metal-organic compounds
Poly[aqua(μ2-pyrimidine-2-carboxylato-κ4O,N:O′,N′)(nitrato-κO)cadmium]
aDepartment of Chemistry, Faculty of Science, Ubon Ratchathani Ratjabhat University, Muang, Ubon Ratchathani 34000, Thailand, bDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, and cMolecular Technology Research Unit, Department of Chemistry, Walailak University, Nakhon Si Thammarat 80161, Thailand
*Correspondence e-mail: kittipongc@nu.ac.th
In the title polymer, [Cd(C5H3N2O2)(NO3)(H2O)]n, the CdII atom is seven-coordinate in a distorted capped octahedral geometry by two N atoms of two different pyrimidine dicarboxylate (pmc) ligands, three O atoms from three separate pmc ligands, and two O atoms of disordered nitrate anions or water molecules. The CdII atoms are bridged by the pmc ligands in a chelating/bridging bis-bidentate and chelating bidentate mode, forming sheets parallel to (20-1). The sheets are further linked into a three-dimensional supramolecular network via classical O—H⋯O hydrogen bonds involving the nitrate anions and coordinating water molecules. Intramolecular O—H⋯O hydrogen bonding is also observed. The non-coordinating nitrate O atoms are disordered over two sets of sites with occupancies of 0.57 (7) and 0.43 (7).
Related literature
For the synthesis, structures and properties of related cadmium coordination polymers with the pyrimidine dicarboxylate ligand, see: Sava et al. (2008); Zhang et al. (2008); Rodríguez-Diéguez et al. (2007). For π–π interactions, see: Janiak (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812041645/tk5156sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S1600536812041645/tk5156Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812041645/tk5156Isup3.hkl
Cadmium nitrate tetrahydrate (30 mg, 0.10 mmol) was dissolved in 2 ml acetonitrile in a glass vial. A solution of 1,4-dihydro-3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine (10 mg, 0.04 mmol) in 2 ml dichloromethane was carefully layered on top of the acetonitrile solution. The reaction mixture was allowed to stand undisturbed at room temperature. Pale-green plate-like crystals of I were obtained after three months (yield ca. 7% based on Cd source).
The carbon-bound hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atom positions with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) for the aromatic H atoms. The hydrogen atoms attached to oxygen atoms of the water molecules were located in a difference Fourier map and refined as riding in their as-found positions with a DFIX restraint of O—H distance at 0.900±0.001 Å, with Uiso(H) = 1.2Ueq(O). The nitrate anion was shown to be disordered over two sites in a 0.57 (7) and 0.43 (7) ratio. The N—O bond lengths were restrained to 1.25±0.01 Å and the O···O distances to 2.17±0.01 Å. The highest peak in the final electron density difference map is located 0.85 Å from Cd1 atom.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd(C5H3N2O2)(NO3)(H2O)] | Z = 4 |
Mr = 315.52 | F(000) = 608 |
Monoclinic, P21/n | Dx = 2.398 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1963 (2) Å | µ = 2.52 mm−1 |
b = 10.1554 (3) Å | T = 298 K |
c = 11.0057 (3) Å | Plate, pale-green |
β = 107.435 (3)° | 0.23 × 0.20 × 0.14 mm |
V = 873.99 (4) Å3 |
Bruker SMART APEX CCD area detector diffractometer | 2030 independent reflections |
Radiation source: fine-focus sealed tube | 1780 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8 pixels mm-1 | θmax = 28.7°, θmin = 2.8° |
ω and ϕ scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −13→13 |
Tmin = 0.596, Tmax = 0.720 | l = −9→14 |
5450 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.7721P] where P = (Fo2 + 2Fc2)/3 |
2030 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 1.52 e Å−3 |
56 restraints | Δρmin = −0.64 e Å−3 |
[Cd(C5H3N2O2)(NO3)(H2O)] | V = 873.99 (4) Å3 |
Mr = 315.52 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.1963 (2) Å | µ = 2.52 mm−1 |
b = 10.1554 (3) Å | T = 298 K |
c = 11.0057 (3) Å | 0.23 × 0.20 × 0.14 mm |
β = 107.435 (3)° |
Bruker SMART APEX CCD area detector diffractometer | 2030 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1780 reflections with I > 2σ(I) |
Tmin = 0.596, Tmax = 0.720 | Rint = 0.031 |
5450 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 56 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 1.52 e Å−3 |
2030 reflections | Δρmin = −0.64 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6403 (5) | 0.4196 (4) | 0.3921 (3) | 0.0363 (8) | |
H1 | 0.5792 | 0.4287 | 0.3064 | 0.044* | |
C2 | 0.7507 (5) | 0.5181 (4) | 0.4522 (3) | 0.0376 (8) | |
H2 | 0.7663 | 0.5931 | 0.4085 | 0.045* | |
C3 | 0.8371 (4) | 0.5016 (4) | 0.5793 (3) | 0.0311 (7) | |
H3 | 0.9123 | 0.5668 | 0.6218 | 0.037* | |
C4 | 0.7102 (4) | 0.3012 (3) | 0.5773 (3) | 0.0224 (6) | |
C5 | 0.6984 (4) | 0.1763 (3) | 0.6481 (3) | 0.0225 (6) | |
Cd1 | 0.42986 (3) | 0.13550 (2) | 0.364191 (19) | 0.02405 (10) | |
N1 | 0.6194 (3) | 0.3106 (3) | 0.4549 (2) | 0.0274 (6) | |
N2 | 0.8160 (3) | 0.3947 (3) | 0.6429 (2) | 0.0255 (6) | |
N3 | 0.0877 (2) | 0.1564 (3) | 0.4301 (2) | 0.0448 (8) | |
O1 | 0.5992 (3) | 0.0886 (2) | 0.5857 (2) | 0.0275 (5) | |
O2 | 0.7882 (3) | 0.1688 (2) | 0.7600 (2) | 0.0346 (6) | |
O3 | 0.6725 (3) | 0.0370 (3) | 0.3242 (2) | 0.0417 (6) | |
H3A | 0.701 (6) | −0.031 (3) | 0.379 (4) | 0.073 (17)* | |
H3B | 0.766 (5) | 0.088 (5) | 0.356 (6) | 0.11 (3)* | |
O4 | 0.2444 (2) | 0.1673 (3) | 0.4869 (2) | 0.0429 (7) | |
O5A | −0.0195 (4) | 0.192 (4) | 0.4840 (14) | 0.090 (4) | 0.57 (7) |
O5B | −0.0159 (7) | 0.143 (4) | 0.4926 (5) | 0.073 (5) | 0.43 (7) |
O6A | 0.0390 (5) | 0.116 (3) | 0.3175 (9) | 0.080 (4) | 0.57 (7) |
O6B | 0.0359 (8) | 0.156 (5) | 0.3109 (3) | 0.092 (7) | 0.43 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0401 (18) | 0.040 (2) | 0.0222 (16) | −0.0017 (16) | −0.0007 (14) | 0.0075 (15) |
C2 | 0.048 (2) | 0.032 (2) | 0.0294 (17) | −0.0030 (15) | 0.0072 (15) | 0.0079 (15) |
C3 | 0.0363 (17) | 0.0264 (17) | 0.0306 (16) | −0.0060 (13) | 0.0098 (14) | −0.0011 (14) |
C4 | 0.0221 (13) | 0.0235 (16) | 0.0191 (14) | 0.0011 (11) | 0.0023 (11) | −0.0007 (12) |
C5 | 0.0202 (13) | 0.0266 (16) | 0.0180 (13) | −0.0018 (11) | 0.0018 (11) | −0.0024 (12) |
Cd1 | 0.02407 (13) | 0.02804 (16) | 0.01425 (13) | 0.00143 (8) | −0.00306 (8) | −0.00004 (9) |
N1 | 0.0257 (12) | 0.0317 (15) | 0.0193 (12) | −0.0019 (11) | −0.0017 (10) | 0.0007 (11) |
N2 | 0.0265 (13) | 0.0273 (14) | 0.0186 (12) | −0.0021 (10) | 0.0007 (10) | −0.0023 (10) |
N3 | 0.0348 (17) | 0.0335 (18) | 0.062 (2) | −0.0006 (13) | 0.0087 (16) | −0.0008 (16) |
O1 | 0.0282 (11) | 0.0268 (12) | 0.0208 (10) | −0.0077 (9) | −0.0031 (9) | −0.0001 (9) |
O2 | 0.0408 (14) | 0.0335 (13) | 0.0181 (11) | −0.0079 (10) | −0.0085 (10) | 0.0021 (10) |
O3 | 0.0318 (13) | 0.0595 (19) | 0.0308 (13) | 0.0029 (12) | 0.0047 (10) | 0.0026 (13) |
O4 | 0.0283 (12) | 0.0520 (17) | 0.0459 (16) | 0.0024 (11) | 0.0075 (11) | 0.0073 (13) |
O5A | 0.052 (5) | 0.066 (10) | 0.172 (9) | 0.000 (3) | 0.064 (5) | −0.036 (5) |
O5B | 0.047 (6) | 0.059 (12) | 0.128 (10) | 0.006 (4) | 0.049 (6) | −0.024 (5) |
O6A | 0.113 (9) | 0.062 (9) | 0.053 (5) | −0.044 (5) | 0.005 (5) | −0.006 (3) |
O6B | 0.088 (9) | 0.089 (16) | 0.071 (6) | −0.067 (7) | −0.017 (6) | 0.000 (6) |
C1—N1 | 1.342 (5) | Cd1—O1ii | 2.371 (2) |
C1—C2 | 1.378 (5) | Cd1—O2i | 2.411 (2) |
C1—H1 | 0.9300 | Cd1—O3 | 2.382 (3) |
C2—C3 | 1.375 (5) | Cd1—O4 | 2.339 (2) |
C2—H2 | 0.9300 | N2—Cd1iii | 2.353 (3) |
C3—N2 | 1.331 (4) | N3—O5A | 1.2514 (9) |
C3—H3 | 0.9300 | N3—O6B | 1.2513 (9) |
C4—N1 | 1.333 (4) | N3—O5B | 1.2515 (9) |
C4—N2 | 1.342 (4) | N3—O6A | 1.2515 (9) |
C4—C5 | 1.506 (5) | N3—O4 | 1.2541 (8) |
C5—O2 | 1.233 (4) | O1—Cd1ii | 2.371 (2) |
C5—O1 | 1.261 (4) | O2—Cd1iii | 2.411 (2) |
Cd1—N1 | 2.376 (3) | O3—H3A | 0.9000 (10) |
Cd1—N2i | 2.353 (3) | O3—H3B | 0.9000 (11) |
Cd1—O1 | 2.463 (2) | ||
N1—C1—C2 | 121.1 (3) | O4—Cd1—O1 | 74.11 (8) |
N1—C1—H1 | 119.4 | N2i—Cd1—O1 | 158.49 (9) |
C2—C1—H1 | 119.4 | O1ii—Cd1—O1 | 69.52 (8) |
C3—C2—C1 | 117.7 (3) | N1—Cd1—O1 | 67.99 (8) |
C3—C2—H2 | 121.2 | O3—Cd1—O1 | 81.24 (9) |
C1—C2—H2 | 121.2 | O2i—Cd1—O1 | 132.71 (8) |
N2—C3—C2 | 121.7 (3) | C4—N1—C1 | 117.5 (3) |
N2—C3—H3 | 119.1 | C4—N1—Cd1 | 117.9 (2) |
C2—C3—H3 | 119.1 | C1—N1—Cd1 | 124.6 (2) |
N1—C4—N2 | 124.6 (3) | C3—N2—C4 | 117.4 (3) |
N1—C4—C5 | 118.7 (3) | C3—N2—Cd1iii | 125.3 (2) |
N2—C4—C5 | 116.7 (3) | C4—N2—Cd1iii | 117.1 (2) |
O2—C5—O1 | 126.5 (3) | O5A—N3—O6B | 115.6 (6) |
O2—C5—C4 | 117.1 (3) | O5A—N3—O5B | 23.4 (9) |
O1—C5—C4 | 116.3 (3) | O6B—N3—O5B | 120.16 (10) |
O4—Cd1—N2i | 119.42 (8) | O5A—N3—O6A | 120.16 (10) |
O4—Cd1—O1ii | 82.55 (9) | O6B—N3—O6A | 18.7 (19) |
N2i—Cd1—O1ii | 94.55 (8) | O5B—N3—O6A | 116.1 (5) |
O4—Cd1—N1 | 96.32 (9) | O5A—N3—O4 | 119.88 (10) |
N2i—Cd1—N1 | 122.64 (9) | O6B—N3—O4 | 119.92 (10) |
O1ii—Cd1—N1 | 136.01 (8) | O5B—N3—O4 | 119.88 (10) |
O4—Cd1—O3 | 152.61 (9) | O6A—N3—O4 | 119.88 (10) |
N2i—Cd1—O3 | 81.25 (9) | C5—O1—Cd1ii | 130.1 (2) |
O1ii—Cd1—O3 | 77.73 (9) | C5—O1—Cd1 | 118.9 (2) |
N1—Cd1—O3 | 85.12 (10) | Cd1ii—O1—Cd1 | 110.48 (8) |
O4—Cd1—O2i | 81.79 (9) | C5—O2—Cd1iii | 118.9 (2) |
N2i—Cd1—O2i | 68.29 (9) | Cd1—O3—H3A | 105 (3) |
O1ii—Cd1—O2i | 146.55 (8) | Cd1—O3—H3B | 110 (5) |
N1—Cd1—O2i | 75.17 (9) | H3A—O3—H3B | 99 (3) |
O3—Cd1—O2i | 124.59 (10) | N3—O4—Cd1 | 116.46 (16) |
N1—C1—C2—C3 | −0.8 (6) | C5—C4—N2—Cd1iii | −9.9 (4) |
C1—C2—C3—N2 | 0.0 (6) | O2—C5—O1—Cd1ii | −11.1 (5) |
N1—C4—C5—O2 | 177.6 (3) | C4—C5—O1—Cd1ii | 167.56 (19) |
N2—C4—C5—O2 | −0.9 (4) | O2—C5—O1—Cd1 | 178.3 (3) |
N1—C4—C5—O1 | −1.2 (4) | C4—C5—O1—Cd1 | −3.0 (4) |
N2—C4—C5—O1 | −179.7 (3) | O4—Cd1—O1—C5 | −99.9 (2) |
N2—C4—N1—C1 | 2.4 (5) | N2i—Cd1—O1—C5 | 128.0 (3) |
C5—C4—N1—C1 | −176.0 (3) | O1ii—Cd1—O1—C5 | 172.3 (3) |
N2—C4—N1—Cd1 | −176.8 (2) | N1—Cd1—O1—C5 | 3.9 (2) |
C5—C4—N1—Cd1 | 4.8 (4) | O3—Cd1—O1—C5 | 92.2 (2) |
C2—C1—N1—C4 | −0.4 (5) | O2i—Cd1—O1—C5 | −37.6 (3) |
C2—C1—N1—Cd1 | 178.8 (3) | O4—Cd1—O1—Cd1ii | 87.84 (11) |
O4—Cd1—N1—C4 | 65.6 (2) | N2i—Cd1—O1—Cd1ii | −44.3 (3) |
N2i—Cd1—N1—C4 | −163.3 (2) | O1ii—Cd1—O1—Cd1ii | 0.0 |
O1ii—Cd1—N1—C4 | −20.2 (3) | N1—Cd1—O1—Cd1ii | −168.36 (13) |
O3—Cd1—N1—C4 | −86.9 (2) | O3—Cd1—O1—Cd1ii | −80.10 (11) |
O2i—Cd1—N1—C4 | 145.4 (3) | O2i—Cd1—O1—Cd1ii | 150.15 (10) |
O1—Cd1—N1—C4 | −4.4 (2) | O1—C5—O2—Cd1iii | −170.1 (2) |
O4—Cd1—N1—C1 | −113.5 (3) | C4—C5—O2—Cd1iii | 11.2 (4) |
N2i—Cd1—N1—C1 | 17.6 (3) | O5A—N3—O4—Cd1 | −169 (2) |
O1ii—Cd1—N1—C1 | 160.7 (3) | O6B—N3—O4—Cd1 | −14 (2) |
O3—Cd1—N1—C1 | 94.0 (3) | O5B—N3—O4—Cd1 | 164 (2) |
O2i—Cd1—N1—C1 | −33.8 (3) | O6A—N3—O4—Cd1 | 7.7 (15) |
O1—Cd1—N1—C1 | 176.5 (3) | N2i—Cd1—O4—N3 | 5.6 (3) |
C2—C3—N2—C4 | 1.8 (5) | O1ii—Cd1—O4—N3 | −85.4 (3) |
C2—C3—N2—Cd1iii | −172.5 (3) | N1—Cd1—O4—N3 | 138.9 (3) |
N1—C4—N2—C3 | −3.2 (5) | O3—Cd1—O4—N3 | −129.5 (3) |
C5—C4—N2—C3 | 175.3 (3) | O2i—Cd1—O4—N3 | 64.9 (3) |
N1—C4—N2—Cd1iii | 171.6 (2) | O1—Cd1—O4—N3 | −156.2 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O4ii | 0.90 (1) | 1.98 (1) | 2.871 (4) | 173 (5) |
O3—H3B···O5Aiv | 0.90 (1) | 2.17 (2) | 3.045 (14) | 164 (6) |
O3—H3B···O5Biv | 0.90 (1) | 2.04 (3) | 2.876 (13) | 154 (6) |
Symmetry codes: (ii) −x+1, −y, −z+1; (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C5H3N2O2)(NO3)(H2O)] |
Mr | 315.52 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 8.1963 (2), 10.1554 (3), 11.0057 (3) |
β (°) | 107.435 (3) |
V (Å3) | 873.99 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.52 |
Crystal size (mm) | 0.23 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.596, 0.720 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5450, 2030, 1780 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.070, 1.04 |
No. of reflections | 2030 |
No. of parameters | 163 |
No. of restraints | 56 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.52, −0.64 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cd1—N1 | 2.376 (3) | Cd1—O2i | 2.411 (2) |
Cd1—N2i | 2.353 (3) | Cd1—O3 | 2.382 (3) |
Cd1—O1 | 2.463 (2) | Cd1—O4 | 2.339 (2) |
Cd1—O1ii | 2.371 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O4ii | 0.9000 (10) | 1.976 (8) | 2.871 (4) | 173 (5) |
O3—H3B···O5Aiii | 0.9000 (11) | 2.17 (2) | 3.045 (14) | 164 (6) |
O3—H3B···O5Biii | 0.9000 (11) | 2.04 (3) | 2.876 (13) | 154 (6) |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1, y, z. |
Acknowledgements
The authors thank Professor Ian D. Williams and Dr Herman H.-Y. Sung of the Department of Chemistry, The Hong Kong University of Science and Technology, for their kind help during the X-ray study and for valuable discussions. KC thanks the Thailand Research Funds (project approval No. MRG5480189) for financial support.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). Dalton Trans. pp. 3885–3896. CrossRef Google Scholar
Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510. Web of Science PubMed Google Scholar
Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008). Chem. Commun. pp. 847–849. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine-2-carboxylate (pmc) ligand exhibits a N2O2 donor set with a charge of -1. Due it is rigidity and directionality, the pmc ligand has been used in the construction of coordination polymers exhibiting permanent microporosity for gas storage (Sava et al., 2008) and antiferromagnetism with TN = 21 K (Rodríguez-Diéguez et al., 2007). Here, we report the crystal structure of a novel cadmium(II) coordination polymer containing the pmc ligand, [Cd(C5H3N2O2)(H2O)(NO3)] (I). The pmc ligand was unexpectedly hydrolyzed in situ from the 1,4–dihydro–3,6–bis(2'–pyrimidyl)–1,2,4,5–tetrazine (H2bmtz) ligand during the crystallization process.
The immediate coordination environment about the cadmium atom in I is shown in Fig. 1 revealing that the Cd(II) atom is heptacoordinate in a distorted capped octahedral geometry constructed by two N and two O atoms from two different pcm ligands, one O atom from a third pcm ligand, and two O atoms of disordered nitrate anions or water molecules. The Cd—N and Cd—O bond distances (Table 1) agree with those found in other N,O–chelate Cd(II) complexes (Sava et al., 2008; Zhang et al., 2008). Each Cd(II) is connected to four other Cd atoms through three pmc ligands generating two dimensional sheets parallel to (201), Fig. 2. Within the sheets, the Cd···Cd distances through the µ2–carboxylate bridge and the Cd···Cd distances across the pmc ligands are 3.9714 (4) and 6.2427 (3) Å, respectively. The sheets are stabilized by inversion-related pairs of intermolecular O—H···O hydrogen bonds between the coordinated water and nitrate molecules (Table 2). There are, however, no π–π interactions between adjacent pyrimidine rings within the sheets. The distance between Cg to Cg of the pyrimidine rings of the pmc ligands is 4.114 (3) Å, which is out the range (3.3–3.8 Å) considered for significant π–π interactions (Janiak, 2000). Further intermolecular O—H···O hydrogen bonds involving the nitrate anions and coordinated water molecules (Table 2) link the sheets into a three dimensional supramolecular network, Fig. 3.