organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­bromo­butane-2,3-dione

aCollege of Science, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, People's Republic of China
*Correspondence e-mail: zdxnjfu@gmail.com

(Received 21 October 2012; accepted 24 October 2012; online 31 October 2012)

The asymmetric unit of the title compound, C4H4Br2O2, contains one half-mol­ecule, being located about a centre of inversion. In the crystal, there are no significant inter­molecular inter­actions.

Related literature

For the uses of 1,4-dibromo­butane-2,3-dione, see: Gogte et al. (1967[Gogte, V. N., Shan, L. G., Tilak, B. D., Gadekar, K. N. & Sahasrabudhe, M. B. (1967). Tetrahedron, 23, 2437-2441.]). For the synthesis of 1,4-dibromo­butane-2,3-dione, see: Ruggli & Herzog (1946[Ruggli, P. & Herzog, M. (1946). Helv. Chim. Acta., 29, 95-101.]). For the cystal structure of the 1,4-di­chloro analogue, see: Ducourant et al. (1986[Ducourant, B., Maury, C., Lere-Porte, J.-P., Petrissans, J. & Ribet, J.-L. (1986). Acta Cryst. C42, 341-343.]). For bond–length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C4H4Br2O2

  • Mr = 243.89

  • Orthorhombic, P b c a

  • a = 6.945 (1) Å

  • b = 5.542 (1) Å

  • c = 17.238 (3) Å

  • V = 663.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.13 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.195, Tmax = 0.377

  • 614 measured reflections

  • 614 independent reflections

  • 319 reflections with I > 2σ(I)

  • Rint = 0.077

  • 3 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.108

  • S = 0.93

  • 614 reflections

  • 37 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-Dibromobutane-2,3-dione and its derivatives are important intermediates for the synthesis of compounds possessing promising anticancer activity, which is attributed to their likely interference in the hexose-monophosphate (HMP) pathway (Gogte et al., 1967). We report herein on the crystal structure of the title compound.

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles are within normal ranges. The asymmetric unit contains one half-molecule, being located on a centre of inversion. It can be compared to the 1,4-dichloro derivative that crystallized in the monoclinic space group P21/c (Ducourant et al., 1986) but which also possesses inversion symmetry.

In the crystal, there are no significant intermolecular interactions (Fig. 2).

Related literature top

For the uses of 1,4-dibromobutane-2,3-dione, see: Gogte et al. (1967). For the synthesis of 1,4-dibromobutane-2,3-dione, see: Ruggli & Herzog (1946). For the cystal structure of the 1,4-dichloro analogue, see: Ducourant et al. (1986). For bond–length data, see: Allen et al. (1987).

Experimental top

1,4-Dibromobutane-2,3-dione was prepared by the method reported in the literature (Ruggli & Herzog, 1946). Yellow plate-like crystals were obtained by dissolving the title compound (0.50 g, 2.05 mmol) in dichloromethane (30 ml) and evaporating the solvent slowly at room temperature for ca. 2 days.

Refinement top

The methylene H atoms were positioned geometrically and refined as riding atoms: C-H = 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level [Symmetry code: (a) -x+2, -y+1, -z+1].
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound.
1,4-Dibromobutane-2,3-dione top
Crystal data top
C4H4Br2O2Dx = 2.442 Mg m3
Mr = 243.89Melting point < 395 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 6.945 (1) Åθ = 9–14°
b = 5.542 (1) ŵ = 12.13 mm1
c = 17.238 (3) ÅT = 298 K
V = 663.5 (2) Å3Cube, yellow
Z = 40.10 × 0.10 × 0.10 mm
F(000) = 456
Data collection top
Enraf–Nonius CAD-4
diffractometer
319 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 66
Tmin = 0.195, Tmax = 0.377l = 2020
614 measured reflections3 standard reflections every 120 min
614 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
614 reflections(Δ/σ)max < 0.001
37 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = 0.60 e Å3
Crystal data top
C4H4Br2O2V = 663.5 (2) Å3
Mr = 243.89Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 6.945 (1) ŵ = 12.13 mm1
b = 5.542 (1) ÅT = 298 K
c = 17.238 (3) Å0.10 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
319 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.077
Tmin = 0.195, Tmax = 0.3773 standard reflections every 120 min
614 measured reflections intensity decay: 1%
614 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0651 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 0.93Δρmax = 0.65 e Å3
614 reflectionsΔρmin = 0.60 e Å3
37 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.96430 (19)0.17863 (19)0.67746 (8)0.0634 (5)
O0.8640 (13)0.2368 (15)0.5056 (4)0.062 (2)
C11.0276 (16)0.4425 (18)0.6134 (6)0.055 (3)
H1A0.96890.58750.63420.066*
H1B1.16610.46520.61380.066*
C20.9577 (15)0.4056 (11)0.5267 (6)0.039 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0755 (7)0.0501 (7)0.0647 (9)0.0027 (7)0.0041 (7)0.0097 (6)
O0.076 (5)0.036 (3)0.073 (6)0.026 (5)0.019 (5)0.007 (3)
C10.045 (6)0.068 (7)0.052 (7)0.000 (6)0.009 (6)0.016 (7)
C20.033 (5)0.028 (4)0.057 (7)0.013 (6)0.023 (5)0.007 (5)
Geometric parameters (Å, º) top
Br—C11.885 (10)C1—H1A0.9700
O—C21.196 (11)C1—H1B0.9700
C1—C21.585 (9)C2—C2i1.512 (16)
C2—C1—Br112.4 (6)H1A—C1—H1B107.9
C2—C1—H1A109.1O—C2—C2i124.6 (12)
Br—C1—H1A109.1O—C2—C1123.7 (8)
C2—C1—H1B109.1C2i—C2—C1111.4 (10)
Br—C1—H1B109.1
Br—C1—C2—O4.7 (13)Br—C1—C2—C2i169.0 (8)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H4Br2O2
Mr243.89
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)6.945 (1), 5.542 (1), 17.238 (3)
V3)663.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)12.13
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.195, 0.377
No. of measured, independent and
observed [I > 2σ(I)] reflections
614, 614, 319
Rint0.077
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.108, 0.93
No. of reflections614
No. of parameters37
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.60

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDucourant, B., Maury, C., Lere-Porte, J.-P., Petrissans, J. & Ribet, J.-L. (1986). Acta Cryst. C42, 341–343.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGogte, V. N., Shan, L. G., Tilak, B. D., Gadekar, K. N. & Sahasrabudhe, M. B. (1967). Tetrahedron, 23, 2437–2441.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRuggli, P. & Herzog, M. (1946). Helv. Chim. Acta., 29, 95-101.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds