organic compounds
Ethyl 2-[2-(4-hydroxy-3-methoxybenzylidene)hydrazin-1-ylidene]-3,4-dimethyl-2,3-dihydro-1,3-thiazole-5-carboxylate
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cYesilyurt Demir Celik Vocational School, Ondokuz Mayis University, Samsun, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, TR-55139 Samsun, Turkey, and eDepartment of Chemistry, Karabük University, 78200 Karabük, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C16H19N3O4S, is almost planar, with a dihedral angle of 2.88 (9)° between the mean planes of the benzene and thiazole rings. The molecule adopts an E conformation about the two C=N bonds, with a C—N—N—C torsion angle of −177.01 (11)°. An intramolecular C—H⋯O hydrogen bond exists between a thiazole methyl group and the formic acid ethyl ester carbonyl O atom. In the crystal, molecules are linked by O—-H⋯O hydrogen bonds, forming chains propagating along [2-10]. The chains are linked via C—H⋯O hydrogen bonds with R22(12) ring motifs, forming sheets lying parallel to (12-2). The sheets are further linked through out-of-plane C—H⋯N hydrogen bonds with R22(12) ring motifs and C—H⋯π interactions, forming an interesting three-dimensional supramolecular architecture.
Related literature
For the various biological activities of 1,3-thiazoles, 1,3,4-thiadiazoles and their derivatives, see: Shucla et al. (1984); Desai & Baxi (1992); Mullican et al. (1993); Chapleo et al. (1986); Turner et al. (1988); Mazzone et al. (1993); Miyamoto et al. (1985); Hanna et al. (1995); Oh et al. (2002). For the antimicrobial activity of thiadiazoles and related compounds, see: Sancak et al. (2007). For bond lengths of structurally related molecules, see: Imhof & Wunderle (2012); Randell et al. (2012). For details of the Cambridge Structural Database, see: Allen (2002). For synthetic details, see: Er et al. (2009). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812043772/su2516sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043772/su2516Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812043772/su2516Isup3.cml
The title compound was synthesized according to the published procedure (Er et al., 2009). Crystals were grown by slow evaporation of a 1 3-dichloro-2-propanol solution.
The H atoms were placed in calculated positions and refined in the riding mode: O—H = 0.84 Å, C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(O,C) for other H atoms.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular C—H···O hydrogen bond is shown as a dashed line. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines - see Table 1 for details. |
C16H19N3O4S | Z = 2 |
Mr = 349.40 | F(000) = 368 |
Triclinic, P1 | Dx = 1.393 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 6.8957 (3) Å | Cell parameters from 4259 reflections |
b = 10.2716 (5) Å | θ = 3.6–75.0° |
c = 12.7297 (6) Å | µ = 1.96 mm−1 |
α = 74.843 (4)° | T = 123 K |
β = 87.579 (4)° | Block, yellow |
γ = 73.304 (4)° | 0.40 × 0.35 × 0.30 mm |
V = 833.06 (7) Å3 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 3316 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3254 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.2°, θmin = 3.6° |
ω scans | h = −8→6 |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011) | k = −12→12 |
Tmin = 0.508, Tmax = 0.591 | l = −14→15 |
5272 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0628P)2 + 0.3221P] where P = (Fo2 + 2Fc2)/3 |
3316 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C16H19N3O4S | γ = 73.304 (4)° |
Mr = 349.40 | V = 833.06 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8957 (3) Å | Cu Kα radiation |
b = 10.2716 (5) Å | µ = 1.96 mm−1 |
c = 12.7297 (6) Å | T = 123 K |
α = 74.843 (4)° | 0.40 × 0.35 × 0.30 mm |
β = 87.579 (4)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 3316 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011) | 3254 reflections with I > 2σ(I) |
Tmin = 0.508, Tmax = 0.591 | Rint = 0.016 |
5272 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.35 e Å−3 |
3316 reflections | Δρmin = −0.29 e Å−3 |
222 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.70492 (5) | 0.40814 (3) | 0.24740 (3) | 0.02041 (12) | |
N1 | 0.66196 (18) | 0.27633 (12) | 0.10704 (9) | 0.0211 (3) | |
N2 | 0.36294 (18) | 0.44474 (12) | 0.12687 (9) | 0.0215 (2) | |
N3 | 0.28500 (18) | 0.54591 (12) | 0.18464 (9) | 0.0209 (2) | |
O1 | 1.09737 (14) | 0.30755 (10) | 0.35164 (8) | 0.0228 (2) | |
O2 | 1.25414 (15) | 0.14195 (11) | 0.26529 (9) | 0.0262 (2) | |
O3 | 0.01284 (15) | 0.91719 (11) | 0.41058 (8) | 0.0250 (2) | |
O4 | −0.36639 (15) | 1.02884 (11) | 0.35124 (9) | 0.0260 (2) | |
H4O | −0.4861 | 1.0602 | 0.3258 | 0.031* | |
C1 | 0.5524 (2) | 0.38117 (14) | 0.15329 (11) | 0.0197 (3) | |
C2 | 0.8616 (2) | 0.21847 (14) | 0.14284 (11) | 0.0209 (3) | |
C3 | 0.9110 (2) | 0.27517 (14) | 0.21950 (11) | 0.0207 (3) | |
C4 | 1.1041 (2) | 0.23365 (14) | 0.27913 (11) | 0.0209 (3) | |
C5 | 1.2838 (2) | 0.27620 (15) | 0.41589 (11) | 0.0229 (3) | |
H5A | 1.3993 | 0.2794 | 0.3674 | 0.027* | |
H5B | 1.3131 | 0.1810 | 0.4664 | 0.027* | |
C6 | 1.2533 (2) | 0.38483 (16) | 0.47858 (12) | 0.0277 (3) | |
H6A | 1.3767 | 0.3671 | 0.5220 | 0.042* | |
H6B | 1.1399 | 0.3799 | 0.5270 | 0.042* | |
H6C | 1.2234 | 0.4786 | 0.4278 | 0.042* | |
C7 | 0.9959 (2) | 0.10729 (15) | 0.09540 (12) | 0.0256 (3) | |
H7A | 1.1327 | 0.0781 | 0.1283 | 0.038* | |
H7B | 1.0011 | 0.1449 | 0.0165 | 0.038* | |
H7C | 0.9421 | 0.0260 | 0.1102 | 0.038* | |
C8 | 0.5613 (2) | 0.23358 (15) | 0.02873 (12) | 0.0250 (3) | |
H8A | 0.4387 | 0.2114 | 0.0602 | 0.037* | |
H8B | 0.6532 | 0.1502 | 0.0113 | 0.037* | |
H8C | 0.5243 | 0.3105 | −0.0379 | 0.037* | |
C9 | 0.0948 (2) | 0.60606 (14) | 0.16368 (11) | 0.0211 (3) | |
H9A | 0.0275 | 0.5778 | 0.1138 | 0.025* | |
C10 | −0.0221 (2) | 0.71595 (14) | 0.21327 (11) | 0.0205 (3) | |
C11 | 0.0644 (2) | 0.76348 (14) | 0.28849 (11) | 0.0199 (3) | |
H11A | 0.2047 | 0.7247 | 0.3077 | 0.024* | |
C12 | −0.0528 (2) | 0.86614 (14) | 0.33475 (11) | 0.0206 (3) | |
C13 | −0.2607 (2) | 0.92734 (14) | 0.30389 (11) | 0.0208 (3) | |
C14 | −0.3465 (2) | 0.88063 (15) | 0.22958 (11) | 0.0228 (3) | |
H14A | −0.4862 | 0.9207 | 0.2091 | 0.027* | |
C15 | −0.2279 (2) | 0.77488 (15) | 0.18495 (11) | 0.0231 (3) | |
H15A | −0.2880 | 0.7426 | 0.1347 | 0.028* | |
C16 | 0.2148 (2) | 0.84763 (16) | 0.45449 (12) | 0.0271 (3) | |
H16A | 0.2424 | 0.8898 | 0.5108 | 0.041* | |
H16B | 0.3111 | 0.8580 | 0.3963 | 0.041* | |
H16C | 0.2290 | 0.7475 | 0.4864 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01519 (18) | 0.02052 (19) | 0.02471 (19) | −0.00053 (13) | −0.00105 (12) | −0.00933 (13) |
N1 | 0.0198 (6) | 0.0202 (6) | 0.0223 (5) | −0.0022 (5) | −0.0005 (4) | −0.0073 (4) |
N2 | 0.0189 (6) | 0.0207 (6) | 0.0236 (6) | −0.0022 (4) | −0.0011 (4) | −0.0073 (4) |
N3 | 0.0190 (6) | 0.0203 (6) | 0.0219 (5) | −0.0023 (5) | 0.0000 (4) | −0.0068 (4) |
O1 | 0.0151 (5) | 0.0248 (5) | 0.0263 (5) | −0.0009 (4) | −0.0017 (4) | −0.0079 (4) |
O2 | 0.0169 (5) | 0.0255 (5) | 0.0330 (5) | 0.0010 (4) | −0.0016 (4) | −0.0095 (4) |
O3 | 0.0170 (5) | 0.0275 (5) | 0.0296 (5) | 0.0007 (4) | −0.0047 (4) | −0.0131 (4) |
O4 | 0.0167 (5) | 0.0278 (5) | 0.0314 (5) | 0.0023 (4) | −0.0019 (4) | −0.0135 (4) |
C1 | 0.0195 (7) | 0.0189 (6) | 0.0201 (6) | −0.0043 (5) | 0.0003 (5) | −0.0052 (5) |
C2 | 0.0188 (6) | 0.0182 (6) | 0.0226 (6) | −0.0026 (5) | 0.0023 (5) | −0.0030 (5) |
C3 | 0.0160 (6) | 0.0184 (6) | 0.0247 (6) | −0.0005 (5) | 0.0024 (5) | −0.0053 (5) |
C4 | 0.0167 (6) | 0.0191 (6) | 0.0239 (6) | −0.0030 (5) | 0.0017 (5) | −0.0027 (5) |
C5 | 0.0150 (6) | 0.0254 (7) | 0.0250 (7) | −0.0018 (5) | −0.0026 (5) | −0.0049 (5) |
C6 | 0.0235 (7) | 0.0273 (7) | 0.0301 (7) | −0.0027 (6) | −0.0025 (6) | −0.0080 (6) |
C7 | 0.0248 (7) | 0.0225 (7) | 0.0268 (7) | −0.0009 (6) | 0.0038 (6) | −0.0087 (5) |
C8 | 0.0240 (7) | 0.0251 (7) | 0.0264 (7) | −0.0039 (6) | −0.0019 (6) | −0.0110 (6) |
C9 | 0.0200 (7) | 0.0211 (6) | 0.0213 (6) | −0.0048 (5) | −0.0014 (5) | −0.0049 (5) |
C10 | 0.0181 (7) | 0.0196 (6) | 0.0210 (6) | −0.0028 (5) | 0.0003 (5) | −0.0033 (5) |
C11 | 0.0143 (6) | 0.0200 (6) | 0.0219 (6) | −0.0019 (5) | −0.0008 (5) | −0.0027 (5) |
C12 | 0.0192 (7) | 0.0213 (6) | 0.0197 (6) | −0.0049 (5) | −0.0004 (5) | −0.0037 (5) |
C13 | 0.0176 (6) | 0.0201 (6) | 0.0215 (6) | −0.0019 (5) | 0.0017 (5) | −0.0041 (5) |
C14 | 0.0146 (6) | 0.0251 (7) | 0.0255 (7) | −0.0012 (5) | −0.0022 (5) | −0.0055 (5) |
C15 | 0.0195 (7) | 0.0248 (7) | 0.0244 (7) | −0.0038 (5) | −0.0025 (5) | −0.0075 (5) |
C16 | 0.0189 (7) | 0.0310 (7) | 0.0303 (7) | −0.0010 (6) | −0.0062 (6) | −0.0121 (6) |
S1—C1 | 1.7507 (14) | C6—H6B | 0.9800 |
S1—C3 | 1.7626 (14) | C6—H6C | 0.9800 |
N1—C2 | 1.3773 (18) | C7—H7A | 0.9800 |
N1—C1 | 1.3795 (18) | C7—H7B | 0.9800 |
N1—C8 | 1.4599 (17) | C7—H7C | 0.9800 |
N2—C1 | 1.2958 (18) | C8—H8A | 0.9800 |
N2—N3 | 1.3982 (16) | C8—H8B | 0.9800 |
N3—C9 | 1.2847 (18) | C8—H8C | 0.9800 |
O1—C4 | 1.3315 (17) | C9—C10 | 1.4592 (19) |
O1—C5 | 1.4624 (16) | C9—H9A | 0.9500 |
O2—C4 | 1.2247 (17) | C10—C15 | 1.3951 (19) |
O3—C12 | 1.3601 (17) | C10—C11 | 1.4039 (19) |
O3—C16 | 1.4307 (16) | C11—C12 | 1.3808 (19) |
O4—C13 | 1.3551 (17) | C11—H11A | 0.9500 |
O4—H4O | 0.8400 | C12—C13 | 1.4159 (19) |
C2—C3 | 1.359 (2) | C13—C14 | 1.387 (2) |
C2—C7 | 1.4941 (19) | C14—C15 | 1.394 (2) |
C3—C4 | 1.457 (2) | C14—H14A | 0.9500 |
C5—C6 | 1.498 (2) | C15—H15A | 0.9500 |
C5—H5A | 0.9900 | C16—H16A | 0.9800 |
C5—H5B | 0.9900 | C16—H16B | 0.9800 |
C6—H6A | 0.9800 | C16—H16C | 0.9800 |
C1—S1—C3 | 89.88 (6) | C2—C7—H7C | 109.5 |
C2—N1—C1 | 114.90 (11) | H7A—C7—H7C | 109.5 |
C2—N1—C8 | 125.69 (12) | H7B—C7—H7C | 109.5 |
C1—N1—C8 | 119.40 (11) | N1—C8—H8A | 109.5 |
C1—N2—N3 | 110.82 (11) | N1—C8—H8B | 109.5 |
C9—N3—N2 | 112.08 (11) | H8A—C8—H8B | 109.5 |
C4—O1—C5 | 116.48 (11) | N1—C8—H8C | 109.5 |
C12—O3—C16 | 116.76 (11) | H8A—C8—H8C | 109.5 |
C13—O4—H4O | 109.5 | H8B—C8—H8C | 109.5 |
N2—C1—N1 | 121.36 (12) | N3—C9—C10 | 122.79 (13) |
N2—C1—S1 | 128.22 (11) | N3—C9—H9A | 118.6 |
N1—C1—S1 | 110.42 (10) | C10—C9—H9A | 118.6 |
C3—C2—N1 | 112.65 (12) | C15—C10—C11 | 119.09 (13) |
C3—C2—C7 | 127.97 (13) | C15—C10—C9 | 118.38 (12) |
N1—C2—C7 | 119.37 (12) | C11—C10—C9 | 122.53 (12) |
C2—C3—C4 | 127.31 (12) | C12—C11—C10 | 120.55 (12) |
C2—C3—S1 | 112.14 (10) | C12—C11—H11A | 119.7 |
C4—C3—S1 | 120.50 (11) | C10—C11—H11A | 119.7 |
O2—C4—O1 | 123.89 (13) | O3—C12—C11 | 125.70 (13) |
O2—C4—C3 | 124.66 (13) | O3—C12—C13 | 114.35 (12) |
O1—C4—C3 | 111.45 (11) | C11—C12—C13 | 119.95 (13) |
O1—C5—C6 | 107.59 (11) | O4—C13—C14 | 123.43 (13) |
O1—C5—H5A | 110.2 | O4—C13—C12 | 116.96 (12) |
C6—C5—H5A | 110.2 | C14—C13—C12 | 119.61 (13) |
O1—C5—H5B | 110.2 | C13—C14—C15 | 120.03 (13) |
C6—C5—H5B | 110.2 | C13—C14—H14A | 120.0 |
H5A—C5—H5B | 108.5 | C15—C14—H14A | 120.0 |
C5—C6—H6A | 109.5 | C14—C15—C10 | 120.74 (13) |
C5—C6—H6B | 109.5 | C14—C15—H15A | 119.6 |
H6A—C6—H6B | 109.5 | C10—C15—H15A | 119.6 |
C5—C6—H6C | 109.5 | O3—C16—H16A | 109.5 |
H6A—C6—H6C | 109.5 | O3—C16—H16B | 109.5 |
H6B—C6—H6C | 109.5 | H16A—C16—H16B | 109.5 |
C2—C7—H7A | 109.5 | O3—C16—H16C | 109.5 |
C2—C7—H7B | 109.5 | H16A—C16—H16C | 109.5 |
H7A—C7—H7B | 109.5 | H16B—C16—H16C | 109.5 |
C1—N2—N3—C9 | −177.01 (11) | S1—C3—C4—O2 | 179.55 (11) |
N3—N2—C1—N1 | 179.73 (11) | C2—C3—C4—O1 | −177.28 (13) |
N3—N2—C1—S1 | 0.40 (17) | S1—C3—C4—O1 | −0.06 (16) |
C2—N1—C1—N2 | 179.91 (12) | C4—O1—C5—C6 | 171.31 (11) |
C8—N1—C1—N2 | −1.54 (19) | N2—N3—C9—C10 | −179.74 (11) |
C2—N1—C1—S1 | −0.65 (15) | N3—C9—C10—C15 | 179.88 (13) |
C8—N1—C1—S1 | 177.90 (10) | N3—C9—C10—C11 | −0.5 (2) |
C3—S1—C1—N2 | 179.35 (13) | C15—C10—C11—C12 | 0.6 (2) |
C3—S1—C1—N1 | −0.04 (10) | C9—C10—C11—C12 | −178.93 (12) |
C1—N1—C2—C3 | 1.22 (17) | C16—O3—C12—C11 | −7.2 (2) |
C8—N1—C2—C3 | −177.22 (12) | C16—O3—C12—C13 | 172.68 (12) |
C1—N1—C2—C7 | −178.01 (11) | C10—C11—C12—O3 | 177.97 (12) |
C8—N1—C2—C7 | 3.6 (2) | C10—C11—C12—C13 | −1.9 (2) |
N1—C2—C3—C4 | 176.20 (13) | O3—C12—C13—O4 | 1.00 (18) |
C7—C2—C3—C4 | −4.7 (2) | C11—C12—C13—O4 | −179.11 (12) |
N1—C2—C3—S1 | −1.21 (15) | O3—C12—C13—C14 | −178.01 (12) |
C7—C2—C3—S1 | 177.93 (11) | C11—C12—C13—C14 | 1.9 (2) |
C1—S1—C3—C2 | 0.71 (11) | O4—C13—C14—C15 | −179.53 (13) |
C1—S1—C3—C4 | −176.90 (11) | C12—C13—C14—C15 | −0.6 (2) |
C5—O1—C4—O2 | 1.04 (19) | C13—C14—C15—C10 | −0.7 (2) |
C5—O1—C4—C3 | −179.34 (11) | C11—C10—C15—C14 | 0.7 (2) |
C2—C3—C4—O2 | 2.3 (2) | C9—C10—C15—C14 | −179.74 (12) |
Cg1 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O2 | 0.98 | 2.28 | 3.0111 (19) | 130 |
O4—H4O···O2i | 0.84 | 1.85 | 2.6878 (14) | 176 |
C16—H16A···O4ii | 0.98 | 2.41 | 3.3824 (18) | 171 |
C8—H8C···N3iii | 0.98 | 2.62 | 3.3986 (19) | 137 |
C6—H6B···Cg1iv | 0.98 | 2.96 | 3.6414 (16) | 128 |
C7—H7C···Cg1v | 0.98 | 2.62 | 3.4762 (16) | 146 |
Symmetry codes: (i) x−2, y+1, z; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C16H19N3O4S |
Mr | 349.40 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 6.8957 (3), 10.2716 (5), 12.7297 (6) |
α, β, γ (°) | 74.843 (4), 87.579 (4), 73.304 (4) |
V (Å3) | 833.06 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.40 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Agilent, 2011) |
Tmin, Tmax | 0.508, 0.591 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5272, 3316, 3254 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.627 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.099, 1.02 |
No. of reflections | 3316 |
No. of parameters | 222 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.29 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg1 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O2 | 0.98 | 2.28 | 3.0111 (19) | 130 |
O4—H4O···O2i | 0.84 | 1.85 | 2.6878 (14) | 176 |
C16—H16A···O4ii | 0.98 | 2.41 | 3.3824 (18) | 171 |
C8—H8C···N3iii | 0.98 | 2.62 | 3.3986 (19) | 137 |
C6—H6B···Cg1iv | 0.98 | 2.96 | 3.6414 (16) | 128 |
C7—H7C···Cg1v | 0.98 | 2.62 | 3.4762 (16) | 146 |
Symmetry codes: (i) x−2, y+1, z; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x+1, y−1, z. |
Acknowledgements
RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.
References
Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chapleo, C. B., Myers, M., Myers, P. L., Saville, J. F., Smith, A. C. B., Stilling, M. R., Tulloch, I. F., Walter, D. S. & Welbourne, A. P. (1986). J. Med. Chem. 29, 2273–2280. CrossRef CAS PubMed Web of Science Google Scholar
Desai, K. & Baxi, A. J. (1992). Indian J. Pharm. Sci. 54, 183–188. CAS Google Scholar
Er, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). Arkivoc, II, 149–167. CrossRef Google Scholar
Hanna, M. A., Girges, M. M., Rasala, D. & Gawinecki, R. (1995). Arzneim. Forsch. Drug. Res. 45, 1074–1078. CAS Google Scholar
Imhof, W. & Wunderle, J. (2012). Acta Cryst. E68, o2741. CSD CrossRef IUCr Journals Google Scholar
Mazzone, G., Pignatello, R., Mazzone, S., Panico, A., Penisi, G., Castana, R. & Mazzone, P. (1993). Il Farmaco, 48, 1207–1224. CAS PubMed Web of Science Google Scholar
Miyamoto, K., Koshiura, R., Mori, M., Yokoi, H., Mori, C., Hasegawa, T. & Takatori, K. (1985). Chem. Pharm. Bull. 33, 5126–5129. CrossRef CAS PubMed Google Scholar
Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090–1099. CrossRef CAS PubMed Web of Science Google Scholar
Oh, C.-H., Cho, H.-W., Baek, D. & Cho, J.-H. (2002). Eur. J. Med. Chem. 37, 743–754. Web of Science CrossRef PubMed CAS Google Scholar
Randell, N. M., Thompson, L. K. & Dawe, L. N. (2012). Acta Cryst. E68, o2711. CSD CrossRef IUCr Journals Google Scholar
Sancak, K., Ünver, Y. & Er, M. (2007). Turk. J. Chem. 31, 125–134. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shucla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 168–171. Google Scholar
Turner, S., Myers, M., Gadie, B., Hale, S. A., Horsley, A., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 906–913. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3-thiazoles, 1,3,4-thiadiazoles and their derivatives exhibit various biological activities, such as antituberculosis (Shucla, et al., 1984), antimicrobial (Desai & Baxi, 1992), anti-inflammatory (Mullican et al., 1993), antiviral, anticonvulsant (Chapleo et al., 1986), antihypertensive (Turner et al., 1988), local anesthetic (Mazzone et al., 1993), anticancer (Miyamoto et al., 1985), hypoglycemic (Hanna et al., 1995), and cytotoxic activities (Oh et al., 2002). Thiadiazoles and related compounds are of great interest in chemistry owing to their bioactivity with certain plant growth regulating effects as well as antimicrobial activity (Sancak et al., 2007). Owing to the importance of these 1,3,4-thiadiazoles derivatives, we report herein on the crystal structure of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The N2—N3 single bond [1.3982 (16) Å] and the N2═C1 double bond [1.2958 (18) Å] distances are in the normal range and are comparable with those found for similar compounds (Imhof & Wunderle, 2012; Randell et al., 2012). Bond lengths and angles can be regarded as normal (Allen, 2002). The molecule adopts an E conformation about the C1═N2 and the C9═N3 bonds with a C9—N3—N2—C1 torsion angle of -177.01 (11) °. The 2-methoxy-phenol ring (C10—C15) and the thiazole ring (C1/N1/C2/C3/S1) are coplanar with a dihedral angle between their mean planes of only 2.88 (9) °. An intramolecular C—H···O hydrogen bond exists between the thiazol methyl group and atom O2 of the formic acid ethyl ester C═O O atom.
In the crystal, an interesting supramolecular architecture is formed as the molecules link up to form sheets in plane (1 2 -2) through both C—H···O R22(12) ring motifs (Bernstein et al., 1995) and O—H···O interactions. These sheets are further linked through out-of-plane C—H···N R22(12) ring motifs and C-H···π interactions (Table 1 and Fig. 2).