metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1390-m1391

cis-(2,2′-Bi­pyridine-κ2N,N′)bis­­(isonicotinamide-κN1)palladium(II) bis­­(hexa­fluoridophosphate)

aDepartment of Chemistry, University of the Incarnate Word, San Antonio, TX 78209, USA, bDepartment of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@um.edu.my

(Received 12 October 2012; accepted 15 October 2012; online 20 October 2012)

In the title salt, [Pd(C10H8N2)(C6H6NO)2](PF6)2, the PdII atom is in a slightly distorted square-planar coordination environment by N atoms derived from two 4-pyridine­carboxamide ligands, in a cis disposition, and a chelating 2,2′-bipyridine mol­ecule. The monodentate ligands are nearly orthogonal to each other [dihedral angle = 85.7 (5)°] and to the PdN4 plane [dihedral angles = 79.3 (3) and 78.7 (3)°]. The amide O atoms lie to opposite sides of the PdN4 plane. The most notable feature of the crystal packing is a linear supra­molecular chain orientated approximately along [310] and formed via 16-membered {⋯HNCO}4 motifs. These are connected into a three-dimensional network by amide–H⋯O, F inter­actions. Both PF6 anions are disordered over two positions of equal occupancy in respect of the F atoms.

Related literature

For the synthesis of compounds with supra­molecular structures involving carboxamides as ligands, see: Sun et al. (2011[Sun, D., Wei, Z., Yang, C., Wang, D., Zhang, N., Huang, R. & Zheng, L. (2011). CrystEngComm, 13, 1591-1601.]); Moncol et al. (2007[Moncol, J., Mudra, M., Lonnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213-3225.]). For related palladium(II) complexes with isonicotinamide, see: Galstyan et al. (2011[Galstyan, A., Sanz Miguel, P. J. & Lippert, B. (2011). Inorg. Chim. Acta, 374, 453-460.]); Fujimura et al. (2004[Fujimura, T., Seino, H., Hidai, M. & Mizobe, Y. (2004). J. Organomet. Chem. 689, 738-743.]); Qin et al. (2001[Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2001). Inorg. Chem. 40, 6220-6228.]). For hydration of palladium-coordinated nitriles, see: Sanchez et al. (2000[Sanchez, G., Serrano, J. L., Ramirez de Arellano, M. C., Perez, J. & Lopez, G. (2000). Polyhedron, 19, 1395-1406.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C10H8N2)(C6H6NO2)2](PF6)2

  • Mr = 796.78

  • Monoclinic, C 2/c

  • a = 22.5920 (14) Å

  • b = 13.8299 (8) Å

  • c = 17.9092 (12) Å

  • β = 95.269 (8)°

  • V = 5572.0 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 7.55 mm−1

  • T = 100 K

  • 0.46 × 0.16 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.126, Tmax = 0.401

  • 30116 measured reflections

  • 5182 independent reflections

  • 3944 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.147

  • S = 1.01

  • 5182 reflections

  • 520 parameters

  • 144 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.88 2.29 3.031 (11) 142
N2—H1N⋯O2ii 0.88 2.37 3.032 (11) 132
N2—H2N⋯F9iii 0.88 2.24 3.037 (15) 151
N2—H2N⋯F11′iii 0.88 2.38 3.220 (14) 159
N4—H3N⋯F7′iv 0.88 2.52 3.175 (19) 132
N4—H3N⋯F8iv 0.88 2.55 3.10 (2) 121
N4—H4N⋯O1v 0.88 1.97 2.836 (11) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Carboxamides have been used for the synthesis of supramolecular structures due to their ability to hydrogen bond as shown by Sun et al. (2011) and Moncol et al. (2007). With that in mind we sought to crystallize palladium(II) complexes with 4-pyridinecarboxamide ligands, similar to those created by Galstyan et al., (2011), Fujimura et al. (2004) and Qin et al. (2001). The title compound can be synthesized by the reaction of the 2,2'-bipyridine palladium(II) metal centre with the 4-pyridinecarboxamide ligand or by the palladium-catalyzed hydration of the 2,2'-bipyridine palladium(II) 4-cyanopyridine analog complex in a similar reaction to the one reported by Sanchez et al. (2000).

The complex cation of the title compound, Fig. 1, features a square planar palladium(II) centre with a cis disposition of the N-bound 4-pyridinecarboxamide ligands. No systematic trends are evident in the Pd—N bond lengths (Table 1). The 4-pyridinecarboxamide ligands are almost orthogonal to each other, the dihedral angle being 85.7 (5)°, and to the PdN4 plane with dihedral angles of 79.3 (3) [N1-ligand] and 78.7 (3)°; a similar situation was found in the BF4- analogue (Qin et al., 2001). Each of the amide groups lies out of the plane of the pyridyl ring to which it is connected as seen in the C2—C3—C6—O1 and C8—C9—C12—O2 torsion angles of -166.0 (8) and 171.5 (8)°, respectively. The 2,2'-bipyridine ring is almost planar the dihedral angle between the pyridyl rings being 4.7 (4)°. The amide-O atoms lie to opposite sides of the PdN4 plane.

A detailed analysis of the crystal packing is not possible owing to the disorder in the two PF6- anions. However, the most notable feature of the crystal packing is a supramolecular chain orientated approximately along [3 1 0] arising from centrosymmetric 16-membered {···HNCO}4 synthons constructed by four interacting amide groups (Fig. 2 and Table 2). A three-dimensional architecture arises from additional amide-H···O, F interactions (Table 2).

Related literature top

For the synthesis of supramolecular structures with carboxamides as ligands, see: Sun et al. (2011); Moncol et al. (2007). For related palladium(II) complexes with isonicotinamide, see: Galstyan et al. (2011); Fujimura et al. (2004); Qin et al. (2001). For hydration of palladium-coordinated nitriles, see: Sanchez et al. (2000).

Experimental top

Pd(bpy)(PF6)2 [bpy = 2,2'-bipyridine] was prepared by adding solid AgPF6 to an acetonitrile suspension of Pd(bpy)Cl2 (0.050 g, 0.15 mmol). After being stirred for 2 h, the mixture was filtered to remove AgCl. Isonicotinamide (0.037 g, 0.30 mmol) was added to the Pd(bpy)(PF6)2 solution and the solution was heated at 323 K for 3 h. Crystals were obtained by vapour diffusion of diethyl ether over an acetonitrile solution of the title complex [0.083 g, 85% yield; M.pt: 513 K (dec.), 523 K (melting)].

Refinement top

Ni and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(carrier atom). Both PF6 anions are disordered over two positions in respect of the F atoms only. The occupancy was assumed to be 1:1 as it could not be refined. The anisotropic displacement parameters of the F atoms were restrained to be nearly isotropic. Two reflections, i.e. (2 0 18) and (0 6 15), were omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in the title salt showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain mediated by N—H···O hydrogen bonds (orange dashed lines) along [13 5 -1] - see Table 1 for details.
cis-(2,2'-Bipyridine-κ2N,N')bis(isonicotinamide- κN1)palladium(II) bis(hexafluoridophosphate) top
Crystal data top
[Pd(C10H8N2)(C6H6NO2)2](PF6)2F(000) = 3152
Mr = 796.78Dx = 1.900 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 4302 reflections
a = 22.5920 (14) Åθ = 3.8–68.1°
b = 13.8299 (8) ŵ = 7.55 mm1
c = 17.9092 (12) ÅT = 100 K
β = 95.269 (8)°Rod, colourless
V = 5572.0 (6) Å30.46 × 0.16 × 0.15 mm
Z = 8
Data collection top
Bruker APEX CCD
diffractometer
5182 independent reflections
Radiation source: fine-focus sealed tube3944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 69.8°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 2626
Tmin = 0.126, Tmax = 0.401k = 1616
30116 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0879P)2 + 9.8993P]
where P = (Fo2 + 2Fc2)/3
5182 reflections(Δ/σ)max = 0.001
520 parametersΔρmax = 0.67 e Å3
144 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Pd(C10H8N2)(C6H6NO2)2](PF6)2V = 5572.0 (6) Å3
Mr = 796.78Z = 8
Monoclinic, C2/cCu Kα radiation
a = 22.5920 (14) ŵ = 7.55 mm1
b = 13.8299 (8) ÅT = 100 K
c = 17.9092 (12) Å0.46 × 0.16 × 0.15 mm
β = 95.269 (8)°
Data collection top
Bruker APEX CCD
diffractometer
5182 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3944 reflections with I > 2σ(I)
Tmin = 0.126, Tmax = 0.401Rint = 0.072
30116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052144 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.67 e Å3
5182 reflectionsΔρmin = 0.78 e Å3
520 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd0.667091 (18)0.53803 (3)0.62000 (2)0.03743 (15)
P10.70718 (7)0.64260 (15)0.84670 (11)0.0532 (4)
P20.57543 (8)0.73478 (13)0.41320 (11)0.0519 (4)
F10.7509 (5)0.6745 (11)0.7858 (7)0.086 (3)0.50
F20.7240 (7)0.7410 (9)0.8898 (9)0.118 (4)0.50
F30.6661 (5)0.6128 (12)0.9038 (7)0.093 (4)0.50
F40.6999 (6)0.5423 (8)0.8021 (6)0.084 (3)0.50
F50.6557 (5)0.6892 (10)0.7948 (8)0.087 (4)0.50
F60.7629 (4)0.5972 (6)0.8934 (6)0.052 (2)0.50
F70.5623 (7)0.6485 (8)0.4674 (6)0.088 (3)0.50
F80.5449 (7)0.8077 (15)0.4605 (11)0.081 (5)0.50
F90.5970 (6)0.8181 (7)0.3611 (7)0.077 (3)0.50
F100.6113 (4)0.6573 (8)0.3638 (6)0.052 (2)0.50
F110.6403 (4)0.7503 (9)0.4640 (6)0.078 (3)0.50
F120.5198 (4)0.7132 (10)0.3636 (7)0.087 (3)0.50
F1'0.7399 (10)0.5757 (17)0.7956 (11)0.160 (7)0.50
F2'0.7296 (7)0.7305 (12)0.8075 (9)0.118 (5)0.50
F3'0.6705 (6)0.7100 (9)0.8982 (6)0.089 (3)0.50
F4'0.6788 (7)0.5562 (9)0.8956 (8)0.095 (4)0.50
F5'0.6495 (6)0.6323 (10)0.7903 (7)0.082 (3)0.50
F6'0.7612 (9)0.6409 (15)0.9077 (11)0.136 (7)0.50
F7'0.5639 (7)0.8201 (13)0.4737 (11)0.065 (4)0.50
F8'0.6250 (4)0.7947 (9)0.3815 (7)0.066 (3)0.50
F9'0.5184 (6)0.6781 (9)0.4411 (7)0.094 (3)0.50
F10'0.5814 (6)0.6529 (10)0.3528 (7)0.081 (3)0.50
F11'0.5277 (4)0.7880 (9)0.3518 (6)0.081 (3)0.50
F12'0.6163 (6)0.6839 (10)0.4707 (6)0.094 (3)0.50
O10.5848 (2)0.0479 (3)0.5984 (4)0.0706 (16)
O20.9674 (2)0.4298 (4)0.6755 (4)0.0730 (16)
N10.6458 (2)0.3976 (4)0.6254 (3)0.0426 (11)
N20.5616 (5)0.0829 (6)0.7123 (5)0.105 (3)
H1n0.54650.02490.71760.126*
H2n0.56160.12540.74880.126*
N30.7528 (2)0.4988 (4)0.6136 (3)0.0393 (11)
N40.9639 (3)0.4321 (6)0.5525 (5)0.086 (2)
H3n1.00220.41920.55530.103*
H4n0.94370.43930.50850.103*
N50.5835 (2)0.5845 (4)0.6278 (3)0.0459 (12)
N60.6826 (2)0.6815 (4)0.6218 (3)0.0407 (11)
C10.6372 (4)0.3601 (5)0.6929 (4)0.0602 (19)
H10.64350.39990.73610.072*
C20.6201 (4)0.2674 (5)0.7010 (4)0.0586 (18)
H20.61600.24280.74980.070*
C30.6084 (3)0.2081 (4)0.6399 (4)0.0455 (15)
C40.6180 (5)0.2470 (6)0.5720 (5)0.077 (3)
H40.61130.20870.52800.092*
C50.6369 (4)0.3400 (6)0.5663 (5)0.068 (2)
H50.64400.36440.51840.082*
C60.5854 (3)0.1070 (5)0.6467 (5)0.0577 (18)
C70.7775 (3)0.5003 (8)0.5506 (5)0.071 (2)
H70.75350.51460.50550.085*
C80.8376 (4)0.4816 (8)0.5470 (5)0.074 (3)
H80.85450.48560.50050.089*
C90.8717 (3)0.4578 (4)0.6095 (4)0.0468 (15)
C100.8457 (4)0.4501 (9)0.6735 (6)0.097 (4)
H100.86840.43040.71820.116*
C110.7862 (4)0.4707 (9)0.6746 (5)0.090 (3)
H110.76840.46460.72050.108*
C120.9376 (3)0.4405 (5)0.6127 (5)0.0546 (18)
C130.5341 (3)0.5284 (5)0.6259 (5)0.0560 (17)
H130.53720.46080.61790.067*
C140.4796 (3)0.5682 (6)0.6354 (5)0.068 (2)
H140.44510.52860.63330.081*
C150.4755 (3)0.6653 (6)0.6479 (6)0.082 (3)
H150.43840.69360.65600.098*
C160.5259 (3)0.7221 (6)0.6486 (5)0.068 (2)
H160.52360.78980.65690.082*
C170.5794 (3)0.6798 (5)0.6372 (4)0.0497 (16)
C180.6345 (3)0.7349 (5)0.6329 (4)0.0435 (14)
C190.6381 (3)0.8338 (5)0.6376 (4)0.0520 (16)
H190.60370.87060.64520.062*
C200.6913 (3)0.8800 (5)0.6313 (4)0.0558 (17)
H200.69390.94850.63360.067*
C210.7415 (3)0.8240 (5)0.6214 (4)0.0545 (17)
H210.77910.85360.61780.065*
C220.7353 (3)0.7249 (5)0.6170 (4)0.0437 (14)
H220.76920.68630.61040.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0313 (2)0.0397 (2)0.0422 (3)0.00218 (17)0.00854 (15)0.00002 (19)
P10.0333 (8)0.0718 (11)0.0553 (11)0.0101 (7)0.0084 (7)0.0075 (9)
P20.0489 (10)0.0513 (9)0.0566 (11)0.0045 (7)0.0104 (7)0.0003 (8)
F10.052 (5)0.120 (8)0.085 (7)0.023 (5)0.009 (4)0.023 (6)
F20.135 (8)0.078 (6)0.133 (9)0.028 (6)0.024 (7)0.028 (6)
F30.074 (6)0.141 (9)0.069 (6)0.002 (6)0.034 (5)0.002 (7)
F40.096 (7)0.077 (6)0.076 (6)0.036 (5)0.006 (5)0.024 (5)
F50.057 (6)0.116 (8)0.085 (7)0.031 (6)0.007 (5)0.019 (7)
F60.041 (4)0.042 (4)0.069 (5)0.010 (3)0.005 (3)0.002 (4)
F70.118 (8)0.082 (6)0.067 (6)0.025 (6)0.027 (6)0.011 (5)
F80.078 (9)0.091 (8)0.078 (8)0.009 (7)0.023 (7)0.031 (6)
F90.119 (8)0.039 (4)0.074 (6)0.011 (5)0.022 (6)0.000 (4)
F100.044 (4)0.055 (5)0.057 (5)0.008 (4)0.000 (4)0.001 (4)
F110.057 (5)0.100 (7)0.076 (6)0.001 (5)0.006 (4)0.021 (5)
F120.048 (5)0.112 (7)0.098 (7)0.010 (5)0.003 (5)0.015 (6)
F1'0.158 (10)0.174 (11)0.155 (10)0.065 (9)0.050 (8)0.009 (8)
F2'0.122 (9)0.118 (8)0.115 (9)0.037 (7)0.016 (7)0.042 (7)
F3'0.118 (7)0.084 (6)0.068 (6)0.025 (6)0.020 (5)0.010 (5)
F4'0.122 (8)0.068 (6)0.096 (8)0.010 (6)0.008 (6)0.018 (6)
F5'0.075 (6)0.104 (7)0.066 (6)0.011 (6)0.001 (5)0.001 (6)
F6'0.098 (9)0.172 (11)0.134 (10)0.014 (9)0.002 (7)0.031 (9)
F7'0.063 (7)0.063 (6)0.071 (7)0.003 (5)0.016 (6)0.014 (5)
F8'0.045 (5)0.081 (6)0.075 (6)0.013 (4)0.019 (4)0.019 (5)
F9'0.091 (7)0.097 (7)0.095 (7)0.034 (6)0.018 (6)0.012 (6)
F10'0.118 (8)0.064 (5)0.063 (6)0.011 (7)0.012 (7)0.002 (5)
F11'0.049 (5)0.109 (7)0.083 (6)0.015 (5)0.002 (4)0.028 (5)
F12'0.101 (7)0.107 (7)0.073 (6)0.040 (6)0.001 (5)0.009 (6)
O10.058 (3)0.043 (3)0.115 (5)0.003 (2)0.031 (3)0.020 (3)
O20.049 (3)0.063 (3)0.106 (5)0.008 (2)0.002 (3)0.007 (3)
N10.031 (2)0.051 (3)0.047 (3)0.002 (2)0.012 (2)0.004 (2)
N20.158 (9)0.066 (5)0.101 (7)0.041 (5)0.058 (6)0.016 (4)
N30.035 (2)0.038 (2)0.046 (3)0.0011 (19)0.011 (2)0.001 (2)
N40.051 (4)0.109 (6)0.101 (6)0.006 (4)0.025 (4)0.022 (5)
N50.037 (3)0.047 (3)0.053 (3)0.006 (2)0.002 (2)0.001 (2)
N60.025 (2)0.050 (3)0.047 (3)0.0016 (19)0.0054 (19)0.000 (2)
C10.077 (5)0.053 (4)0.052 (5)0.016 (4)0.018 (4)0.011 (3)
C20.073 (5)0.048 (4)0.055 (5)0.013 (3)0.007 (3)0.001 (3)
C30.037 (3)0.033 (3)0.066 (5)0.004 (2)0.007 (3)0.006 (3)
C40.114 (8)0.058 (4)0.061 (6)0.015 (5)0.019 (5)0.023 (4)
C50.099 (6)0.060 (4)0.049 (5)0.024 (4)0.022 (4)0.008 (3)
C60.051 (4)0.048 (4)0.075 (5)0.004 (3)0.010 (3)0.009 (4)
C70.045 (4)0.122 (7)0.047 (5)0.019 (4)0.013 (3)0.005 (4)
C80.053 (4)0.123 (8)0.049 (5)0.027 (5)0.017 (3)0.008 (4)
C90.038 (3)0.037 (3)0.066 (4)0.005 (2)0.009 (3)0.009 (3)
C100.047 (5)0.170 (12)0.074 (6)0.026 (6)0.010 (4)0.037 (7)
C110.047 (5)0.167 (11)0.059 (6)0.007 (5)0.018 (4)0.035 (6)
C120.044 (4)0.042 (3)0.078 (5)0.001 (3)0.009 (3)0.010 (3)
C130.036 (3)0.056 (4)0.075 (5)0.008 (3)0.001 (3)0.005 (3)
C140.040 (4)0.066 (5)0.098 (7)0.006 (3)0.010 (4)0.004 (4)
C150.039 (4)0.069 (5)0.139 (9)0.006 (4)0.020 (4)0.005 (5)
C160.038 (4)0.059 (4)0.111 (7)0.007 (3)0.016 (4)0.000 (4)
C170.032 (3)0.058 (4)0.060 (4)0.004 (3)0.009 (3)0.006 (3)
C180.033 (3)0.047 (3)0.051 (4)0.003 (2)0.006 (2)0.002 (3)
C190.041 (3)0.042 (3)0.073 (5)0.003 (3)0.004 (3)0.008 (3)
C200.050 (4)0.042 (3)0.075 (5)0.003 (3)0.004 (3)0.005 (3)
C210.043 (4)0.049 (4)0.071 (5)0.010 (3)0.005 (3)0.003 (3)
C220.034 (3)0.045 (3)0.052 (4)0.000 (2)0.003 (2)0.002 (3)
Geometric parameters (Å, º) top
Pd—N12.005 (5)N5—C171.332 (9)
Pd—N32.024 (5)N5—C131.357 (8)
Pd—N52.013 (5)N6—C221.343 (7)
Pd—N62.014 (5)N6—C181.346 (8)
P1—F31.501 (11)C1—C21.351 (10)
P1—F2'1.514 (13)C1—H10.9500
P1—F1'1.538 (16)C2—C31.374 (10)
P1—F51.561 (11)C2—H20.9500
P1—F6'1.562 (19)C3—C41.365 (11)
P1—F61.577 (9)C3—C61.501 (9)
P1—F5'1.580 (13)C4—C51.362 (11)
P1—F21.593 (13)C4—H40.9500
P1—F3'1.596 (10)C5—H50.9500
P1—F11.599 (11)C7—C81.391 (10)
P1—F41.602 (10)C7—H70.9500
P1—F4'1.646 (12)C8—C91.340 (11)
P2—F12'1.494 (11)C8—H80.9500
P2—F121.500 (10)C9—C101.339 (12)
P2—F81.522 (19)C9—C121.504 (9)
P2—F8'1.542 (11)C10—C111.376 (12)
P2—F10'1.580 (13)C10—H100.9500
P2—F71.583 (10)C11—H110.9500
P2—F91.587 (11)C13—C141.373 (10)
P2—F9'1.626 (11)C13—H130.9500
P2—F7'1.639 (19)C14—C151.366 (12)
P2—F11'1.642 (10)C14—H140.9500
P2—F101.650 (11)C15—C161.382 (11)
P2—F111.667 (10)C15—H150.9500
O1—C61.189 (9)C16—C171.374 (9)
O2—C121.266 (10)C16—H160.9500
N1—C51.325 (9)C17—C181.467 (8)
N1—C11.345 (9)C18—C191.372 (9)
N2—C61.376 (11)C19—C201.375 (9)
N2—H1n0.8800C19—H190.9500
N2—H2n0.8800C20—C211.398 (10)
N3—C71.303 (9)C20—H200.9500
N3—C111.329 (10)C21—C221.380 (9)
N4—C121.282 (10)C21—H210.9500
N4—H3n0.8800C22—H220.9500
N4—H4n0.8800
N1—Pd—N594.3 (2)C11—N3—Pd120.4 (5)
N1—Pd—N6174.40 (19)C12—N4—H3n120.0
N5—Pd—N681.2 (2)C12—N4—H4n120.0
N1—Pd—N388.8 (2)H3n—N4—H4n120.0
N5—Pd—N3176.8 (2)C17—N5—C13120.2 (6)
N6—Pd—N395.66 (19)C17—N5—Pd113.6 (4)
F2'—P1—F1'90.4 (10)C13—N5—Pd126.2 (5)
F3—P1—F592.6 (8)C22—N6—C18119.8 (6)
F3—P1—F6'90.7 (9)C22—N6—Pd126.4 (4)
F2'—P1—F6'93.6 (10)C18—N6—Pd113.7 (4)
F1'—P1—F6'91.1 (11)N1—C1—C2121.9 (7)
F5—P1—F6'156.2 (10)N1—C1—H1119.0
F3—P1—F692.5 (7)C2—C1—H1119.0
F5—P1—F6174.9 (7)C1—C2—C3121.1 (7)
F2'—P1—F5'93.9 (8)C1—C2—H2119.4
F1'—P1—F5'88.8 (10)C3—C2—H2119.4
F6'—P1—F5'172.5 (9)C4—C3—C2116.1 (6)
F3—P1—F292.3 (9)C4—C3—C6121.7 (7)
F5—P1—F293.9 (8)C2—C3—C6122.2 (7)
F6—P1—F286.6 (6)C5—C4—C3121.0 (7)
F2'—P1—F3'90.8 (9)C5—C4—H4119.5
F1'—P1—F3'177.4 (11)C3—C4—H4119.5
F6'—P1—F3'91.1 (9)N1—C5—C4122.3 (8)
F5'—P1—F3'88.9 (7)N1—C5—H5118.9
F3—P1—F1179.9 (10)C4—C5—H5118.9
F5—P1—F187.4 (7)O1—C6—N2118.3 (7)
F6—P1—F187.6 (6)O1—C6—C3124.2 (7)
F2—P1—F187.7 (8)N2—C6—C3117.4 (7)
F3—P1—F493.5 (8)N3—C7—C8122.3 (8)
F5—P1—F491.3 (7)N3—C7—H7118.9
F6—P1—F487.8 (6)C8—C7—H7118.9
F2—P1—F4172.1 (8)C9—C8—C7119.8 (7)
F1—P1—F486.6 (7)C9—C8—H8120.1
F2'—P1—F4'173.2 (9)C7—C8—H8120.1
F1'—P1—F4'96.4 (11)C10—C9—C8118.1 (7)
F6'—P1—F4'86.3 (9)C10—C9—C12117.8 (7)
F5'—P1—F4'86.3 (7)C8—C9—C12124.1 (7)
F3'—P1—F4'82.4 (7)C9—C10—C11120.1 (8)
F12—P2—F893.7 (8)C9—C10—H10120.0
F12'—P2—F8'94.8 (8)C11—C10—H10120.0
F12'—P2—F10'92.7 (7)N3—C11—C10122.1 (8)
F8'—P2—F10'91.3 (6)N3—C11—H11119.0
F12—P2—F791.1 (7)C10—C11—H11119.0
F8—P2—F792.2 (10)O2—C12—N4119.1 (8)
F12—P2—F994.7 (7)O2—C12—C9119.7 (7)
F8—P2—F991.4 (9)N4—C12—C9121.1 (8)
F10'—P2—F993.9 (6)N5—C13—C14120.8 (7)
F7—P2—F9172.9 (8)N5—C13—H13119.6
F12'—P2—F9'91.1 (8)C14—C13—H13119.6
F8'—P2—F9'174.1 (7)C15—C14—C13119.2 (7)
F10'—P2—F9'89.1 (7)C15—C14—H14120.4
F12'—P2—F7'90.6 (8)C13—C14—H14120.4
F8'—P2—F7'91.2 (7)C14—C15—C16119.5 (7)
F10'—P2—F7'175.7 (8)C14—C15—H15120.2
F9'—P2—F7'88.0 (7)C16—C15—H15120.2
F12'—P2—F11'177.2 (7)C17—C16—C15119.4 (8)
F8'—P2—F11'88.1 (6)C17—C16—H16120.3
F10'—P2—F11'87.4 (7)C15—C16—H16120.3
F9'—P2—F11'86.0 (6)N5—C17—C16120.8 (6)
F7'—P2—F11'89.2 (8)N5—C17—C18116.0 (6)
F12—P2—F1088.8 (5)C16—C17—C18123.2 (7)
F8—P2—F10177.5 (7)N6—C18—C19120.8 (6)
F7—P2—F1088.1 (6)N6—C18—C17115.1 (6)
F9—P2—F1088.0 (6)C19—C18—C17124.1 (6)
F12—P2—F11174.5 (6)C18—C19—C20120.4 (6)
F8—P2—F1191.8 (7)C18—C19—H19119.8
F7—P2—F1188.1 (7)C20—C19—H19119.8
F9—P2—F1185.7 (7)C19—C20—C21118.6 (6)
F10—P2—F1185.8 (5)C19—C20—H20120.7
C5—N1—C1117.5 (6)C21—C20—H20120.7
C5—N1—Pd124.3 (5)C22—C21—C20118.6 (6)
C1—N1—Pd118.2 (4)C22—C21—H21120.7
C6—N2—H1n120.0C20—C21—H21120.7
C6—N2—H2n120.0N6—C22—C21121.8 (6)
H1n—N2—H2n120.0N6—C22—H22119.1
C7—N3—C11117.4 (6)C21—C22—H22119.1
C7—N3—Pd122.2 (5)
N5—Pd—N1—C599.2 (6)C8—C9—C10—C112.9 (16)
N3—Pd—N1—C581.7 (6)C12—C9—C10—C11176.3 (10)
N5—Pd—N1—C177.7 (5)C7—N3—C11—C104.4 (16)
N3—Pd—N1—C1101.4 (5)Pd—N3—C11—C10175.3 (9)
N1—Pd—N3—C7103.1 (7)C9—C10—C11—N30.2 (19)
N6—Pd—N3—C780.3 (7)C10—C9—C12—O27.7 (11)
N1—Pd—N3—C1177.2 (7)C8—C9—C12—O2171.5 (8)
N6—Pd—N3—C1199.4 (7)C10—C9—C12—N4169.4 (9)
N1—Pd—N5—C17170.8 (5)C8—C9—C12—N411.5 (12)
N6—Pd—N5—C175.9 (5)C17—N5—C13—C141.6 (12)
N1—Pd—N5—C137.8 (6)Pd—N5—C13—C14176.9 (6)
N6—Pd—N5—C13175.6 (6)N5—C13—C14—C150.9 (14)
N5—Pd—N6—C22178.6 (6)C13—C14—C15—C161.8 (16)
N3—Pd—N6—C222.1 (6)C14—C15—C16—C170.4 (15)
N5—Pd—N6—C184.9 (5)C13—N5—C17—C163.0 (11)
N3—Pd—N6—C18174.4 (5)Pd—N5—C17—C16175.6 (6)
C5—N1—C1—C20.3 (12)C13—N5—C17—C18175.6 (6)
Pd—N1—C1—C2176.9 (6)Pd—N5—C17—C185.8 (8)
N1—C1—C2—C32.4 (13)C15—C16—C17—N52.0 (13)
C1—C2—C3—C43.0 (12)C15—C16—C17—C18176.5 (8)
C1—C2—C3—C6175.9 (7)C22—N6—C18—C191.5 (10)
C2—C3—C4—C51.2 (13)Pd—N6—C18—C19178.2 (5)
C6—C3—C4—C5177.7 (8)C22—N6—C18—C17180.0 (6)
C1—N1—C5—C42.1 (13)Pd—N6—C18—C173.3 (7)
Pd—N1—C5—C4174.8 (8)N5—C17—C18—N61.7 (9)
C3—C4—C5—N11.4 (16)C16—C17—C18—N6179.7 (7)
C4—C3—C6—O115.2 (12)N5—C17—C18—C19176.7 (7)
C2—C3—C6—O1166.0 (8)C16—C17—C18—C191.8 (12)
C4—C3—C6—N2162.3 (9)N6—C18—C19—C200.2 (11)
C2—C3—C6—N216.6 (11)C17—C18—C19—C20178.6 (7)
C11—N3—C7—C85.4 (14)C18—C19—C20—C211.1 (12)
Pd—N3—C7—C8174.2 (8)C19—C20—C21—C221.1 (12)
N3—C7—C8—C92.4 (16)C18—N6—C22—C211.5 (10)
C7—C8—C9—C102.0 (14)Pd—N6—C22—C21177.7 (5)
C7—C8—C9—C12177.2 (8)C20—C21—C22—N60.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.882.293.031 (11)142
N2—H1N···O2ii0.882.373.032 (11)132
N2—H2N···F9iii0.882.243.037 (15)151
N2—H2N···F11iii0.882.383.220 (14)159
N4—H3N···F7iv0.882.523.175 (19)132
N4—H3N···F8iv0.882.553.10 (2)121
N4—H4N···O1v0.881.972.836 (11)168
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+3/2, y1/2, z+3/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y1/2, z; (v) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C10H8N2)(C6H6NO2)2](PF6)2
Mr796.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.5920 (14), 13.8299 (8), 17.9092 (12)
β (°) 95.269 (8)
V3)5572.0 (6)
Z8
Radiation typeCu Kα
µ (mm1)7.55
Crystal size (mm)0.46 × 0.16 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.126, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
30116, 5182, 3944
Rint0.072
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.01
No. of reflections5182
No. of parameters520
No. of restraints144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.78

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.882.293.031 (11)142
N2—H1N···O2ii0.882.373.032 (11)132
N2—H2N···F9iii0.882.243.037 (15)151
N2—H2N···F11'iii0.882.383.220 (14)159
N4—H3N···F7'iv0.882.523.175 (19)132
N4—H3N···F8iv0.882.553.10 (2)121
N4—H4N···O1v0.881.972.836 (11)168
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+3/2, y1/2, z+3/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y1/2, z; (v) x+3/2, y+1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: adrian@uiwtx.edu.

Acknowledgements

The authors appreciate the support of the Chemistry Department at the University of the Incarnate Word. The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase the X-ray instrument and computers. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujimura, T., Seino, H., Hidai, M. & Mizobe, Y. (2004). J. Organomet. Chem. 689, 738–743.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalstyan, A., Sanz Miguel, P. J. & Lippert, B. (2011). Inorg. Chim. Acta, 374, 453–460.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoncol, J., Mudra, M., Lonnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, Z., Jennings, M. C. & Puddephatt, R. J. (2001). Inorg. Chem. 40, 6220–6228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSanchez, G., Serrano, J. L., Ramirez de Arellano, M. C., Perez, J. & Lopez, G. (2000). Polyhedron, 19, 1395–1406.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Wei, Z., Yang, C., Wang, D., Zhang, N., Huang, R. & Zheng, L. (2011). CrystEngComm, 13, 1591–1601.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1390-m1391
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds