organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4-di­nitro­phen­yl)sulfane

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, and bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 22 September 2012; accepted 5 October 2012; online 13 October 2012)

In the title compound, C12H6N4O8S, the dinitro­phenyl rings subtend an angle of 78.46 (13) °. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds leading to the formation of a two-dimensional network lying parallel to the bc plane.

Related literature

For applications of bis­(2,4-dinitro­phen­yl)sulfane, see: Nakadate et al. (1964[Nakadate, M., Matsuyama, C. & Kimura, M. (1964). Chem. Pharm. Bull. 12, 1138-1143.]); Alekhina et al. (1978[Alekhina, N. N., Gitis, S. S., Ivanov, A. V. & Kaminskii, A. Y. (1978). Zh. Org. Khim. 14, 2584-2587.]); Parihar et al. (1971[Parihar, D. B., Prakash, O., Bajaj, I., Tripathi, R. P. & Verma, K. K. (1971). J. Chromatogr. 59, 457-460.]); Evans & Kinnard (1983[Evans, T. L. & Kinnard, R. D. (1983). J. Org. Chem. 48, 2496-2499.]); Andricopulo et al. (2006[Andricopulo, A. D., Akoacheve, M. B., Krogh, R., Nickel, C., McLeish, M. J., Kenyon, G. L., Arscott, L. D., Williams, C. H., Daviond-Charvet, E. & Becker, K. (2006). Bioorg. Med. Chem. Lett. 16, 2283-2292.]). For related syntheses, see: Pesin et al. (1963[Pesin, V. G., Khaletskii, A. M. & Vitenberg, I. G. (1963). Zh. Obshch. Khim. 33, 388-391.]); Joshi & Mathur (1963[Joshi, S. S. & Mathur, T. C. (1963). J. Indian Chem. Soc. 40, 939-940.]); Obata et al. (1966[Obata, Y., Ishikawa, Y. & Nishino, C. (1966). Agric. Biol. Chem. 30, 164-168.]); Stepanov et al. (1974[Stepanov, B. I., Rodionov, V. Ya. & Chivisova, T. A. (1974). Zh. Org. Khim. 10, 79-83.]); Davydov & Beletskaya (2003[Davydov, D. V. & Beletskaya, I. P. (2003). Russ. J. Chem B. 52, 278-279.]). For our previous work to synthesize new substituted barbiturates, see: Manickkam & Kalaivani (2011[Manickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.]); Rajamani & Kalaivani (2012[Rajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.]).

[Scheme 1]

Experimental

Crystal data
  • C12H6N4O8S

  • Mr = 366.27

  • Monoclinic, P 21 /c

  • a = 9.9428 (12) Å

  • b = 7.3693 (9) Å

  • c = 19.743 (2) Å

  • β = 95.525 (8)°

  • V = 1439.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.15 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.991

  • 15342 measured reflections

  • 2949 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.110

  • S = 0.99

  • 2949 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8i 0.93 2.54 3.080 (3) 117
C6—H6⋯O7ii 0.93 2.49 3.364 (3) 156
C11—H11⋯O2iii 0.93 2.57 3.489 (3) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title sulfur containing organic compound is a biologically active molecule (Andricopulo et al., 2006). It has been utilized in many clinical trials (Nakadate et al., 1964; Alekhina et al., 1978) and also employed in the synthesis of a number of other important organic molecules (Parihar et al., 1971; Evans & Kinnard, 1983). Several methods have been reported for the synthesis of the title molecule (Pesin et al., 1963; Joshi & Mathur, 1963; Obata et al., 1966; Stepanov et al., 1974; Davydov & Beletskaya, 2003). In continuation of our previous work to synthesize new substituted barbiturates when 2-thiobarbituric acid is used (Manickkam & Kalaivani, 2011; Rajamani & Kalaivani, 2012) , the title molecule was obtained crystallizing out as the product through a new synthetic route.

In the title molecule (Fig. 1) the two phenyl rings are inclined to one another by 78.46 (13) °.

In the crystal, there are a number of weak C—H···O hydrogen bonds linking the molecules to form a two-dimensional network lying parallel to the bc plane (Table 1 and Fig. 2).

Related literature top

For applications of bis(2,4-dinitrophenyl)sulfane, see: Nakadate et al. (1964); Alekhina et al. (1978); Parihar et al. (1971); Evans & Kinnard (1983); Andricopulo et al. (2006). For related syntheses, see: Pesin et al. (1963); Joshi & Mathur (1963); Obata et al. (1966); Stepanov et al. (1974); Davydov & Beletskaya (2003). For our previous work to synthesize new substituted barbiturates, see: Manickkam & Kalaivani (2011); Rajamani & Kalaivani (2012).

Experimental top

Analytical grade 1-chloro-2,4-dinitrobenzene (2.02 g, 0.01 mol) dissolved in ethanol (20 ml) and 2-thiobarbituricacid (1.44 g, 0.01 mol) dissolved in ethanol (20 ml) were mixed. Triethylamine (5 g,0.05 mol) was then added and the mixture was shaken well for 5–6 hrs. On standing yellow crystals came out from the solution after 5 days. The crystals were filtered and washed well with ether to remove the unreacted reactants and then with a small amount of absolute alcohol. The crystals were recrystallized from ethanol (M.pt: 467 K; yield: 70%). Good quality single crystals for X-ray diffraction studies were obtained by slow evaporation of a solution in ethanol at room temperature.

Refinement top

All the H atoms were included in calculated positions and treated as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed cyan lines (H atoms not involved in these interactions have been omitted for clarity; see Table 1 for details).
Bis(2,4-dinitrophenyl)sulfane top
Crystal data top
C12H6N4O8SF(000) = 744
Mr = 366.27Dx = 1.690 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 687 reflections
a = 9.9428 (12) Åθ = 2.5–26.0°
b = 7.3693 (9) ŵ = 0.28 mm1
c = 19.743 (2) ÅT = 296 K
β = 95.525 (8)°Needle, yellow
V = 1439.9 (3) Å30.15 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2949 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1012
Tmin = 0.958, Tmax = 0.991k = 99
15342 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0462P)2]
where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H6N4O8SV = 1439.9 (3) Å3
Mr = 366.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9428 (12) ŵ = 0.28 mm1
b = 7.3693 (9) ÅT = 296 K
c = 19.743 (2) Å0.15 × 0.06 × 0.03 mm
β = 95.525 (8)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1651 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.991Rint = 0.070
15342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
2949 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45894 (8)0.54204 (10)0.14730 (4)0.0467 (3)
O10.3487 (3)0.3356 (3)0.26264 (12)0.0808 (10)
O20.4165 (2)0.4985 (3)0.35003 (11)0.0765 (10)
O30.0912 (3)1.0117 (4)0.35223 (14)0.0914 (11)
O40.0607 (3)1.1747 (4)0.26196 (14)0.0947 (11)
O50.0437 (3)0.1541 (3)0.05028 (11)0.0740 (10)
O60.1255 (3)0.0405 (4)0.09656 (12)0.0925 (11)
O70.5752 (2)0.1785 (3)0.00808 (11)0.0684 (9)
O80.6174 (2)0.3770 (3)0.07036 (11)0.0624 (8)
N10.3628 (3)0.4798 (3)0.29238 (13)0.0520 (10)
N20.1077 (3)1.0440 (4)0.29312 (16)0.0599 (11)
N30.0775 (3)0.1350 (4)0.05396 (13)0.0611 (10)
N40.5382 (3)0.2847 (3)0.03373 (12)0.0459 (9)
C10.3436 (3)0.6771 (3)0.18964 (13)0.0367 (9)
C20.3140 (3)0.6456 (3)0.25585 (13)0.0368 (9)
C30.2394 (3)0.7630 (4)0.29087 (13)0.0423 (10)
C40.1913 (3)0.9165 (4)0.25738 (14)0.0401 (10)
C50.2169 (3)0.9557 (4)0.19209 (14)0.0449 (10)
C60.2941 (3)0.8364 (4)0.15892 (13)0.0440 (10)
C70.3467 (3)0.4152 (3)0.09096 (12)0.0371 (9)
C80.2065 (3)0.4231 (3)0.09266 (13)0.0441 (10)
C90.1189 (3)0.3318 (4)0.04641 (14)0.0477 (10)
C100.1710 (3)0.2295 (4)0.00390 (13)0.0447 (10)
C110.3068 (3)0.2136 (3)0.00716 (13)0.0465 (10)
C120.3938 (3)0.3044 (3)0.04037 (12)0.0382 (9)
H30.222100.739700.335500.0510*
H50.182801.060600.170700.0540*
H60.313800.862900.114900.0530*
H80.171400.492300.126200.0530*
H90.026100.338600.048800.0570*
H110.340500.143000.040700.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0398 (5)0.0482 (4)0.0514 (5)0.0035 (4)0.0003 (4)0.0120 (3)
O10.103 (2)0.0390 (13)0.0968 (18)0.0003 (13)0.0090 (15)0.0069 (12)
O20.0911 (19)0.0906 (18)0.0463 (14)0.0343 (15)0.0016 (13)0.0164 (12)
O30.099 (2)0.103 (2)0.0792 (18)0.0258 (16)0.0441 (16)0.0093 (15)
O40.088 (2)0.0925 (19)0.103 (2)0.0568 (17)0.0064 (16)0.0047 (16)
O50.0647 (18)0.0820 (17)0.0701 (16)0.0079 (15)0.0199 (14)0.0082 (12)
O60.101 (2)0.0974 (19)0.0755 (17)0.0002 (17)0.0092 (15)0.0459 (15)
O70.0732 (17)0.0770 (15)0.0579 (14)0.0166 (13)0.0215 (12)0.0157 (12)
O80.0480 (14)0.0682 (14)0.0712 (15)0.0035 (12)0.0067 (12)0.0111 (12)
N10.0514 (17)0.0513 (17)0.0532 (17)0.0087 (13)0.0042 (14)0.0107 (13)
N20.0426 (17)0.0652 (18)0.072 (2)0.0118 (15)0.0060 (15)0.0144 (16)
N30.072 (2)0.0569 (17)0.0512 (17)0.0049 (17)0.0103 (17)0.0068 (13)
N40.0543 (18)0.0448 (14)0.0394 (14)0.0080 (13)0.0084 (13)0.0055 (11)
C10.0345 (17)0.0352 (15)0.0391 (16)0.0006 (13)0.0030 (13)0.0044 (12)
C20.0331 (17)0.0365 (14)0.0396 (16)0.0003 (13)0.0033 (13)0.0030 (12)
C30.0343 (17)0.0539 (17)0.0385 (16)0.0014 (14)0.0031 (13)0.0004 (13)
C40.0292 (17)0.0413 (16)0.0493 (18)0.0016 (13)0.0019 (13)0.0092 (13)
C50.0441 (18)0.0392 (15)0.0500 (18)0.0066 (15)0.0022 (14)0.0027 (14)
C60.0494 (19)0.0464 (16)0.0365 (15)0.0015 (15)0.0064 (14)0.0037 (13)
C70.0417 (18)0.0343 (14)0.0351 (15)0.0016 (13)0.0030 (13)0.0008 (11)
C80.046 (2)0.0450 (17)0.0411 (16)0.0004 (14)0.0040 (14)0.0065 (13)
C90.0437 (19)0.0457 (17)0.0527 (18)0.0012 (15)0.0007 (15)0.0013 (14)
C100.055 (2)0.0404 (16)0.0364 (16)0.0002 (15)0.0079 (15)0.0013 (13)
C110.063 (2)0.0386 (16)0.0371 (16)0.0079 (16)0.0003 (15)0.0010 (13)
C120.0444 (19)0.0350 (14)0.0353 (15)0.0048 (13)0.0047 (14)0.0047 (12)
Geometric parameters (Å, º) top
S1—C11.786 (3)C2—C31.370 (4)
S1—C71.766 (3)C3—C41.373 (4)
O1—N11.216 (3)C4—C51.369 (4)
O2—N11.218 (3)C5—C61.374 (4)
O3—N21.218 (4)C7—C81.399 (4)
O4—N21.212 (4)C7—C121.405 (3)
O5—N31.222 (4)C8—C91.376 (4)
O6—N31.224 (4)C9—C101.387 (4)
O7—N41.220 (3)C10—C111.363 (4)
O8—N41.223 (3)C11—C121.386 (4)
N1—C21.477 (3)C3—H30.9300
N2—C41.478 (4)C5—H50.9300
N3—C101.466 (4)C6—H60.9300
N4—C121.462 (4)C8—H80.9300
C1—C21.387 (4)C9—H90.9300
C1—C61.390 (4)C11—H110.9300
C1—S1—C7101.22 (13)S1—C7—C8122.26 (19)
O1—N1—O2124.8 (3)S1—C7—C12121.5 (2)
O1—N1—C2118.0 (2)C8—C7—C12116.3 (2)
O2—N1—C2117.2 (2)C7—C8—C9122.2 (2)
O3—N2—O4124.1 (3)C8—C9—C10119.0 (3)
O3—N2—C4117.9 (3)N3—C10—C9119.0 (3)
O4—N2—C4118.0 (3)N3—C10—C11119.6 (2)
O5—N3—O6123.9 (3)C9—C10—C11121.4 (3)
O5—N3—C10118.0 (3)C10—C11—C12118.9 (2)
O6—N3—C10118.0 (3)N4—C12—C7121.3 (2)
O7—N4—O8122.6 (3)N4—C12—C11116.5 (2)
O7—N4—C12119.2 (2)C7—C12—C11122.2 (3)
O8—N4—C12118.3 (2)C2—C3—H3121.00
S1—C1—C2123.51 (19)C4—C3—H3121.00
S1—C1—C6118.9 (2)C4—C5—H5121.00
C2—C1—C6117.0 (2)C6—C5—H5121.00
N1—C2—C1120.6 (2)C1—C6—H6119.00
N1—C2—C3116.4 (2)C5—C6—H6119.00
C1—C2—C3123.0 (2)C7—C8—H8119.00
C2—C3—C4117.3 (2)C9—C8—H8119.00
N2—C4—C3118.7 (3)C8—C9—H9121.00
N2—C4—C5118.7 (3)C10—C9—H9120.00
C3—C4—C5122.7 (3)C10—C11—H11121.00
C4—C5—C6118.5 (3)C12—C11—H11121.00
C1—C6—C5121.6 (2)
C7—S1—C1—C2105.6 (2)C6—C1—C2—C30.1 (4)
C7—S1—C1—C683.5 (2)S1—C1—C6—C5172.9 (2)
C1—S1—C7—C86.2 (2)C2—C1—C6—C51.3 (4)
C1—S1—C7—C12171.83 (19)N1—C2—C3—C4179.0 (3)
O1—N1—C2—C146.5 (4)C1—C2—C3—C41.0 (4)
O1—N1—C2—C3133.5 (3)C2—C3—C4—N2178.6 (3)
O2—N1—C2—C1132.4 (3)C2—C3—C4—C51.0 (4)
O2—N1—C2—C347.7 (4)N2—C4—C5—C6179.7 (3)
O3—N2—C4—C33.8 (4)C3—C4—C5—C60.1 (5)
O3—N2—C4—C5176.6 (3)C4—C5—C6—C11.3 (4)
O4—N2—C4—C3176.7 (3)S1—C7—C8—C9176.4 (2)
O4—N2—C4—C52.9 (4)C12—C7—C8—C91.7 (4)
O5—N3—C10—C91.8 (4)S1—C7—C12—N42.1 (3)
O5—N3—C10—C11179.0 (3)S1—C7—C12—C11175.55 (18)
O6—N3—C10—C9177.6 (3)C8—C7—C12—N4179.7 (2)
O6—N3—C10—C111.7 (4)C8—C7—C12—C112.6 (3)
O7—N4—C12—C7175.5 (2)C7—C8—C9—C100.5 (4)
O7—N4—C12—C116.8 (3)C8—C9—C10—N3178.9 (3)
O8—N4—C12—C75.0 (3)C8—C9—C10—C111.9 (4)
O8—N4—C12—C11172.8 (2)N3—C10—C11—C12179.7 (2)
S1—C1—C2—N18.8 (4)C9—C10—C11—C121.0 (4)
S1—C1—C2—C3171.3 (2)C10—C11—C12—N4179.1 (2)
C6—C1—C2—N1179.9 (3)C10—C11—C12—C71.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.543.080 (3)117
C6—H6···O7ii0.932.493.364 (3)156
C11—H11···O2iii0.932.573.489 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H6N4O8S
Mr366.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.9428 (12), 7.3693 (9), 19.743 (2)
β (°) 95.525 (8)
V3)1439.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.15 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.958, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15342, 2949, 1651
Rint0.070
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 0.99
No. of reflections2949
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.543.080 (3)117
C6—H6···O7ii0.932.493.364 (3)156
C11—H11···O2iii0.932.573.489 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.
 

References

First citationAlekhina, N. N., Gitis, S. S., Ivanov, A. V. & Kaminskii, A. Y. (1978). Zh. Org. Khim. 14, 2584–2587.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAndricopulo, A. D., Akoacheve, M. B., Krogh, R., Nickel, C., McLeish, M. J., Kenyon, G. L., Arscott, L. D., Williams, C. H., Daviond-Charvet, E. & Becker, K. (2006). Bioorg. Med. Chem. Lett. 16, 2283–2292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavydov, D. V. & Beletskaya, I. P. (2003). Russ. J. Chem B. 52, 278–279.  Web of Science CrossRef CAS Google Scholar
First citationEvans, T. L. & Kinnard, R. D. (1983). J. Org. Chem. 48, 2496–2499.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoshi, S. S. & Mathur, T. C. (1963). J. Indian Chem. Soc. 40, 939–940.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakadate, M., Matsuyama, C. & Kimura, M. (1964). Chem. Pharm. Bull. 12, 1138–1143.  CrossRef PubMed CAS Google Scholar
First citationObata, Y., Ishikawa, Y. & Nishino, C. (1966). Agric. Biol. Chem. 30, 164–168.  CrossRef CAS Google Scholar
First citationParihar, D. B., Prakash, O., Bajaj, I., Tripathi, R. P. & Verma, K. K. (1971). J. Chromatogr. 59, 457–460.  CrossRef CAS Google Scholar
First citationPesin, V. G., Khaletskii, A. M. & Vitenberg, I. G. (1963). Zh. Obshch. Khim. 33, 388–391.  CAS Google Scholar
First citationRajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStepanov, B. I., Rodionov, V. Ya. & Chivisova, T. A. (1974). Zh. Org. Khim. 10, 79–83.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds