1—C21.3064 (18)
Zn1—O11.9624 (9)N1—N21.3836 (19)
Zn1—N11.9888 (11)N2—C11.299 (2)
P1—O31.5031 (10)N3—C21.331 (2)
P1—O21.5250 (9)N3—C11.343 (2)
P1—O11.5345 (9)N3—H30.8600
P1—O41.5717 (9)C1—H10.9300
O2—Zn1iii1.9570 (8)C2—H20.9300
O3—Zn1iv1.9179 (9)
O3i—Zn1—O2ii111.25 (4)P1—O4—H4109.5
O3i—Zn1—O1102.44 (4)C2—N1—N2107.71 (12)
O2ii—Zn1—O1111.16 (4)C2—N1—Zn1134.92 (11)
O3i—Zn1—N1110.58 (5)N2—N1—Zn1117.34 (9)
O2ii—Zn1—N1106.89 (4)C1—N2—N1105.42 (14)
O1—Zn1—N1114.58 (5)C2—N3—C1105.33 (13)
O3—P1—O2113.89 (6)C2—N3—H3127.3
O3—P1—O1112.33 (5)C1—N3—H3127.3
O2—P1—O1108.30 (5)N2—C1—N3111.50 (16)
O3—P1—O4104.89 (6)N2—C1—H1124.3
O2—P1—O4109.66 (5)N3—C1—H1124.3
O1—P1—O4107.55 (5)N1—C2—N3110.04 (14)
P1—O1—Zn1122.83 (5)N1—C2—H2125.0
P1—O2—Zn1iii125.50 (5)N3—C2—H2125.0
P1—O3—Zn1iv139.29 (6)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+2, y, z+1/2; (iii) x+2, y, z1/2; (iv) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2v0.861.992.8427 (15)175
O4—H4···O1vi0.821.802.5978 (12)164
Symmetry codes: (v) x, y+1, z; (vi) x+1/2, y, z.

Experimental details

Crystal data
Chemical formula[Zn(HPO4)(C2H3N3)]
Mr230.42
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)8.5467 (13), 8.4344 (12), 8.9674 (13)
V3)646.43 (16)
Z4
Radiation typeMo Kα
µ (mm1)4.01
Crystal size (mm)0.24 × 0.18 × 0.12
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.511, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
8746, 3318, 3207
Rint0.029
(sin θ/λ)max1)0.909
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.04
No. of reflections3318
No. of parameters100
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 1.40
Absolute structureFlack (1983), 1184 Friedel pairs
Absolute structure parameter0.020 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.992.8427 (15)174.5
O4—H4···O1ii0.821.802.5978 (12)164.1
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHorike, S., Umeyama, D., Inukai, M., Itakura, T. & Kitagawa, S. (2012). J. Am. Chem. Soc. 134, 7612–7615.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N. & Biswas, S. (2012). Chem. Rev. 112, 933–969.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUmeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. (2012). J. Am. Chem. Soc. 134, 12780–12785.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1426-m1427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds