organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl N-{[1-(pyridin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}iminodi­acetate

aLSPCMIB, UMR-CNRS 5068, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 9, and bUniversité de Toulouse, UPS and CNRS, Institut de Chimie de Toulouse, FR2599, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
*Correspondence e-mail: benoist@chimie.ups-tlse.fr

(Received 5 October 2012; accepted 11 October 2012; online 20 October 2012)

In the title compound, C20H29N5O4, the pyridine ring makes a dihedral angle of 10.41 (16)° with the triazole ring, which exhibits an azo-like character. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π inter­actions involving a methyl group and the pyridine ring of a neighbouring mol­ecule, leading to the formation of a three-dimensional network.

Related literature

For 4-pyridyl-1,2,3-triazoles as building blocks in the synthesis of chelating agents for biomedical applications, see: Bonnet et al. (2012[Bonnet, C. S., Buron, F., Caille, F., Shade, C. M., Drahos, B., Pellegatti, L., Zhang, J., Villette, S., Helm, L., Pichon, C., Suzenet, F., Petoud, S. & Toth, E. (2012). Chem. Eur. J. 18, 1419-1431.]); Pellegatti et al. (2008[Pellegatti, L., Zhang, J., Drahos, B., Villette, S., Suzenet, F., Guillaumet, G., Petoud, S. & Toth, E. (2008). Chem. Commun. pp. 6591-6593.]). For the crystal structures of structural isomers such as 2-pyridyl-1,2,3-triazoles, see: Obata et al. (2008[Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. (2008). Dalton Trans. pp. 3292-3300.]); Schweinfurth et al. (2008[Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203-2205.]); Boulay et al. (2010[Boulay, A., Seridi, A., Zedde, C., Ladeira, S., Picard, C., Maron, L. & Benoist, E. (2010). Eur. J. Inorg. Chem. pp. 5058-5062.]); Seridi et al. (2011[Seridi, A., Wolff, M., Boulay, A., Saffon, N., Coulais, Y., Picard, C., Machura, B. & Benoist, E. (2011). Inorg. Chem. Commun. 14, 238-242.]); Crowley et al. (2010[Crowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70-83.]); Kilpin et al. (2011[Kilpin, K. J., Gavey, E. L., McAdam, C. J., Anderson, C. B., Lind, S. J., Keep, C. C., Gordon, K. C. & Crowley, J. D. (2011). Inorg. Chem. 50, 6334-6346.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29N5O4

  • Mr = 403.48

  • Monoclinic, P 21

  • a = 9.1568 (8) Å

  • b = 11.4452 (10) Å

  • c = 11.4928 (11) Å

  • β = 110.840 (4)°

  • V = 1125.66 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.2 × 0.1 × 0.04 mm

Data collection
  • Bruker Kappa APEXII Quazar diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.997

  • 11329 measured reflections

  • 3530 independent reflections

  • 1947 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.122

  • S = 1.00

  • 3530 reflections

  • 268 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.54 3.443 (4) 160
C6—H6⋯N1ii 0.95 2.31 3.252 (4) 173
C9—H9B⋯N3iii 0.99 2.50 3.449 (4) 160
C18—H18ACg1iv 0.98 2.91 3.864 (4) 166
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

If 1,2,3-Triazoles are well known for their biological properties, particular attention has been recently devoted to the development of 2-pyridyl-1,2,3-triazole derivatives (or pyta) as alternative ligands to 2,2'-bipyridines. This interest is explained by the easy preparation of such ligands using a click chemistry strategy (Obata et al., 2008; Schweinfurth et al., 2008), and the use of pyta derivatives as efficient chelator systems for Tc(CO)3+ or Re(CO)3+ organometallic cores (Boulay et al., 2010; Seridi et al., 2011). Recently, structural pyta isomers like 4-pyridyl-1,2,3-triazole have been described as building blocks in the synthesis of chelating agents for biomedical applications (Bonnet et al., 2012; Pellegatti et al., 2008). In this paper, we report on the first X-ray structure analysis of a 4-pyridyl-1,2,3-triazole derivative.

The title molecule, Fig. 1, can be considered as a ditopic ligand with two distinct transition metal complexing sites, the iminodiacetate (IDA) pincer and the 4-pyridine moiety. Bond lengths and angles are within normal ranges, and comparable with values found for structural isomers, such as 2-pyridyl-1,2,3-triazole derivatives (Obata et al. 2008; Schweinfurth et al., 2008; Seridi et al., 2011; Boulay et al., 2010). As is often observed in these ligand systems, the pyridyl and triazole units are coplanar (Crowley et al., 2010; Kilpin et al., 2011). Unarguably, the structure exhibits a practically planar geometry with slight deviation of the pyridyl moiety, which makes a dihedral angle of 10.41 (16)° with the mean plane of the triazole ring. As expected, the N3–N4 distance of the 1,2,3-triazole at 1.308 (4) Å is shorter than the N4–C7 and N2–N3 bonds, 1.358 (4) and 1.356 (3) Å respectively, confirming the azo character of the triazolyl entity.

In the crystal, molecules are linked by C–H···O and C–H···N hydrogen bonds (Table 1 and Fig. 2). It is noteworthy that a C–H···π interaction between of the hydrogen H18A of one methyl group and the π cloud of the pyridine ring was also observed, this interaction participates in the cohesion of the crystal.

Related literature top

For 4-pyridyl-1,2,3-triazoles as building blocks in the synthesis of chelating agents for biomedical applications, see: Bonnet et al. (2012); Pellegatti et al. (2008). For the crystal structures of structural isomers such as 2-pyridyl-1,2,3-triazoles, see: Obata et al. (2008); Schweinfurth et al. (2008); Boulay et al. (2010); Seridi et al. (2011); Crowley et al. (2010); Kilpin et al. (2011).

Experimental top

Freshly prepared 4-azidopyridine (0.4 g, 3.3 mmol), 3-[bis(tert-butoxycarbonylmeth-yl) amino]-prop-1-yne (0.94 g, 3.3 mmol), copper(II) acetate monohydrate (130 mg, 0.66 mmol) and sodium ascorbate (260 mg, 1.32 mmol) were mixed in acetonitrile (5 ml) and stirred overnight at 303 K. The resulting brown solution was cooled then diluted with chloroform (10 ml) and washed twice with saturated Na2edta solution (2x15 ml). The aqueous solutions were extracted with chloroform (3x7 ml). The organic extracts were combined, dried over Na2SO4 and the solvent was taken off under reduce pressure. The crude product was purified by column chromatography on neutral alumina (eluent: CH2Cl2) to give 1.03 g of the title compound [Yield: 77%]. Analysis calculated for C20H29N5O4: C 59.54, H 7.24, N 17.36%; found: C 59.24, H 7.32, N 17.44%. Plate-like colourless crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a methanol-dichloromethane (1:1 / v:v) solution. Further spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All the H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (aromatic), 0.99 Å (methylene) and 0.98 Å (methyl) with Uiso(H) = 1.2Ueq(aromatic, methylene) or Uiso(H) = 1.5Ueq(methyl). In the final cycles of refinement, in the absence of significant anomalous scattering effects, 2547 Friedel pairs were merged and \Df " set to zero.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the C-H···O and C-H···N hydrogen bonds and the C—H··· π interactions (dashed lines). H atoms not involved in these interactions have been omitted for clarity.
Di-tert-butyl N-{[1-(pyridin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}iminodiacetate top
Crystal data top
C20H29N5O4F(000) = 432
Mr = 403.48Dx = 1.19 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1261 reflections
a = 9.1568 (8) Åθ = 2.4–21.3°
b = 11.4452 (10) ŵ = 0.09 mm1
c = 11.4928 (11) ÅT = 193 K
β = 110.840 (4)°Plate, colourless
V = 1125.66 (18) Å30.2 × 0.1 × 0.04 mm
Z = 2
Data collection top
Bruker Kappa APEXII Quazar
diffractometer
3530 independent reflections
Radiation source: microfocus sealed tube1947 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.077
phi and ω scansθmax = 30.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1311
Tmin = 0.989, Tmax = 0.997k = 1416
11329 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
3530 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C20H29N5O4V = 1125.66 (18) Å3
Mr = 403.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1568 (8) ŵ = 0.09 mm1
b = 11.4452 (10) ÅT = 193 K
c = 11.4928 (11) Å0.2 × 0.1 × 0.04 mm
β = 110.840 (4)°
Data collection top
Bruker Kappa APEXII Quazar
diffractometer
3530 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1947 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.997Rint = 0.077
11329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
3530 reflectionsΔρmin = 0.18 e Å3
268 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (300 MHz, CDCl3): δ/p.p.m. = 1.45 (s, 18H, CH3); 3.49 (s, 4H, CH2); 4.12 (s, 2H, CH2); 7.72 (m, 2H, CHAr); 8.24 (s, 1H, CHta); 8.75 (m, 2H, CHAr); 13C NMR (75 MHz, CDCl3): δ/p.p.m. = 28.1 (9CH3); 49.0 (CH2); 55.5 (2CH2); 81.3 (2CIV); 113.6, 151.6 (4CHAr); 120.7 (CHta); 143.1, 147.5 (2CIV); 170.3 (2CO); IR (KBr): νC=O = 1735 cm-1; MS (DCI/NH3): m/z 404, [M+]; 426, [M+Na+]; 443, [M+K+].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.8574 (2)0.02696 (19)0.4779 (2)0.0380 (5)
N11.0194 (3)0.7418 (2)0.9730 (2)0.0392 (7)
O30.6055 (3)0.0266 (2)0.8927 (2)0.0521 (7)
O40.5024 (3)0.13966 (19)0.7905 (2)0.0378 (6)
N50.6572 (3)0.1115 (2)0.6817 (2)0.0276 (6)
N30.5993 (3)0.5068 (2)0.6577 (2)0.0407 (7)
N40.5251 (3)0.4092 (3)0.6151 (2)0.0393 (7)
C40.9274 (3)0.5441 (3)0.9510 (3)0.0342 (8)
H40.93460.46820.98590.041*
C170.4539 (4)0.1904 (3)0.8901 (3)0.0442 (9)
C60.7207 (4)0.3635 (3)0.7862 (3)0.0293 (7)
H60.79260.32160.85370.035*
C70.5962 (3)0.3197 (3)0.6918 (3)0.0278 (7)
C100.8501 (4)0.0438 (3)0.5901 (3)0.0323 (7)
C90.7146 (3)0.1245 (3)0.5787 (3)0.0290 (7)
H9A0.74810.20640.5760.035*
H9B0.62810.10810.49930.035*
N20.7201 (3)0.4797 (2)0.7634 (2)0.0277 (6)
C50.8218 (3)0.5684 (3)0.8340 (3)0.0279 (7)
C80.5345 (3)0.1981 (3)0.6690 (3)0.0335 (8)
H8A0.48230.17940.72880.04*
H8B0.45510.19310.5840.04*
O10.9358 (3)0.0025 (2)0.6860 (2)0.0511 (7)
C160.5703 (4)0.0346 (3)0.8019 (3)0.0339 (7)
C150.5930 (4)0.0054 (3)0.6821 (3)0.0299 (7)
H15A0.66440.06360.66720.036*
H15B0.49120.01130.61280.036*
C20.9161 (4)0.7613 (3)0.8589 (3)0.0408 (8)
H20.91190.83780.82580.049*
C31.0224 (4)0.6337 (3)1.0161 (3)0.0393 (8)
H31.09480.61691.0970.047*
C110.9656 (4)0.0587 (3)0.4568 (3)0.0440 (9)
C140.9375 (5)0.1775 (3)0.5026 (5)0.0735 (14)
H14A0.97290.1770.59370.11*
H14B0.99570.23690.47550.11*
H14C0.82560.19570.46820.11*
C190.3794 (6)0.3030 (4)0.8319 (4)0.0722 (13)
H19A0.29240.28640.75420.108*
H19B0.340.34440.88930.108*
H19C0.45690.35160.8140.108*
C10.8158 (4)0.6794 (3)0.7858 (3)0.0380 (8)
H10.74480.69840.7050.046*
C121.1312 (4)0.0187 (4)0.5169 (4)0.0566 (11)
H12A1.14360.05810.4840.085*
H12B1.20120.07490.4990.085*
H12C1.15730.01330.60720.085*
C180.5965 (5)0.2123 (4)1.0045 (4)0.0658 (12)
H18A0.67120.26020.98210.099*
H18B0.56580.25341.0670.099*
H18C0.64510.13751.03860.099*
C200.3373 (5)0.1108 (4)0.9149 (4)0.0656 (12)
H20A0.39080.04070.95840.098*
H20B0.28860.15160.96670.098*
H20C0.25670.08840.83570.098*
C130.9166 (5)0.0569 (4)0.3165 (4)0.0776 (15)
H13A0.80570.07750.2790.116*
H13B0.97910.11350.29040.116*
H13C0.9330.02150.28920.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0374 (12)0.0399 (14)0.0433 (13)0.0053 (11)0.0224 (10)0.0003 (11)
N10.0382 (15)0.0331 (17)0.0403 (16)0.0034 (14)0.0067 (12)0.0002 (13)
O30.0732 (17)0.0544 (16)0.0345 (13)0.0248 (14)0.0262 (12)0.0158 (12)
O40.0505 (13)0.0322 (13)0.0355 (12)0.0114 (11)0.0213 (10)0.0007 (10)
N50.0300 (13)0.0248 (14)0.0315 (13)0.0036 (12)0.0151 (11)0.0047 (10)
N30.0432 (15)0.0378 (17)0.0291 (14)0.0000 (14)0.0020 (12)0.0014 (12)
N40.0437 (16)0.0287 (16)0.0354 (15)0.0019 (14)0.0015 (13)0.0022 (12)
C40.0378 (18)0.0237 (17)0.0341 (17)0.0005 (15)0.0044 (14)0.0039 (14)
C170.058 (2)0.043 (2)0.043 (2)0.012 (2)0.0311 (18)0.0024 (16)
C60.0325 (16)0.0212 (16)0.0337 (17)0.0046 (14)0.0112 (13)0.0041 (13)
C70.0296 (16)0.0232 (17)0.0307 (16)0.0021 (14)0.0107 (13)0.0003 (13)
C100.0341 (16)0.0273 (18)0.0374 (18)0.0035 (15)0.0150 (14)0.0013 (14)
C90.0305 (15)0.0227 (17)0.0354 (17)0.0017 (14)0.0136 (13)0.0010 (13)
N20.0302 (12)0.0239 (15)0.0259 (13)0.0025 (12)0.0061 (10)0.0020 (11)
C50.0308 (15)0.0259 (17)0.0280 (15)0.0020 (14)0.0118 (13)0.0014 (13)
C80.0284 (15)0.034 (2)0.0391 (18)0.0007 (15)0.0129 (14)0.0032 (14)
O10.0452 (13)0.0633 (18)0.0441 (14)0.0205 (14)0.0151 (11)0.0161 (13)
C160.0348 (17)0.0346 (19)0.0352 (18)0.0056 (15)0.0160 (14)0.0026 (14)
C150.0347 (16)0.0261 (17)0.0297 (15)0.0065 (15)0.0124 (13)0.0057 (13)
C20.051 (2)0.0250 (18)0.0391 (19)0.0054 (17)0.0077 (16)0.0046 (15)
C30.0398 (18)0.033 (2)0.0362 (19)0.0009 (16)0.0027 (15)0.0052 (15)
C110.041 (2)0.037 (2)0.063 (2)0.0023 (17)0.0302 (18)0.0075 (17)
C140.075 (3)0.035 (2)0.129 (4)0.000 (2)0.060 (3)0.011 (3)
C190.098 (3)0.058 (3)0.074 (3)0.034 (3)0.047 (3)0.001 (2)
C10.0471 (18)0.0270 (19)0.0316 (17)0.0006 (17)0.0039 (14)0.0083 (14)
C120.039 (2)0.054 (3)0.087 (3)0.006 (2)0.035 (2)0.001 (2)
C180.079 (3)0.077 (3)0.046 (2)0.002 (3)0.029 (2)0.019 (2)
C200.067 (3)0.082 (3)0.067 (3)0.006 (3)0.048 (2)0.005 (2)
C130.074 (3)0.106 (4)0.065 (3)0.016 (3)0.041 (2)0.023 (3)
Geometric parameters (Å, º) top
O2—C101.328 (4)C8—H8B0.99
O2—C111.474 (4)C16—C151.501 (4)
N1—C31.329 (4)C15—H15A0.99
N1—C21.335 (4)C15—H15B0.99
O3—C161.202 (4)C2—C11.371 (4)
O4—C161.339 (4)C2—H20.95
O4—C171.486 (4)C3—H30.95
N5—C151.461 (4)C11—C121.497 (5)
N5—C91.464 (4)C11—C131.512 (5)
N5—C81.466 (4)C11—C141.513 (5)
N3—N41.308 (4)C14—H14A0.98
N3—N21.356 (3)C14—H14B0.98
N4—C71.358 (4)C14—H14C0.98
C4—C51.377 (4)C19—H19A0.98
C4—C31.379 (4)C19—H19B0.98
C4—H40.95C19—H19C0.98
C17—C191.499 (5)C1—H10.95
C17—C201.506 (5)C12—H12A0.98
C17—C181.508 (5)C12—H12B0.98
C6—N21.355 (4)C12—H12C0.98
C6—C71.359 (4)C18—H18A0.98
C6—H60.95C18—H18B0.98
C7—C81.489 (4)C18—H18C0.98
C10—O11.200 (4)C20—H20A0.98
C10—C91.514 (4)C20—H20B0.98
C9—H9A0.99C20—H20C0.98
C9—H9B0.99C13—H13A0.98
N2—C51.421 (4)C13—H13B0.98
C5—C11.380 (4)C13—H13C0.98
C8—H8A0.99
C10—O2—C11121.7 (2)H15A—C15—H15B107.8
C3—N1—C2115.8 (3)N1—C2—C1125.0 (3)
C16—O4—C17122.2 (2)N1—C2—H2117.5
C15—N5—C9110.9 (2)C1—C2—H2117.5
C15—N5—C8109.0 (2)N1—C3—C4124.4 (3)
C9—N5—C8109.5 (2)N1—C3—H3117.8
N4—N3—N2106.8 (2)C4—C3—H3117.8
N3—N4—C7109.6 (2)O2—C11—C12110.5 (3)
C5—C4—C3117.9 (3)O2—C11—C13101.8 (3)
C5—C4—H4121C12—C11—C13110.8 (3)
C3—C4—H4121O2—C11—C14109.4 (3)
O4—C17—C19101.9 (3)C12—C11—C14112.6 (3)
O4—C17—C20109.6 (3)C13—C11—C14111.1 (4)
C19—C17—C20111.3 (3)C11—C14—H14A109.5
O4—C17—C18109.4 (3)C11—C14—H14B109.5
C19—C17—C18111.2 (3)H14A—C14—H14B109.5
C20—C17—C18112.8 (3)C11—C14—H14C109.5
N2—C6—C7105.3 (3)H14A—C14—H14C109.5
N2—C6—H6127.4H14B—C14—H14C109.5
C7—C6—H6127.4C17—C19—H19A109.5
N4—C7—C6108.2 (3)C17—C19—H19B109.5
N4—C7—C8121.8 (3)H19A—C19—H19B109.5
C6—C7—C8130.0 (3)C17—C19—H19C109.5
O1—C10—O2126.3 (3)H19A—C19—H19C109.5
O1—C10—C9124.6 (3)H19B—C19—H19C109.5
O2—C10—C9109.1 (2)C2—C1—C5117.5 (3)
N5—C9—C10112.8 (2)C2—C1—H1121.2
N5—C9—H9A109C5—C1—H1121.2
C10—C9—H9A109C11—C12—H12A109.5
N5—C9—H9B109C11—C12—H12B109.5
C10—C9—H9B109H12A—C12—H12B109.5
H9A—C9—H9B107.8C11—C12—H12C109.5
C6—N2—N3110.1 (3)H12A—C12—H12C109.5
C6—N2—C5129.3 (2)H12B—C12—H12C109.5
N3—N2—C5120.5 (2)C17—C18—H18A109.5
C4—C5—C1119.4 (3)C17—C18—H18B109.5
C4—C5—N2120.3 (3)H18A—C18—H18B109.5
C1—C5—N2120.3 (3)C17—C18—H18C109.5
N5—C8—C7112.6 (2)H18A—C18—H18C109.5
N5—C8—H8A109.1H18B—C18—H18C109.5
C7—C8—H8A109.1C17—C20—H20A109.5
N5—C8—H8B109.1C17—C20—H20B109.5
C7—C8—H8B109.1H20A—C20—H20B109.5
H8A—C8—H8B107.8C17—C20—H20C109.5
O3—C16—O4125.4 (3)H20A—C20—H20C109.5
O3—C16—C15125.8 (3)H20B—C20—H20C109.5
O4—C16—C15108.8 (2)C11—C13—H13A109.5
N5—C15—C16113.2 (2)C11—C13—H13B109.5
N5—C15—H15A108.9H13A—C13—H13B109.5
C16—C15—H15A108.9C11—C13—H13C109.5
N5—C15—H15B108.9H13A—C13—H13C109.5
C16—C15—H15B108.9H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.543.443 (4)160
C6—H6···N1ii0.952.313.252 (4)173
C9—H9B···N3iii0.992.503.449 (4)160
C18—H18A···Cg1iv0.982.913.864 (4)166
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+2; (iii) x+1, y1/2, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H29N5O4
Mr403.48
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)9.1568 (8), 11.4452 (10), 11.4928 (11)
β (°) 110.840 (4)
V3)1125.66 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.1 × 0.04
Data collection
DiffractometerBruker Kappa APEXII Quazar
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.989, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
11329, 3530, 1947
Rint0.077
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.122, 1.00
No. of reflections3530
No. of parameters268
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.543.443 (4)160
C6—H6···N1ii0.952.313.252 (4)173
C9—H9B···N3iii0.992.503.449 (4)160
C18—H18A···Cg1iv0.982.913.864 (4)166
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+2; (iii) x+1, y1/2, z+1; (iv) x, y1, z.
 

Acknowledgements

We gratefully acknowledge the French Ministère de l'Education Nationale, de la Recherche et de la Technologie for financial support.

References

First citationBonnet, C. S., Buron, F., Caille, F., Shade, C. M., Drahos, B., Pellegatti, L., Zhang, J., Villette, S., Helm, L., Pichon, C., Suzenet, F., Petoud, S. & Toth, E. (2012). Chem. Eur. J. 18, 1419–1431.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoulay, A., Seridi, A., Zedde, C., Ladeira, S., Picard, C., Maron, L. & Benoist, E. (2010). Eur. J. Inorg. Chem. pp. 5058–5062.  CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKilpin, K. J., Gavey, E. L., McAdam, C. J., Anderson, C. B., Lind, S. J., Keep, C. C., Gordon, K. C. & Crowley, J. D. (2011). Inorg. Chem. 50, 6334–6346.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationObata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. (2008). Dalton Trans. pp. 3292–3300.  Web of Science CSD CrossRef Google Scholar
First citationPellegatti, L., Zhang, J., Drahos, B., Villette, S., Suzenet, F., Guillaumet, G., Petoud, S. & Toth, E. (2008). Chem. Commun. pp. 6591–6593.  Web of Science CrossRef Google Scholar
First citationSchweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205.  Web of Science CSD CrossRef Google Scholar
First citationSeridi, A., Wolff, M., Boulay, A., Saffon, N., Coulais, Y., Picard, C., Machura, B. & Benoist, E. (2011). Inorg. Chem. Commun. 14, 238–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds