metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1359-m1360

(μ1-Methano­lato-κ1O)-μ1-methoxo-κ1O-(μ2-2-amino-1-methyl-5H-imidazol-4-one-κ2N:N′)-hexa­carbonyl­dirhenium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9301, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

(Received 27 September 2012; accepted 5 October 2012; online 13 October 2012)

In the title compound, [Re2(CH3O)2(CO)6(C4H6N3O)], the two ReI atoms are linked by a methoxo and methanolato bridge, as well as by a creatinine ligand that coordinates in a bidentate fashion. Three fac-carbonyl ligands occupy the rest of the slightly distorted octa­hedral geometry around each ReI atom. The bridging methanolato and methoxo ligands are bent out of the Re2O2 plane by 49.2 (4) and 47.8 (3)° respectively. This is normally associated with a methanolato-bridging-type coordination rather that the more planar methoxo-type bridging. Furthermore, the creatinine bridging molecule is very slightly distorted from the Re2N2C plane, indicating that the pyrazolo N atom bonded to the RhI atom is not protonated. Charge balance can thus only be attained if one assumes a positional disorder for the methanolato/methoxo H atom. All attempts to locate disordered protons around these O atoms were unsuccessful. Four hydrogen bonds, one N—H⋯O and three C—H⋯O, are observed in the structure. The mol­ecules pack in a head-to-head and tail-to-tail fashion when viewed along the c axis, in alternating columns.

Related literature

For the synthesis of the starting material, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]). For similar ReI meth­oxy-bridged structures, see: Franklin et al. (2008[Franklin, B. R., Herrick, R. S., Ziegler, C. J., Cetin, A., Barone, N. & Condon, L. R. (2008). Inorg. Chem. 47, 5902-5909.]); Klausmeyer & Beckles (2006[Klausmeyer, K. K. & Beckles, F. R. (2006). Acta Cryst. E62, m2417-m2418.]). For structures of creatinine, see: Bell et al. (1995[Bell, T. W., Hou, Z., Luo, Y., Drew, M. G. B., Chapoteau, E., Czech, B. P. & Kumar, A. (1995). Science, 269, 671-674.]); du Pré & Mendel (1955[Pré, S. du & Mendel, H. (1955). Acta Cryst. 8, 311-313.]). For structures with creatinine as a monodentate ligand, see: Canty et al. (1979[Canty, A. J., Chaichit, N. & Gatehouse, B. M. (1979). Acta Cryst. B35, 592-596.]); Mitewa et al. (2002[Mitewa, M., Todorov, T., Gencheva, G., Angelova, O. & Bakalova, T. N. (2002). J. Coord. Chem. 55, 1367-1372.]); Matos Beja et al. (1991[Matos Beja, A., Carvalho Paixão, J. A., Martin Gil, J. & Aragon Salgado, M. (1991). Acta Cryst. C47, 2333-2336.]); Panfil et al. (1995[Panfil, A., Fiol, J. J. & Sabat, M. (1995). J. Inorg. Biochem. 60, 109-122.]). For a tetra­nuclear ReI complex, see: Schutte et al. (2012a[Schutte, M., Brink, A., Visser, H. G. & Roodt, A. (2012a). Acta Cryst. E68, m1208-m1209.]). For similar ReI structures, see: Schutte et al. (2011[Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg Chem. 50, 12486-12498.], 2012b[Schutte, M., Muller, T. J., Visser, H. G. & Roodt, A. (2012b). Acta Cryst. E68, m741-m742.],c[Schutte, M., Visser, H. G. & Roodt, A. (2012c). Acta Cryst. E68, o914.]).

[Scheme 1]

Experimental

Crystal data
  • [Re2(CH3O)2(CO)6(C4H6N3O)]

  • Mr = 714.67

  • Orthorhombic, P b c n

  • a = 24.066 (2) Å

  • b = 10.0715 (8) Å

  • c = 14.5969 (11) Å

  • V = 3538.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 13.73 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.174, Tmax = 0.371

  • 46753 measured reflections

  • 4276 independent reflections

  • 3920 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.16

  • 4269 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.32 e Å−3

  • Δρmin = −2.30 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C11 1.886 (6)
Re1—C13 1.908 (7)
Re1—C12 1.918 (8)
Re1—O2 2.149 (4)
Re1—N3 2.150 (5)
Re1—O1 2.153 (4)
Re2—C21 1.849 (5)
Re2—C22 1.935 (6)
Re2—C23 1.949 (6)
Re2—O2 2.065 (4)
Re2—O1 2.073 (4)
Re2—N1 2.136 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O31i 0.92 (8) 2.17 (8) 3.061 (6) 162 (7)
C2—H2B⋯O13ii 0.96 2.54 3.453 (9) 159
C2—H2C⋯O23ii 0.96 2.61 3.504 (9) 154
C34—H34A⋯O31i 0.96 2.44 3.332 (7) 155
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

C12H12N3O9Re2 crystallized in the orthorhombic space group Pbcn with one unit in the asymmetric unit. The rhenium centres are linked with two methoxy bridges and a creatinine ligand (in a N,N'-bidentate fashion). Three facial tricarbonyl ligands occupy the other three positions on the distorted octahedron, Fig. 1 and Table 1. The Re—O—Re (104.01 (18)° and 104.4 (2)°) and O—Re—O (73.71 (16)° and 77.16 (17)°) bond angles compare well to the structure by Klausmeyer & Beckles (2006) that reported 103.66 (1)° and 103.33 (1)° (Re—O—Re) and 76.66 (1)° and 76.21 (1)° (O—Re—O), and to the structure by Franklin et al. (2008) that reported 108.24 (1)° and 108.24 (2)° (Re—O—Re) and 71.76 (12)° (O—Re—O) respectively. Creatinine is coordinated to various metal centres in a monodentate fashion (Canty et al. 1979, Mitewa et al. 2002, Matos Beja et al. 1991, Panfil et al. 1995) but no structure reports are found where creatinine is coordinated to a metal centre in a bidentate fashion. All bond distances and angles of creatinine in this structure compare well with that of the reported structures of the free ligand with the N—C—N angle the only exception with 121° (Bell et al., 1995) and 120° (du Pré & Mendel, 1955) reported for the free ligand and 123.7 (5)° for the coordinated ligand, respectively. The O—Re—O (73.71 (16)° and 77.16 (17)°) and Re—O—Re (104.01 (18)° and 104.4 (2)°) bond angles compare well to the tetranuclear rhenium(I) cubane-like molecule reported by Schutte et al. (2012a) with O—Re—O angles that vary between 73.5 (2)° and 75.0 (7)° and Re—O—Re angles that vary between 102.6 (3)° and 104.7 (2)°. This ligand, creatinine, forms part of an ongoing study where different N,N' bidentate and N,N',N'' tridentate ligands are synthesized and coordinated to the rhenium(I) metal centre (Schutte et al., 2011, 2012b, 2012c). Four intermolecular hydrogen bonds are observed in the structure, Table 2, i.e. one N—H···O and three C—H···O. When viewed along the c axis, the molecules pack in column-like structures in an alternating head-to-head and tail-to-tail fashion (Fig. 2).

Related literature top

For the synthesis of the starting material, see: Alberto et al. (1996). For similar ReI methoxy-bridged structures, see: Franklin et al. (2008); Klausmeyer & Beckles (2006). For structures of creatinine, see: Bell et al. (1995); du Pré et al. (1955). For structures with creatinine as a monodentate ligand, see: Canty et al. (1979); Mitewa et al. (2002); Matos Beja et al. (1991); Panfil et al. (1995). For a tetranuclear ReI complex, see: Schutte et al. (2012a). For similar ReI structures, see: Schutte et al. (2011, 2012b,c).

Experimental top

[NEt4]2[Re(CO)3Br3] (500 mg, 0.650 mmol), as prepared by Alberto et al. (1996), was dissolved in 10 ml of water at pH 2. The pH was increased to pH 6 and after a slight colour change, creatinine (37 mg, 0.325 mmol) was added to the mixture and stirred for 6 h at room temperature. The yellow cuboidal crystals were obtained from the filtrate of the solution.

Refinement top

The methyl and methene H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and Uiso(H) = 1.2Ueq(C) and at a distance of 0.96 Å and 0.97 Å respectively. The N-bound H atom was refined freely. A number of reflections were omitted from the final cycles of refinement owing to poor agreement. All attempts to locate disordered protons around O1 and O2 were unsuccessful.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
[Figure 2] Fig. 2. Packing and hydrogen interactions (dashed lines) of the title compound in the unit cell. Hydrogen atoms omitted for clarity.
1-Methanolato-κ1O)-µ1-methoxo-κ1-O2-2-amino-1- methyl-5H-imidazol-4-one-κ2N:N')- hexacarbonyldirhenium(I) top
Crystal data top
[Re2(CH3O)2(CO)6(C4H6N3O)]F(000) = 2616
Mr = 714.67Dx = 2.683 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9082 reflections
a = 24.066 (2) Åθ = 3.0–28.3°
b = 10.0715 (8) ŵ = 13.73 mm1
c = 14.5969 (11) ÅT = 100 K
V = 3538.1 (5) Å3Cuboid, yellow
Z = 80.25 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 28°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3131
Tmin = 0.174, Tmax = 0.371k = 1312
46753 measured reflectionsl = 1918
4276 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.03Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0246P)2 + 32.0137P]
where P = (Fo2 + 2Fc2)/3
4269 reflections(Δ/σ)max = 0.006
236 parametersΔρmax = 2.32 e Å3
0 restraintsΔρmin = 2.30 e Å3
Crystal data top
[Re2(CH3O)2(CO)6(C4H6N3O)]V = 3538.1 (5) Å3
Mr = 714.67Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.066 (2) ŵ = 13.73 mm1
b = 10.0715 (8) ÅT = 100 K
c = 14.5969 (11) Å0.25 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3920 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.371Rint = 0.050
46753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0246P)2 + 32.0137P]
where P = (Fo2 + 2Fc2)/3
4269 reflectionsΔρmax = 2.32 e Å3
236 parametersΔρmin = 2.30 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.364485 (10)0.71291 (2)0.050452 (15)0.01847 (7)
Re20.370469 (11)0.72576 (2)0.177323 (15)0.02132 (8)
O210.4552 (2)0.6573 (5)0.3213 (3)0.0324 (11)
O220.3040 (2)0.8637 (5)0.3303 (3)0.0358 (11)
O120.2927 (2)0.8300 (5)0.2038 (3)0.0315 (10)
C210.4229 (2)0.6840 (5)0.2654 (3)0.0164 (10)
C120.3184 (4)0.7864 (8)0.1449 (5)0.0397 (12)
C220.3280 (3)0.8139 (6)0.2720 (4)0.0225 (12)
O130.3108 (2)0.4401 (5)0.0824 (3)0.0387 (12)
O230.3083 (2)0.4642 (5)0.2175 (3)0.0348 (11)
C130.3295 (3)0.5449 (7)0.0687 (4)0.0265 (13)
C230.3310 (3)0.5609 (6)0.2029 (4)0.0229 (12)
O10.41283 (18)0.6491 (4)0.0656 (2)0.0201 (8)
O20.3181 (2)0.7690 (5)0.0693 (3)0.0262 (10)
C10.4321 (3)0.5153 (6)0.0685 (4)0.0280 (13)
H1C0.4010.45640.07540.042*
H1A0.45140.4950.01260.042*
H1B0.4570.50450.11940.042*
C110.4133 (3)0.6643 (5)0.1458 (4)0.0203 (11)
O110.4425 (2)0.6333 (4)0.2055 (3)0.0294 (10)
O310.4263 (2)0.9857 (4)0.2855 (3)0.0277 (10)
N10.4107 (2)0.9064 (5)0.1391 (3)0.0230 (11)
N30.4054 (2)0.8987 (5)0.0237 (3)0.0231 (11)
N20.4472 (3)1.0758 (5)0.0571 (3)0.0288 (13)
C330.4202 (3)0.9583 (6)0.0515 (4)0.0227 (12)
C310.4282 (3)0.9978 (6)0.2020 (4)0.0243 (12)
C340.4523 (3)1.1691 (6)0.0173 (4)0.0285 (14)
H34C0.41931.22230.02080.043*
H34B0.48391.22540.0070.043*
H34A0.45711.12160.07380.043*
C320.4501 (3)1.1178 (6)0.1519 (4)0.0287 (14)
H32A0.4881.13770.16990.034*
H32B0.4271.19510.16280.034*
C20.2586 (4)0.7391 (8)0.0714 (5)0.0397 (12)
H2B0.24110.77550.01790.06*
H2A0.25340.64460.07240.06*
H2C0.24230.77750.12530.06*
H30.418 (3)0.944 (8)0.075 (5)0.03 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02881 (14)0.01810 (12)0.00849 (11)0.00294 (9)0.00026 (8)0.00018 (7)
Re20.03762 (15)0.01828 (12)0.00805 (11)0.00136 (9)0.00146 (8)0.00093 (7)
O210.052 (3)0.028 (2)0.018 (2)0.010 (2)0.0100 (19)0.0049 (18)
O220.050 (3)0.032 (3)0.025 (2)0.004 (2)0.011 (2)0.004 (2)
O120.044 (3)0.028 (2)0.022 (2)0.005 (2)0.0111 (19)0.0002 (19)
C210.031 (3)0.008 (2)0.009 (2)0.001 (2)0.002 (2)0.0019 (18)
C120.050 (3)0.041 (3)0.028 (3)0.004 (2)0.001 (2)0.002 (2)
C220.034 (3)0.018 (3)0.015 (3)0.002 (2)0.003 (2)0.004 (2)
O130.060 (3)0.028 (2)0.028 (2)0.020 (2)0.004 (2)0.002 (2)
O230.053 (3)0.028 (2)0.023 (2)0.013 (2)0.003 (2)0.0039 (19)
C130.037 (4)0.029 (3)0.013 (3)0.005 (3)0.001 (2)0.006 (2)
C230.033 (3)0.027 (3)0.009 (2)0.003 (3)0.001 (2)0.000 (2)
O10.034 (2)0.0147 (18)0.0113 (17)0.0002 (17)0.0006 (15)0.0012 (14)
O20.031 (2)0.034 (2)0.014 (2)0.0017 (19)0.0014 (16)0.0003 (17)
C10.040 (4)0.019 (3)0.025 (3)0.002 (3)0.001 (3)0.003 (2)
C110.032 (3)0.015 (3)0.014 (2)0.004 (2)0.000 (2)0.003 (2)
O110.043 (3)0.024 (2)0.022 (2)0.0000 (19)0.0074 (19)0.0003 (17)
O310.049 (3)0.024 (2)0.0098 (18)0.001 (2)0.0006 (18)0.0023 (16)
N10.044 (3)0.018 (2)0.007 (2)0.003 (2)0.0014 (19)0.0002 (17)
N30.044 (3)0.018 (2)0.007 (2)0.004 (2)0.0002 (19)0.0021 (17)
N20.059 (4)0.018 (2)0.009 (2)0.008 (2)0.006 (2)0.0010 (18)
C330.039 (3)0.018 (3)0.011 (2)0.000 (2)0.003 (2)0.000 (2)
C310.044 (4)0.015 (3)0.013 (2)0.002 (2)0.003 (2)0.002 (2)
C340.055 (4)0.016 (3)0.014 (3)0.006 (3)0.002 (3)0.002 (2)
C320.060 (5)0.015 (3)0.011 (3)0.005 (3)0.002 (3)0.002 (2)
C20.050 (3)0.041 (3)0.028 (3)0.004 (2)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
Re1—C111.886 (6)C1—H1A0.96
Re1—C131.908 (7)C1—H1B0.96
Re1—C121.918 (8)C11—O111.161 (7)
Re1—O22.149 (4)O31—C311.225 (7)
Re1—N32.150 (5)N1—C311.367 (7)
Re1—O12.153 (4)N1—C331.399 (7)
Re2—C211.849 (5)N3—C331.300 (7)
Re2—C221.935 (6)N3—H30.92 (8)
Re2—C231.949 (6)N2—C331.353 (8)
Re2—O22.065 (4)N2—C341.442 (7)
Re2—O12.073 (4)N2—C321.449 (7)
Re2—N12.136 (5)C31—C321.507 (8)
O21—C211.159 (7)C34—H34C0.96
O22—C221.143 (7)C34—H34B0.96
O12—C121.147 (9)C34—H34A0.96
O13—C131.165 (8)C32—H32A0.97
O23—C231.137 (8)C32—H32B0.97
O1—C11.426 (7)C2—H2B0.96
O2—C21.464 (10)C2—H2A0.96
C1—H1C0.96C2—H2C0.96
C11—Re1—C1386.7 (3)C2—O2—Re1118.1 (4)
C11—Re1—C1286.0 (3)Re2—O2—Re1104.4 (2)
C13—Re1—C1289.2 (3)O1—C1—H1C109.5
C11—Re1—O2172.7 (2)O1—C1—H1A109.5
C13—Re1—O296.8 (2)H1C—C1—H1A109.5
C12—Re1—O2100.5 (3)O1—C1—H1B109.5
C11—Re1—N394.3 (2)H1C—C1—H1B109.5
C13—Re1—N3177.2 (2)H1A—C1—H1B109.5
C12—Re1—N393.4 (3)O11—C11—Re1178.7 (5)
O2—Re1—N382.02 (18)C31—N1—C33108.2 (5)
C11—Re1—O199.6 (2)C31—N1—Re2122.5 (4)
C13—Re1—O194.8 (2)C33—N1—Re2129.1 (4)
C12—Re1—O1173.3 (2)C33—N3—Re1132.9 (4)
O2—Re1—O173.71 (16)C33—N3—H3111 (5)
N3—Re1—O182.47 (17)Re1—N3—H3115 (5)
C21—Re2—C2288.2 (2)C33—N2—C34124.4 (5)
C21—Re2—C2390.4 (2)C33—N2—C32109.7 (5)
C22—Re2—C2389.8 (2)C34—N2—C32121.7 (5)
C21—Re2—O2174.2 (2)N3—C33—N2125.9 (5)
C22—Re2—O297.3 (2)N3—C33—N1123.7 (5)
C23—Re2—O291.6 (2)N2—C33—N1110.5 (5)
C21—Re2—O197.3 (2)O31—C31—N1126.1 (6)
C22—Re2—O1173.2 (2)O31—C31—C32125.1 (5)
C23—Re2—O194.2 (2)N1—C31—C32108.7 (5)
O2—Re2—O177.16 (17)N2—C34—H34C109.5
C21—Re2—N193.8 (2)N2—C34—H34B109.5
C22—Re2—N192.0 (2)H34C—C34—H34B109.5
C23—Re2—N1175.5 (2)N2—C34—H34A109.5
O2—Re2—N184.11 (19)H34C—C34—H34A109.5
O1—Re2—N183.59 (17)H34B—C34—H34A109.5
O21—C21—Re2179.1 (5)N2—C32—C31102.3 (5)
O12—C12—Re1177.1 (7)N2—C32—H32A111.3
O22—C22—Re2177.5 (6)C31—C32—H32A111.3
O13—C13—Re1176.2 (6)N2—C32—H32B111.3
O23—C23—Re2179.4 (6)C31—C32—H32B111.3
C1—O1—Re2119.3 (3)H32A—C32—H32B109.2
C1—O1—Re1118.8 (3)O2—C2—H2B109.5
Re2—O1—Re1104.01 (18)O2—C2—H2A109.5
C2—O2—Re2122.5 (4)O2—C2—H2C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O31i0.92 (8)2.17 (8)3.061 (6)162 (7)
C2—H2B···O13ii0.962.543.453 (9)159
C2—H2C···O23ii0.962.613.504 (9)154
C34—H34A···O31i0.962.443.332 (7)155
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Re2(CH3O)2(CO)6(C4H6N3O)]
Mr714.67
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)24.066 (2), 10.0715 (8), 14.5969 (11)
V3)3538.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)13.73
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.174, 0.371
No. of measured, independent and
observed [I > 2σ(I)] reflections
46753, 4276, 3920
Rint0.050
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.03, 0.078, 1.16
No. of reflections4269
No. of parameters236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0246P)2 + 32.0137P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.32, 2.30

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Re1—C111.886 (6)Re2—C211.849 (5)
Re1—C131.908 (7)Re2—C221.935 (6)
Re1—C121.918 (8)Re2—C231.949 (6)
Re1—O22.149 (4)Re2—O22.065 (4)
Re1—N32.150 (5)Re2—O12.073 (4)
Re1—O12.153 (4)Re2—N12.136 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O31i0.92 (8)2.17 (8)3.061 (6)162 (7)
C2—H2B···O13ii0.962.543.453 (9)159
C2—H2C···O23ii0.962.613.504 (9)154
C34—H34A···O31i0.962.443.332 (7)155
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

Leo Kirsten is thanked for the data collection. The University of the Free State, the Department of Chemistry, the NRF and Sasol Ltd are gratefully acknowledged for funding.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBell, T. W., Hou, Z., Luo, Y., Drew, M. G. B., Chapoteau, E., Czech, B. P. & Kumar, A. (1995). Science, 269, 671–674.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCanty, A. J., Chaichit, N. & Gatehouse, B. M. (1979). Acta Cryst. B35, 592–596.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranklin, B. R., Herrick, R. S., Ziegler, C. J., Cetin, A., Barone, N. & Condon, L. R. (2008). Inorg. Chem. 47, 5902–5909.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlausmeyer, K. K. & Beckles, F. R. (2006). Acta Cryst. E62, m2417–m2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatos Beja, A., Carvalho Paixão, J. A., Martin Gil, J. & Aragon Salgado, M. (1991). Acta Cryst. C47, 2333–2336.  CSD CrossRef IUCr Journals Google Scholar
First citationMitewa, M., Todorov, T., Gencheva, G., Angelova, O. & Bakalova, T. N. (2002). J. Coord. Chem. 55, 1367–1372.  Web of Science CSD CrossRef CAS Google Scholar
First citationPanfil, A., Fiol, J. J. & Sabat, M. (1995). J. Inorg. Biochem. 60, 109–122.  CSD CrossRef CAS Web of Science Google Scholar
First citationPré, S. du & Mendel, H. (1955). Acta Cryst. 8, 311–313.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSchutte, M., Brink, A., Visser, H. G. & Roodt, A. (2012a). Acta Cryst. E68, m1208–m1209.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg Chem. 50, 12486–12498.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchutte, M., Muller, T. J., Visser, H. G. & Roodt, A. (2012b). Acta Cryst. E68, m741–m742.  CSD CrossRef IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2012c). Acta Cryst. E68, o914.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1359-m1360
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds