metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1321-m1322

Bis[4-(di­methyl­amino)­pyridinium] octa­aqua­chloridolanthanum(III) tetra­chloride trihydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 25 September 2012; accepted 28 September 2012; online 3 October 2012)

The title organic–inorganic salt, (C7H11N2)2[LaCl(H2O)8]Cl4·3H2O, consists of two 4-(dimethyl­amino)­pyridinium and one [La(H2O)8Cl]2+ cations, four chloride anions and three solvent water mol­ecules. In the crystal, the various units are connected by N—H⋯Cl, O—H⋯Cl, O—H⋯O and N—H⋯O hydrogen bonds, forming a network of alternating organic and inorganic layers. The 4-(dimethyl­amino)­pyridinium cations stack along the c axis, while the inorganic layers lie parallel to the ac plane. The chloride anions are located between these entities, forming hydrogen bonds with the NH atom of the pyridinium ions and the water mol­ecules. There are also C—H⋯Cl hydrogen bonds present involving one of the 4-(dimethyl­amino)­pyridinium cations, resulting in the formation of a three-dimensional supra­molecular architecture.

Related literature

For common applications of organic–inorganic hybrid materials, see: Cui et al. (2000[Cui, Y., Ren, J., Chen, G., Yu, W.-C. & Qian, Y. (2000). Acta Cryst. C56, e552-e553.]); Lacroix et al. (1994[Lacroix, P. G., Clement, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658-660.]); Chakravarthy & Guloy (1997[Chakravarthy, V. & Guloy, A. M. (1997). Chem. Commun. pp. 697-698.]). For the crystal structures of compounds involving 4-(dimethyl­amino)­pyridinium, see: Chao et al. (1977[Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820-1823.]); Mayr-Stein & Bolte (2000[Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19-e20.]); Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.], 2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m13.]); Koon et al. (2009[Koon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[LaCl(H2O)8]Cl4·3H2O

  • Mr = 760.69

  • Triclinic, [P \overline 1]

  • a = 9.6741 (4) Å

  • b = 12.6695 (7) Å

  • c = 14.3601 (7) Å

  • α = 68.354 (5)°

  • β = 75.273 (4)°

  • γ = 84.264 (4)°

  • V = 1582.16 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 180 K

  • 0.43 × 0.28 × 0.08 mm

Data collection
  • Oxford Xcalibur Sapphire1 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.548, Tmax = 0.864

  • 33782 measured reflections

  • 7144 independent reflections

  • 6518 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.11

  • 7144 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl5i 0.86 2.71 3.314 (3) 129
N2—H2A⋯O1Wii 0.86 2.24 2.909 (3) 134
N4—H4A⋯Cl4iii 0.86 2.51 3.213 (2) 140
N4—H4A⋯Cl4iv 0.86 2.77 3.418 (3) 133
O1—H11⋯Cl2v 0.79 2.46 3.2316 (19) 165
O1—H12⋯O1Wvi 0.78 2.01 2.784 (2) 167
O2W—H12W⋯Cl3iii 0.85 2.38 3.222 (2) 169
O3W—H13W⋯Cl2vii 0.85 2.51 3.293 (2) 153
O2—H21⋯Cl3viii 0.85 2.32 3.1537 (17) 166
O1W—H21W⋯Cl1 0.85 2.31 3.1538 (19) 173
O2—H22⋯Cl4 0.85 2.27 3.1023 (17) 168
O2W—H22W⋯Cl2 0.85 2.37 3.213 (2) 172
O3W—H23W⋯Cl2v 0.85 2.34 3.193 (2) 176
O3—H31⋯Cl4viii 0.84 2.34 3.1471 (17) 160
O3—H32⋯Cl1vi 0.84 2.36 3.1413 (16) 157
O4—H41⋯Cl3viii 0.84 2.31 3.1459 (17) 173
O4—H42⋯O2W 0.85 1.95 2.791 (3) 178
O5—H51⋯Cl1 0.84 2.38 3.1707 (19) 158
O5—H52⋯Cl2 0.85 2.43 3.241 (2) 160
O6—H61⋯Cl4 0.84 2.35 3.1708 (17) 164
O6—H62⋯Cl1 0.85 2.32 3.1250 (16) 158
O7—H71⋯Cl5v 0.84 2.46 3.1402 (17) 139
O7—H72⋯Cl1 0.84 2.41 3.2287 (18) 162
O8—H81⋯O3W 0.85 1.94 2.786 (3) 172
O8—H82⋯Cl3 0.84 2.48 3.2711 (19) 156
C11—H11A⋯Cl3iii 0.93 2.80 3.612 (3) 147
C14—H14B⋯Cl1 0.96 2.75 3.639 (4) 154
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) -x+1, -y, -z+2; (v) -x+2, -y+1, -z+1; (vi) x+1, y, z; (vii) x, y+1, z; (viii) -x+2, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic–inorganic hybrid compounds are of great interest because of their special magnetic (Cui et al., 2000), electronic (Lacroix et al., 1994) and optoelectronic properties (Chakravarthy & Guloy, 1997). It is expected that the packing interactions that govern the crystal organization will be influenced by the features of the cations and anions, which in turn will affect specific properties of the solids. The supramolecular networks become especially interesting when the cation and anion can participate in hydrogen-bonding. As part of a study of the effect of cations and anions on the crystal structures of organic–inorganic compounds, we report herein on the crystal structure of the title compound. This type of hybrid material generally exhibits a structure consisting of alternating organic–inorganic layers, characterized by isolated anions as found with other compounds involving 4-(dimethylamino)pyridinium (Chao et al., 1977; Mayr-Stein & Bolte, 2000; Lo and Ng, 2008, 2009; Koon et al., 2009).

The title structure contains three cations, one inorganic [La(H2O)8Cl]2+ cation and two independent monoprotonated 4-(dimethylamino)pyridinium cations, four chloride anions and three water molecules (Fig. 1). Atom La1 is coordinated by eight water molecules with distances ranging from 2.510 (1) to 2.588 (2) Å, and by one chloride ion with La1—Cl5 = 2.8829 (6) Å. The overall structure consists of layers stacked along the c axis. The chloride anions are located between the organic entities forming hydrogen bonds with the NH atoms of the pyridinium ions and the water molecules (Table 1).

Each Cl- anion accepts hydrogen bonds which can be divided into two groups. The first group involves hydrogen bonds linking Cl4- with two organic cations via the pyridinium N4—H4A H atom (Table 1), generating centrosymmetric R22(4) motifs (Bernstein et al., 1995) along the c axis at y = 1/2. The second 4-(dimethylamino)pyridinium molecule is linked to one [La(H2O)8Cl]2+ cation through an intermolecular N2—H2A···Cl5i hydrogen bond [symmetry code: (i) x - 1, y + 1, z] which can be described by the graph-set motif D(3). The second type of hydrogen bond, in which the Cl- anion is the acceptor, is a linkage between the water molecules (free and coordinated) and the Cl- anion. The inorganic [La(H2O)8Cl]2+ cations are indirectly linked via Cl- anions through intermolecular O—H···Cl and O—H···O hydrogen bonds generating cycles R22(8) and R62(12), which connect cationic and anionic entities (Fig. 2 and Table 1).

In the 4-(dimethylamino)pyridinium cations the N—C bond linking the dimethylamino substituent to the pyridinium ring is characteristically short [1.321 (3) and 1.324 (3)Å]. The dimethylamino group lies close to the plane of the pyridinium ring with a dihedral angle, between the pyridinium and the dimethylamine plane (C/N/C atoms), of 3.5 (3) and 2.0 (3)°.

On the structural level, the atomic arrangement of this material consists of a network of alternating organic–inorganic layers. The chloride anions are located between these entities forming hydrogen bonds with the NH atoms of the pyridinium ions and the water molecules. There are also C—H···Cl interactions present (Table 1) involving one of the 4-(dimethylamino)pyridinium cations, which results in the formation of a three-dimensional supramolecular architecture.

Related literature top

For common applications of organic–inorganic hybrid materials, see: Cui et al. (2000); Lacroix et al. (1994); Chakravarthy & Guloy (1997). For the crystal structures of compounds involving 4-(dimethylamino)pyridinium, see: Chao et al. (1977); Mayr-Stein & Bolte (2000); Lo & Ng (2008, 2009); Koon et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-(Dimethylamino)pyridine (1 mmol, 0.08g) and hydrochloric acid (1M) were added slowly to a solution of LaCl3.6H2O (1mmol, 0.08g). The mixture was refluxed at 353 K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of colourless plate-like crystals of the title compound.

Refinement top

The H atoms of the coordinated water molecules were located in difference Fourier syntheses and were initially refined using distance restraints: O—H = 0.85 (2) Å, and H···H = 1.40 (2) Å, with Uiso(H) = 1.5Ueq(O). In the final cycles of refinement they were constrained to ride on their parent O atoms. The N-bound H atoms were located in a difference Fourier map but like the C-bound H atoms they were included in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for the methyl groups and = 1.2Ueq(N,C) for the other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level. The O—H···Cl hydrogen bonds are shown as double dashed lines.
[Figure 2] Fig. 2. A view along the a axis of the three-dimensional hydrogen-bonded network of the title compound, showing the aggregation of the hydrogen-bonding motifs, R22(4), R22(8) and R62(12). Hydrogen bonds are drawn as dashed lines. [symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 2; (iii) x - 1, y + 1, z].
Bis[4-(dimethylamino)pyridinium] octaaquachloridolanthanum(III) tetrachloride trihydrate top
Crystal data top
(C7H11N2)2[LaCl(H2O)8]Cl4·3H2OZ = 2
Mr = 760.69F(000) = 772
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6741 (4) ÅCell parameters from 22004 reflections
b = 12.6695 (7) Åθ = 3.0–28.3°
c = 14.3601 (7) ŵ = 1.82 mm1
α = 68.354 (5)°T = 180 K
β = 75.273 (4)°Plate, colourless
γ = 84.264 (4)°0.43 × 0.28 × 0.08 mm
V = 1582.16 (15) Å3
Data collection top
Oxford Xcalibur Sapphire1
diffractometer
7144 independent reflections
Radiation source: Enhance (Mo) X-ray Source6518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.2632 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.548, Tmax = 0.864l = 1818
33782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.4439P]
where P = (Fo2 + 2Fc2)/3
7144 reflections(Δ/σ)max = 0.003
320 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
(C7H11N2)2[LaCl(H2O)8]Cl4·3H2Oγ = 84.264 (4)°
Mr = 760.69V = 1582.16 (15) Å3
Triclinic, P1Z = 2
a = 9.6741 (4) ÅMo Kα radiation
b = 12.6695 (7) ŵ = 1.82 mm1
c = 14.3601 (7) ÅT = 180 K
α = 68.354 (5)°0.43 × 0.28 × 0.08 mm
β = 75.273 (4)°
Data collection top
Oxford Xcalibur Sapphire1
diffractometer
7144 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6518 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.864Rint = 0.038
33782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.11Δρmax = 0.76 e Å3
7144 reflectionsΔρmin = 1.03 e Å3
320 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.98356 (1)0.46700 (1)0.74019 (1)0.0192 (1)
Cl51.19118 (6)0.36620 (5)0.61364 (4)0.0342 (2)
O11.12672 (17)0.62452 (14)0.58572 (13)0.0428 (6)
O20.95865 (16)0.45114 (13)0.92689 (11)0.0297 (5)
O31.21742 (15)0.45676 (15)0.78883 (12)0.0346 (5)
O40.97883 (18)0.26017 (13)0.86085 (12)0.0361 (5)
O50.85068 (17)0.34195 (15)0.68566 (14)0.0436 (6)
O60.71719 (15)0.46052 (14)0.83325 (11)0.0343 (5)
O70.83661 (17)0.59127 (14)0.61058 (12)0.0374 (5)
O80.93133 (19)0.65745 (14)0.76941 (12)0.0383 (6)
N10.4241 (2)0.81063 (18)0.68388 (17)0.0442 (7)
N20.4146 (3)1.15628 (18)0.59093 (18)0.0461 (8)
C10.4218 (2)0.9227 (2)0.65305 (18)0.0322 (7)
C20.5477 (3)0.9873 (2)0.62318 (19)0.0370 (8)
C30.5401 (3)1.1014 (2)0.5933 (2)0.0416 (8)
C40.2929 (3)1.0995 (2)0.6179 (2)0.0479 (9)
C50.2927 (3)0.9862 (2)0.6480 (2)0.0436 (9)
C60.2940 (4)0.7466 (3)0.7103 (3)0.0670 (11)
C70.5568 (4)0.7456 (2)0.6892 (3)0.0618 (11)
N30.4436 (2)0.07909 (18)0.85825 (17)0.0432 (7)
N40.4840 (2)0.26628 (19)0.94889 (18)0.0473 (8)
C80.4561 (2)0.0328 (2)0.88707 (17)0.0334 (7)
C90.3378 (2)0.1043 (2)0.9155 (2)0.0395 (8)
C100.3548 (3)0.2174 (2)0.9445 (2)0.0465 (9)
C110.5998 (3)0.2022 (2)0.9229 (2)0.0444 (8)
C120.5908 (2)0.0884 (2)0.89126 (19)0.0378 (8)
C130.3050 (3)0.1370 (3)0.8590 (3)0.0613 (11)
C140.5691 (4)0.1508 (3)0.8259 (3)0.0609 (11)
Cl10.54269 (5)0.45268 (5)0.68027 (4)0.0344 (2)
Cl20.91549 (7)0.13843 (5)0.59452 (5)0.0433 (2)
Cl30.97602 (7)0.78867 (5)0.91759 (4)0.0388 (2)
Cl40.65967 (6)0.50633 (5)1.04257 (4)0.0340 (2)
O1W0.42022 (18)0.63535 (14)0.50183 (13)0.0391 (5)
O2W0.9449 (3)0.06121 (17)0.82838 (17)0.0733 (9)
O3W0.9016 (3)0.86973 (17)0.62175 (16)0.0676 (8)
H111.099600.680500.547100.0640*
H121.209500.616700.567800.0640*
H210.991100.391400.966500.0450*
H220.883800.471600.962200.0450*
H311.229000.461900.843100.0520*
H321.294000.446800.749900.0520*
H410.995900.242500.919600.0540*
H420.966300.199900.851800.0540*
H510.768900.359900.674300.0650*
H520.889300.295000.657400.0650*
H610.688100.481200.884500.0510*
H620.651000.463600.803300.0510*
H710.874900.611200.547100.0560*
H720.751300.570100.624700.0560*
H810.924500.719000.720200.0570*
H820.951100.670600.817900.0570*
H20.635900.950800.624300.0440*
H2A0.412401.229100.571800.0550*
H30.623401.142700.573900.0500*
H40.207001.139400.615600.0570*
H50.206700.948600.665900.0520*
H6A0.227500.760400.766900.1010*
H6B0.316600.667000.729600.1010*
H6C0.252200.770200.651800.1010*
H7A0.612000.756100.620600.0920*
H7B0.535300.666500.726000.0920*
H7C0.610600.771300.724400.0920*
H4A0.492400.339000.968500.0570*
H90.247000.072700.914200.0470*
H100.275700.262800.961900.0560*
H11A0.688300.237400.926800.0530*
H12A0.673000.045800.872000.0450*
H13A0.251200.108500.825800.0920*
H13B0.319400.217100.822900.0920*
H13C0.253500.123500.928900.0920*
H14A0.616700.130400.881300.0920*
H14B0.539700.229000.808300.0920*
H14C0.633300.140100.766900.0920*
H11W0.436100.610700.452700.0590*
H21W0.453100.591100.552100.0590*
H12W0.961800.009200.855500.1100*
H22W0.940900.075100.766700.1100*
H13W0.929300.930100.624800.1010*
H23W0.946700.866200.563700.1010*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0199 (1)0.0190 (1)0.0202 (1)0.0010 (1)0.0061 (1)0.0082 (1)
Cl50.0366 (3)0.0363 (3)0.0326 (3)0.0084 (2)0.0054 (2)0.0195 (3)
O10.0333 (9)0.0315 (10)0.0442 (10)0.0023 (7)0.0006 (7)0.0014 (8)
O20.0320 (8)0.0342 (9)0.0248 (7)0.0070 (7)0.0090 (6)0.0129 (7)
O30.0220 (7)0.0563 (11)0.0345 (8)0.0010 (7)0.0080 (6)0.0258 (8)
O40.0578 (11)0.0232 (9)0.0292 (8)0.0007 (7)0.0161 (7)0.0077 (7)
O50.0318 (8)0.0492 (11)0.0738 (13)0.0131 (8)0.0257 (8)0.0438 (10)
O60.0251 (7)0.0533 (11)0.0307 (8)0.0001 (7)0.0078 (6)0.0214 (8)
O70.0343 (8)0.0452 (11)0.0312 (8)0.0027 (7)0.0141 (7)0.0083 (8)
O80.0621 (11)0.0244 (9)0.0325 (9)0.0036 (8)0.0162 (8)0.0124 (7)
N10.0510 (13)0.0267 (12)0.0516 (13)0.0011 (10)0.0022 (10)0.0167 (10)
N20.0626 (15)0.0242 (11)0.0532 (14)0.0006 (10)0.0205 (11)0.0114 (10)
C10.0363 (12)0.0279 (12)0.0336 (12)0.0008 (10)0.0043 (9)0.0153 (10)
C20.0324 (12)0.0374 (14)0.0396 (13)0.0019 (10)0.0075 (10)0.0130 (11)
C30.0449 (14)0.0366 (15)0.0413 (14)0.0113 (12)0.0094 (11)0.0093 (12)
C40.0444 (15)0.0405 (16)0.0643 (18)0.0127 (12)0.0178 (13)0.0249 (14)
C50.0326 (12)0.0411 (16)0.0624 (17)0.0019 (11)0.0070 (12)0.0267 (14)
C60.078 (2)0.0392 (18)0.082 (2)0.0244 (16)0.0016 (18)0.0250 (17)
C70.080 (2)0.0334 (16)0.068 (2)0.0189 (15)0.0171 (17)0.0187 (15)
N30.0473 (12)0.0294 (12)0.0466 (12)0.0040 (10)0.0076 (10)0.0096 (10)
N40.0484 (13)0.0284 (12)0.0572 (14)0.0009 (10)0.0025 (11)0.0133 (11)
C80.0348 (12)0.0335 (13)0.0300 (11)0.0025 (10)0.0070 (9)0.0102 (10)
C90.0262 (11)0.0425 (15)0.0491 (15)0.0028 (10)0.0077 (10)0.0170 (12)
C100.0385 (14)0.0438 (17)0.0563 (17)0.0104 (12)0.0038 (12)0.0193 (14)
C110.0366 (13)0.0414 (16)0.0491 (15)0.0077 (11)0.0074 (11)0.0130 (13)
C120.0267 (11)0.0382 (15)0.0451 (14)0.0026 (10)0.0058 (10)0.0123 (12)
C130.072 (2)0.0458 (18)0.067 (2)0.0261 (16)0.0248 (17)0.0222 (16)
C140.076 (2)0.0347 (17)0.0626 (19)0.0163 (15)0.0038 (16)0.0109 (15)
Cl10.0247 (2)0.0445 (3)0.0366 (3)0.0009 (2)0.0099 (2)0.0158 (3)
Cl20.0529 (4)0.0348 (3)0.0459 (3)0.0063 (3)0.0157 (3)0.0177 (3)
Cl30.0485 (3)0.0358 (3)0.0342 (3)0.0040 (3)0.0174 (3)0.0110 (3)
Cl40.0317 (3)0.0403 (3)0.0372 (3)0.0066 (2)0.0128 (2)0.0208 (3)
O1W0.0455 (10)0.0304 (9)0.0404 (9)0.0044 (7)0.0106 (8)0.0125 (8)
O2W0.138 (2)0.0342 (12)0.0592 (13)0.0006 (13)0.0433 (14)0.0167 (10)
O3W0.1061 (18)0.0352 (12)0.0511 (12)0.0020 (11)0.0040 (12)0.0139 (10)
Geometric parameters (Å, º) top
La1—Cl52.8829 (6)O1W—H11W0.8500
La1—O12.5585 (17)O1W—H21W0.8500
La1—O22.5632 (15)N4—H4A0.8600
La1—O32.5101 (15)O2W—H22W0.8500
La1—O42.5505 (17)O2W—H12W0.8500
La1—O52.5710 (19)O3W—H13W0.8500
La1—O62.5775 (15)O3W—H23W0.8500
La1—O72.5885 (17)C1—C21.418 (4)
La1—O82.5786 (19)C1—C51.419 (4)
O1—H110.7900C2—C31.348 (4)
O1—H120.7800C4—C51.338 (4)
O2—H210.8500C2—H20.9300
O2—H220.8500C3—H30.9300
O3—H310.8400C4—H40.9300
O3—H320.8400C5—H50.9300
O4—H410.8400C6—H6B0.9600
O4—H420.8500C6—H6C0.9600
O5—H510.8400C6—H6A0.9600
O5—H520.8500C7—H7C0.9600
O6—H610.8400C7—H7A0.9600
O6—H620.8500C7—H7B0.9600
O7—H710.8400C8—C91.412 (3)
O7—H720.8400C8—C121.422 (3)
O8—H810.8500C9—C101.342 (4)
O8—H820.8400C11—C121.343 (4)
N1—C11.322 (4)C9—H90.9300
N1—C61.456 (5)C10—H100.9300
N1—C71.458 (4)C11—H11A0.9300
N2—C31.339 (4)C12—H12A0.9300
N2—C41.336 (4)C13—H13B0.9600
N2—H2A0.8600C13—H13A0.9600
N3—C81.324 (4)C13—H13C0.9600
N3—C141.462 (5)C14—H14C0.9600
N3—C131.462 (4)C14—H14A0.9600
N4—C101.344 (4)C14—H14B0.9600
N4—C111.341 (4)
Cl5—La1—O170.83 (4)C4—N2—H2A120.00
Cl5—La1—O2130.08 (4)C8—N3—C14121.1 (2)
Cl5—La1—O372.34 (4)C13—N3—C14116.7 (3)
Cl5—La1—O478.77 (4)C8—N3—C13122.3 (2)
Cl5—La1—O571.63 (4)C10—N4—C11120.3 (3)
Cl5—La1—O6142.42 (4)H11W—O1W—H21W112.00
Cl5—La1—O7101.27 (4)C11—N4—H4A120.00
Cl5—La1—O8139.80 (4)C10—N4—H4A120.00
O1—La1—O2122.67 (5)H12W—O2W—H22W108.00
O1—La1—O377.88 (5)H13W—O3W—H23W107.00
O1—La1—O4146.68 (6)C2—C1—C5115.6 (2)
O1—La1—O5112.45 (6)N1—C1—C2122.3 (2)
O1—La1—O6130.10 (5)N1—C1—C5122.0 (2)
O1—La1—O765.71 (5)C1—C2—C3120.3 (3)
O1—La1—O870.66 (6)N2—C3—C2121.1 (3)
O2—La1—O365.87 (5)N2—C4—C5121.1 (3)
O2—La1—O468.56 (5)C1—C5—C4120.9 (3)
O2—La1—O5124.62 (6)C3—C2—H2120.00
O2—La1—O670.04 (5)C1—C2—H2120.00
O2—La1—O7128.53 (5)C2—C3—H3119.00
O2—La1—O865.90 (5)N2—C3—H3119.00
O3—La1—O480.24 (6)N2—C4—H4119.00
O3—La1—O5135.98 (6)C5—C4—H4119.00
O3—La1—O6135.89 (5)C4—C5—H5119.00
O3—La1—O7142.78 (6)C1—C5—H5120.00
O3—La1—O888.74 (6)H6A—C6—H6C109.00
O4—La1—O568.67 (6)N1—C6—H6B109.00
O4—La1—O682.76 (6)N1—C6—H6A109.00
O4—La1—O7135.63 (6)H6A—C6—H6B109.00
O4—La1—O8133.68 (5)N1—C6—H6C109.00
O5—La1—O671.22 (6)H6B—C6—H6C109.00
O5—La1—O769.44 (6)H7B—C7—H7C109.00
O5—La1—O8135.28 (6)N1—C7—H7A109.00
O6—La1—O770.55 (5)N1—C7—H7B109.00
O6—La1—O874.49 (6)H7A—C7—H7B109.00
O7—La1—O872.67 (6)H7A—C7—H7C109.00
La1—O1—H11130.00N1—C7—H7C110.00
La1—O1—H12119.00N3—C8—C9122.6 (2)
H11—O1—H12111.00N3—C8—C12121.6 (2)
La1—O2—H21117.00C9—C8—C12115.8 (2)
La1—O2—H22123.00C8—C9—C10120.8 (2)
H21—O2—H22108.00N4—C10—C9121.3 (3)
La1—O3—H31126.00N4—C11—C12121.5 (3)
La1—O3—H32121.00C8—C12—C11120.3 (2)
H31—O3—H32113.00C10—C9—H9120.00
La1—O4—H41121.00C8—C9—H9120.00
La1—O4—H42131.00N4—C10—H10119.00
H41—O4—H42109.00C9—C10—H10119.00
La1—O5—H51121.00N4—C11—H11A119.00
La1—O5—H52126.00C12—C11—H11A119.00
H51—O5—H52110.00C11—C12—H12A120.00
La1—O6—H61122.00C8—C12—H12A120.00
La1—O6—H62122.00N3—C13—H13B109.00
H61—O6—H62112.00H13A—C13—H13C109.00
La1—O7—H71119.00N3—C13—H13C109.00
La1—O7—H72114.00H13A—C13—H13B110.00
H71—O7—H72112.00N3—C13—H13A110.00
La1—O8—H81121.00H13B—C13—H13C109.00
La1—O8—H82124.00N3—C14—H14C110.00
H81—O8—H82111.00H14A—C14—H14C109.00
C1—N1—C6121.2 (2)H14B—C14—H14C109.00
C1—N1—C7121.9 (2)H14A—C14—H14B109.00
C6—N1—C7116.8 (3)N3—C14—H14A109.00
C3—N2—C4121.0 (2)N3—C14—H14B109.00
C3—N2—H2A119.00
C6—N1—C1—C2177.6 (3)C5—C1—C2—C30.5 (4)
C7—N1—C1—C20.1 (4)N1—C1—C2—C3179.3 (2)
C6—N1—C1—C52.6 (4)C2—C1—C5—C40.8 (4)
C7—N1—C1—C5179.9 (3)N1—C1—C5—C4179.1 (2)
C3—N2—C4—C50.0 (4)C1—C2—C3—N20.1 (4)
C4—N2—C3—C20.2 (4)N2—C4—C5—C10.5 (4)
C13—N3—C8—C93.4 (4)C12—C8—C9—C100.1 (4)
C13—N3—C8—C12176.6 (3)N3—C8—C9—C10179.9 (2)
C14—N3—C8—C122.2 (4)N3—C8—C12—C11178.6 (2)
C14—N3—C8—C9177.9 (3)C9—C8—C12—C111.4 (3)
C11—N4—C10—C90.8 (4)C8—C9—C10—N41.0 (4)
C10—N4—C11—C120.5 (4)N4—C11—C12—C81.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl5i0.862.713.314 (3)129
N2—H2A···O1Wii0.862.242.909 (3)134
N4—H4A···Cl4iii0.862.513.213 (2)140
N4—H4A···Cl4iv0.862.773.418 (3)133
O1—H11···Cl2v0.792.463.2316 (19)165
O1—H12···O1Wvi0.782.012.784 (2)167
O2W—H12W···Cl3iii0.852.383.222 (2)169
O3W—H13W···Cl2vii0.852.513.293 (2)153
O2—H21···Cl3viii0.852.323.1537 (17)166
O1W—H21W···Cl10.852.313.1538 (19)173
O2—H22···Cl40.852.273.1023 (17)168
O2W—H22W···Cl20.852.373.213 (2)172
O3W—H23W···Cl2v0.852.343.193 (2)176
O3—H31···Cl4viii0.842.343.1471 (17)160
O3—H32···Cl1vi0.842.363.1413 (16)157
O4—H41···Cl3viii0.842.313.1459 (17)173
O4—H42···O2W0.851.952.791 (3)178
O5—H51···Cl10.842.383.1707 (19)158
O5—H52···Cl20.852.433.241 (2)160
O6—H61···Cl40.842.353.1708 (17)164
O6—H62···Cl10.852.323.1250 (16)158
O7—H71···Cl5v0.842.463.1402 (17)139
O7—H72···Cl10.842.413.2287 (18)162
O8—H81···O3W0.851.942.786 (3)172
O8—H82···Cl30.842.483.2711 (19)156
C11—H11A···Cl3iii0.932.803.612 (3)147
C14—H14B···Cl10.962.753.639 (4)154
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y, z+2; (v) x+2, y+1, z+1; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[LaCl(H2O)8]Cl4·3H2O
Mr760.69
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.6741 (4), 12.6695 (7), 14.3601 (7)
α, β, γ (°)68.354 (5), 75.273 (4), 84.264 (4)
V3)1582.16 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.43 × 0.28 × 0.08
Data collection
DiffractometerOxford Xcalibur Sapphire1
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.548, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
33782, 7144, 6518
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.11
No. of reflections7144
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.03

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl5i0.86002.71003.314 (3)129.00
N2—H2A···O1Wii0.86002.24002.909 (3)134.00
N4—H4A···Cl4iii0.86002.51003.213 (2)140.00
N4—H4A···Cl4iv0.86002.77003.418 (3)133.00
O1—H11···Cl2v0.79002.46003.2316 (19)165.00
O1—H12···O1Wvi0.78002.01002.784 (2)167.00
O2W—H12W···Cl3iii0.85002.38003.222 (2)169.00
O3W—H13W···Cl2vii0.85002.51003.293 (2)153.00
O2—H21···Cl3viii0.85002.32003.1537 (17)166.00
O1W—H21W···Cl10.85002.31003.1538 (19)173.00
O2—H22···Cl40.85002.27003.1023 (17)168.00
O2W—H22W···Cl20.85002.37003.213 (2)172.00
O3W—H23W···Cl2v0.85002.34003.193 (2)176.00
O3—H31···Cl4viii0.84002.34003.1471 (17)160.00
O3—H32···Cl1vi0.84002.36003.1413 (16)157.00
O4—H41···Cl3viii0.84002.31003.1459 (17)173.00
O4—H42···O2W0.85001.95002.791 (3)178.00
O5—H51···Cl10.84002.38003.1707 (19)158.00
O5—H52···Cl20.85002.43003.241 (2)160.00
O6—H61···Cl40.84002.35003.1708 (17)164.00
O6—H62···Cl10.85002.32003.1250 (16)158.00
O7—H71···Cl5v0.84002.46003.1402 (17)139.00
O7—H72···Cl10.84002.41003.2287 (18)162.00
O8—H81···O3W0.85001.94002.786 (3)172.00
O8—H82···Cl30.84002.48003.2711 (19)156.00
C11—H11A···Cl3iii0.93002.80003.612 (3)147.00
C14—H14B···Cl10.96002.75003.639 (4)154.00
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y, z+2; (v) x+2, y+1, z+1; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x+2, y+1, z+2.
 

Acknowledgements

Technical support (X-ray measurements) from the Laboratory of Coordination Chemistry, UPR-CNRS 8241, Toulouse, is gratefully acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChakravarthy, V. & Guloy, A. M. (1997). Chem. Commun. pp. 697–698.  CSD CrossRef Web of Science Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCui, Y., Ren, J., Chen, G., Yu, W.-C. & Qian, Y. (2000). Acta Cryst. C56, e552–e553.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLacroix, P. G., Clement, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658–660.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m13.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19–e20.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1321-m1322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds