metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1349-m1350

Poly[aqua­(μ2-pyrimidine-2-carboxyl­ato-κ4O,N:O′,N′)(nitrato-κO)cadmium]

aDepartment of Chemistry, Faculty of Science, Ubon Ratchathani Ratjabhat University, Muang, Ubon Ratchathani 34000, Thailand, bDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, and cMolecular Technology Research Unit, Department of Chemistry, Walailak University, Nakhon Si Thammarat 80161, Thailand
*Correspondence e-mail: kittipongc@nu.ac.th

(Received 28 September 2012; accepted 5 October 2012; online 13 October 2012)

In the title polymer, [Cd(C5H3N2O2)(NO3)(H2O)]n, the CdII atom is seven-coordinate in a distorted capped octa­hedral geometry by two N atoms of two different pyrimidine dicarboxyl­ate (pmc) ligands, three O atoms from three separate pmc ligands, and two O atoms of disordered nitrate anions or water mol­ecules. The CdII atoms are bridged by the pmc ligands in a chelating/bridging bis-bidentate and chelating bidentate mode, forming sheets parallel to (20-1). The sheets are further linked into a three-dimensional supra­molecular network via classical O—H⋯O hydrogen bonds involving the nitrate anions and coordinating water mol­ecules. Intra­molecular O—H⋯O hydrogen bonding is also observed. The non-coordinating nitrate O atoms are disordered over two sets of sites with occupancies of 0.57 (7) and 0.43 (7).

Related literature

For the synthesis, structures and properties of related cadmium coordination polymers with the pyrimidine dicarboxyl­ate ligand, see: Sava et al. (2008[Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768-3770.]); Zhang et al. (2008[Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008). Chem. Commun. pp. 847-849.]); Rodríguez-Diéguez et al. (2007[Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C5H3N2O2)(NO3)(H2O)]

  • Mr = 315.52

  • Monoclinic, P 21 /n

  • a = 8.1963 (2) Å

  • b = 10.1554 (3) Å

  • c = 11.0057 (3) Å

  • β = 107.435 (3)°

  • V = 873.99 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.596, Tmax = 0.720

  • 5450 measured reflections

  • 2030 independent reflections

  • 1780 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.04

  • 2030 reflections

  • 163 parameters

  • 56 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.52 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.376 (3)
Cd1—N2i 2.353 (3)
Cd1—O1 2.463 (2)
Cd1—O1ii 2.371 (2)
Cd1—O2i 2.411 (2)
Cd1—O3 2.382 (3)
Cd1—O4 2.339 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4ii 0.90 (1) 1.98 (1) 2.871 (4) 173 (5)
O3—H3B⋯O5Aiii 0.90 (1) 2.17 (2) 3.045 (14) 164 (6)
O3—H3B⋯O5Biii 0.90 (1) 2.04 (3) 2.876 (13) 154 (6)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrimidine-2-carboxylate (pmc) ligand exhibits a N2O2 donor set with a charge of -1. Due it is rigidity and directionality, the pmc ligand has been used in the construction of coordination polymers exhibiting permanent microporosity for gas storage (Sava et al., 2008) and antiferromagnetism with TN = 21 K (Rodríguez-Diéguez et al., 2007). Here, we report the crystal structure of a novel cadmium(II) coordination polymer containing the pmc ligand, [Cd(C5H3N2O2)(H2O)(NO3)] (I). The pmc ligand was unexpectedly hydrolyzed in situ from the 1,4–dihydro–3,6–bis(2'–pyrimidyl)–1,2,4,5–tetrazine (H2bmtz) ligand during the crystallization process.

The immediate coordination environment about the cadmium atom in I is shown in Fig. 1 revealing that the Cd(II) atom is heptacoordinate in a distorted capped octahedral geometry constructed by two N and two O atoms from two different pcm ligands, one O atom from a third pcm ligand, and two O atoms of disordered nitrate anions or water molecules. The Cd—N and Cd—O bond distances (Table 1) agree with those found in other N,O–chelate Cd(II) complexes (Sava et al., 2008; Zhang et al., 2008). Each Cd(II) is connected to four other Cd atoms through three pmc ligands generating two dimensional sheets parallel to (201), Fig. 2. Within the sheets, the Cd···Cd distances through the µ2–carboxylate bridge and the Cd···Cd distances across the pmc ligands are 3.9714 (4) and 6.2427 (3) Å, respectively. The sheets are stabilized by inversion-related pairs of intermolecular O—H···O hydrogen bonds between the coordinated water and nitrate molecules (Table 2). There are, however, no ππ interactions between adjacent pyrimidine rings within the sheets. The distance between Cg to Cg of the pyrimidine rings of the pmc ligands is 4.114 (3) Å, which is out the range (3.3–3.8 Å) considered for significant ππ interactions (Janiak, 2000). Further intermolecular O—H···O hydrogen bonds involving the nitrate anions and coordinated water molecules (Table 2) link the sheets into a three dimensional supramolecular network, Fig. 3.

Related literature top

For the synthesis, structures and properties of related cadmium coordination polymers with the pyrimidine dicarboxylate ligand, see: Sava et al. (2008); Zhang et al. (2008); Rodríguez-Diéguez et al. (2007). For ππ interactions, see: Janiak (2000).

Experimental top

Cadmium nitrate tetrahydrate (30 mg, 0.10 mmol) was dissolved in 2 ml acetonitrile in a glass vial. A solution of 1,4-dihydro-3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine (10 mg, 0.04 mmol) in 2 ml dichloromethane was carefully layered on top of the acetonitrile solution. The reaction mixture was allowed to stand undisturbed at room temperature. Pale-green plate-like crystals of I were obtained after three months (yield ca. 7% based on Cd source).

Refinement top

The carbon-bound hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atom positions with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) for the aromatic H atoms. The hydrogen atoms attached to oxygen atoms of the water molecules were located in a difference Fourier map and refined as riding in their as-found positions with a DFIX restraint of O—H distance at 0.900±0.001 Å, with Uiso(H) = 1.2Ueq(O). The nitrate anion was shown to be disordered over two sites in a 0.57 (7) and 0.43 (7) ratio. The N—O bond lengths were restrained to 1.25±0.01 Å and the O···O distances to 2.17±0.01 Å. The highest peak in the final electron density difference map is located 0.85 Å from Cd1 atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot at the 35% probability level of the immediate coordination geometry about the cadmium(II) centre in I. The asymmetric unit is labelled.
[Figure 2] Fig. 2. View of the two dimensional sheets parallel to (201) in I, showing inversion-related pairs of intramolecular O—H···O hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. View of the three-dimensional supramolecular network showing the intermolecular O—H···O hydrogen bonds (dashed lines) between adjacent layered sheets of I.
Poly[aqua(µ2-pyrimidine-2-carboxylato-κ4O,N: O',N')(nitrato-κO)cadmium] top
Crystal data top
[Cd(C5H3N2O2)(NO3)(H2O)]Z = 4
Mr = 315.52F(000) = 608
Monoclinic, P21/nDx = 2.398 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.1963 (2) ŵ = 2.52 mm1
b = 10.1554 (3) ÅT = 298 K
c = 11.0057 (3) ÅPlate, pale-green
β = 107.435 (3)°0.23 × 0.20 × 0.14 mm
V = 873.99 (4) Å3
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
2030 independent reflections
Radiation source: fine-focus sealed tube1780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8 pixels mm-1θmax = 28.7°, θmin = 2.8°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.596, Tmax = 0.720l = 914
5450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.7721P]
where P = (Fo2 + 2Fc2)/3
2030 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 1.52 e Å3
56 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cd(C5H3N2O2)(NO3)(H2O)]V = 873.99 (4) Å3
Mr = 315.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1963 (2) ŵ = 2.52 mm1
b = 10.1554 (3) ÅT = 298 K
c = 11.0057 (3) Å0.23 × 0.20 × 0.14 mm
β = 107.435 (3)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
2030 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1780 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.720Rint = 0.031
5450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02856 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.52 e Å3
2030 reflectionsΔρmin = 0.64 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6403 (5)0.4196 (4)0.3921 (3)0.0363 (8)
H10.57920.42870.30640.044*
C20.7507 (5)0.5181 (4)0.4522 (3)0.0376 (8)
H20.76630.59310.40850.045*
C30.8371 (4)0.5016 (4)0.5793 (3)0.0311 (7)
H30.91230.56680.62180.037*
C40.7102 (4)0.3012 (3)0.5773 (3)0.0224 (6)
C50.6984 (4)0.1763 (3)0.6481 (3)0.0225 (6)
Cd10.42986 (3)0.13550 (2)0.364191 (19)0.02405 (10)
N10.6194 (3)0.3106 (3)0.4549 (2)0.0274 (6)
N20.8160 (3)0.3947 (3)0.6429 (2)0.0255 (6)
N30.0877 (2)0.1564 (3)0.4301 (2)0.0448 (8)
O10.5992 (3)0.0886 (2)0.5857 (2)0.0275 (5)
O20.7882 (3)0.1688 (2)0.7600 (2)0.0346 (6)
O30.6725 (3)0.0370 (3)0.3242 (2)0.0417 (6)
H3A0.701 (6)0.031 (3)0.379 (4)0.073 (17)*
H3B0.766 (5)0.088 (5)0.356 (6)0.11 (3)*
O40.2444 (2)0.1673 (3)0.4869 (2)0.0429 (7)
O5A0.0195 (4)0.192 (4)0.4840 (14)0.090 (4)0.57 (7)
O5B0.0159 (7)0.143 (4)0.4926 (5)0.073 (5)0.43 (7)
O6A0.0390 (5)0.116 (3)0.3175 (9)0.080 (4)0.57 (7)
O6B0.0359 (8)0.156 (5)0.3109 (3)0.092 (7)0.43 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (18)0.040 (2)0.0222 (16)0.0017 (16)0.0007 (14)0.0075 (15)
C20.048 (2)0.032 (2)0.0294 (17)0.0030 (15)0.0072 (15)0.0079 (15)
C30.0363 (17)0.0264 (17)0.0306 (16)0.0060 (13)0.0098 (14)0.0011 (14)
C40.0221 (13)0.0235 (16)0.0191 (14)0.0011 (11)0.0023 (11)0.0007 (12)
C50.0202 (13)0.0266 (16)0.0180 (13)0.0018 (11)0.0018 (11)0.0024 (12)
Cd10.02407 (13)0.02804 (16)0.01425 (13)0.00143 (8)0.00306 (8)0.00004 (9)
N10.0257 (12)0.0317 (15)0.0193 (12)0.0019 (11)0.0017 (10)0.0007 (11)
N20.0265 (13)0.0273 (14)0.0186 (12)0.0021 (10)0.0007 (10)0.0023 (10)
N30.0348 (17)0.0335 (18)0.062 (2)0.0006 (13)0.0087 (16)0.0008 (16)
O10.0282 (11)0.0268 (12)0.0208 (10)0.0077 (9)0.0031 (9)0.0001 (9)
O20.0408 (14)0.0335 (13)0.0181 (11)0.0079 (10)0.0085 (10)0.0021 (10)
O30.0318 (13)0.0595 (19)0.0308 (13)0.0029 (12)0.0047 (10)0.0026 (13)
O40.0283 (12)0.0520 (17)0.0459 (16)0.0024 (11)0.0075 (11)0.0073 (13)
O5A0.052 (5)0.066 (10)0.172 (9)0.000 (3)0.064 (5)0.036 (5)
O5B0.047 (6)0.059 (12)0.128 (10)0.006 (4)0.049 (6)0.024 (5)
O6A0.113 (9)0.062 (9)0.053 (5)0.044 (5)0.005 (5)0.006 (3)
O6B0.088 (9)0.089 (16)0.071 (6)0.067 (7)0.017 (6)0.000 (6)
Geometric parameters (Å, º) top
C1—N11.342 (5)Cd1—O1ii2.371 (2)
C1—C21.378 (5)Cd1—O2i2.411 (2)
C1—H10.9300Cd1—O32.382 (3)
C2—C31.375 (5)Cd1—O42.339 (2)
C2—H20.9300N2—Cd1iii2.353 (3)
C3—N21.331 (4)N3—O5A1.2514 (9)
C3—H30.9300N3—O6B1.2513 (9)
C4—N11.333 (4)N3—O5B1.2515 (9)
C4—N21.342 (4)N3—O6A1.2515 (9)
C4—C51.506 (5)N3—O41.2541 (8)
C5—O21.233 (4)O1—Cd1ii2.371 (2)
C5—O11.261 (4)O2—Cd1iii2.411 (2)
Cd1—N12.376 (3)O3—H3A0.9000 (10)
Cd1—N2i2.353 (3)O3—H3B0.9000 (11)
Cd1—O12.463 (2)
N1—C1—C2121.1 (3)O4—Cd1—O174.11 (8)
N1—C1—H1119.4N2i—Cd1—O1158.49 (9)
C2—C1—H1119.4O1ii—Cd1—O169.52 (8)
C3—C2—C1117.7 (3)N1—Cd1—O167.99 (8)
C3—C2—H2121.2O3—Cd1—O181.24 (9)
C1—C2—H2121.2O2i—Cd1—O1132.71 (8)
N2—C3—C2121.7 (3)C4—N1—C1117.5 (3)
N2—C3—H3119.1C4—N1—Cd1117.9 (2)
C2—C3—H3119.1C1—N1—Cd1124.6 (2)
N1—C4—N2124.6 (3)C3—N2—C4117.4 (3)
N1—C4—C5118.7 (3)C3—N2—Cd1iii125.3 (2)
N2—C4—C5116.7 (3)C4—N2—Cd1iii117.1 (2)
O2—C5—O1126.5 (3)O5A—N3—O6B115.6 (6)
O2—C5—C4117.1 (3)O5A—N3—O5B23.4 (9)
O1—C5—C4116.3 (3)O6B—N3—O5B120.16 (10)
O4—Cd1—N2i119.42 (8)O5A—N3—O6A120.16 (10)
O4—Cd1—O1ii82.55 (9)O6B—N3—O6A18.7 (19)
N2i—Cd1—O1ii94.55 (8)O5B—N3—O6A116.1 (5)
O4—Cd1—N196.32 (9)O5A—N3—O4119.88 (10)
N2i—Cd1—N1122.64 (9)O6B—N3—O4119.92 (10)
O1ii—Cd1—N1136.01 (8)O5B—N3—O4119.88 (10)
O4—Cd1—O3152.61 (9)O6A—N3—O4119.88 (10)
N2i—Cd1—O381.25 (9)C5—O1—Cd1ii130.1 (2)
O1ii—Cd1—O377.73 (9)C5—O1—Cd1118.9 (2)
N1—Cd1—O385.12 (10)Cd1ii—O1—Cd1110.48 (8)
O4—Cd1—O2i81.79 (9)C5—O2—Cd1iii118.9 (2)
N2i—Cd1—O2i68.29 (9)Cd1—O3—H3A105 (3)
O1ii—Cd1—O2i146.55 (8)Cd1—O3—H3B110 (5)
N1—Cd1—O2i75.17 (9)H3A—O3—H3B99 (3)
O3—Cd1—O2i124.59 (10)N3—O4—Cd1116.46 (16)
N1—C1—C2—C30.8 (6)C5—C4—N2—Cd1iii9.9 (4)
C1—C2—C3—N20.0 (6)O2—C5—O1—Cd1ii11.1 (5)
N1—C4—C5—O2177.6 (3)C4—C5—O1—Cd1ii167.56 (19)
N2—C4—C5—O20.9 (4)O2—C5—O1—Cd1178.3 (3)
N1—C4—C5—O11.2 (4)C4—C5—O1—Cd13.0 (4)
N2—C4—C5—O1179.7 (3)O4—Cd1—O1—C599.9 (2)
N2—C4—N1—C12.4 (5)N2i—Cd1—O1—C5128.0 (3)
C5—C4—N1—C1176.0 (3)O1ii—Cd1—O1—C5172.3 (3)
N2—C4—N1—Cd1176.8 (2)N1—Cd1—O1—C53.9 (2)
C5—C4—N1—Cd14.8 (4)O3—Cd1—O1—C592.2 (2)
C2—C1—N1—C40.4 (5)O2i—Cd1—O1—C537.6 (3)
C2—C1—N1—Cd1178.8 (3)O4—Cd1—O1—Cd1ii87.84 (11)
O4—Cd1—N1—C465.6 (2)N2i—Cd1—O1—Cd1ii44.3 (3)
N2i—Cd1—N1—C4163.3 (2)O1ii—Cd1—O1—Cd1ii0.0
O1ii—Cd1—N1—C420.2 (3)N1—Cd1—O1—Cd1ii168.36 (13)
O3—Cd1—N1—C486.9 (2)O3—Cd1—O1—Cd1ii80.10 (11)
O2i—Cd1—N1—C4145.4 (3)O2i—Cd1—O1—Cd1ii150.15 (10)
O1—Cd1—N1—C44.4 (2)O1—C5—O2—Cd1iii170.1 (2)
O4—Cd1—N1—C1113.5 (3)C4—C5—O2—Cd1iii11.2 (4)
N2i—Cd1—N1—C117.6 (3)O5A—N3—O4—Cd1169 (2)
O1ii—Cd1—N1—C1160.7 (3)O6B—N3—O4—Cd114 (2)
O3—Cd1—N1—C194.0 (3)O5B—N3—O4—Cd1164 (2)
O2i—Cd1—N1—C133.8 (3)O6A—N3—O4—Cd17.7 (15)
O1—Cd1—N1—C1176.5 (3)N2i—Cd1—O4—N35.6 (3)
C2—C3—N2—C41.8 (5)O1ii—Cd1—O4—N385.4 (3)
C2—C3—N2—Cd1iii172.5 (3)N1—Cd1—O4—N3138.9 (3)
N1—C4—N2—C33.2 (5)O3—Cd1—O4—N3129.5 (3)
C5—C4—N2—C3175.3 (3)O2i—Cd1—O4—N364.9 (3)
N1—C4—N2—Cd1iii171.6 (2)O1—Cd1—O4—N3156.2 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4ii0.90 (1)1.98 (1)2.871 (4)173 (5)
O3—H3B···O5Aiv0.90 (1)2.17 (2)3.045 (14)164 (6)
O3—H3B···O5Biv0.90 (1)2.04 (3)2.876 (13)154 (6)
Symmetry codes: (ii) x+1, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C5H3N2O2)(NO3)(H2O)]
Mr315.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.1963 (2), 10.1554 (3), 11.0057 (3)
β (°) 107.435 (3)
V3)873.99 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.23 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.596, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
5450, 2030, 1780
Rint0.031
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.04
No. of reflections2030
No. of parameters163
No. of restraints56
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.52, 0.64

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N12.376 (3)Cd1—O2i2.411 (2)
Cd1—N2i2.353 (3)Cd1—O32.382 (3)
Cd1—O12.463 (2)Cd1—O42.339 (2)
Cd1—O1ii2.371 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4ii0.9000 (10)1.976 (8)2.871 (4)173 (5)
O3—H3B···O5Aiii0.9000 (11)2.17 (2)3.045 (14)164 (6)
O3—H3B···O5Biii0.9000 (11)2.04 (3)2.876 (13)154 (6)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Professor Ian D. Williams and Dr Herman H.-Y. Sung of the Department of Chemistry, The Hong Kong University of Science and Technology, for their kind help during the X-ray study and for valuable discussions. KC thanks the Thailand Research Funds (project approval No. MRG5480189) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). Dalton Trans. pp. 3885–3896.  CrossRef Google Scholar
First citationRodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510.  Web of Science PubMed Google Scholar
First citationSava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008). Chem. Commun. pp. 847–849.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1349-m1350
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds