organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Chloro­prop­yl)tri­phenyl­phospho­nium bromide

aUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 4 October 2012; accepted 8 October 2012; online 13 October 2012)

The title compound, C21H21ClP+Br, is the bromide salt of a mixed aryl-alkyl phospho­nium cation. C–P–C angles span a range of 107.20 (10)–111.18 (10)°. The non-H atoms of the 3-chloro­propyl group adopt a staggered conformation [C–C–C–Cl torsion angle: −72.0 (3)°]. In the crystal, C—H⋯Br contacts connect the entities of the title compound into a double zigzag chain along b. These chains are linked into a supra­molecular layer lying parallel to (10-1) by C—H⋯π inter­actions.

Related literature

For synthetic applications of phospho­nium salts in organic chemistry, see: Maercker (1965[Maercker, A. (1965). Org. React. 14, 270-490.]); Carruthers (1971[Carruthers, W. (1971). Some Modern Methods of Organic Synthesis, pp. 81-90. Cambridge University Press.]); Minami et al. (1988[Minami, T., Shikita, S., So, S., Nakayama, M. & Yamamoto, I. (1988). J. Org. Chem. 53, 2937-2942.]). For related structures, see: Czerwinski & Ponnuswamy (1988a[Czerwinski, E. W. & Ponnuswamy, M. N. (1988a). Acta Cryst. C44, 862-865.],b[Czerwinski, E. W. & Ponnuswamy, M. N. (1988b). Acta Cryst. C44, 1862-1864.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21ClP+·Br

  • Mr = 419.71

  • Monoclinic, P 21 /c

  • a = 11.0708 (2) Å

  • b = 10.0435 (2) Å

  • c = 17.5740 (4) Å

  • β = 104.973 (1)°

  • V = 1887.70 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 200 K

  • 0.51 × 0.35 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.324, Tmax = 0.694

  • 18046 measured reflections

  • 4690 independent reflections

  • 4202 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.107

  • S = 1.06

  • 4690 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Br1i 0.99 2.82 3.703 (2) 149
C25—H25⋯Br1ii 0.95 2.89 3.751 (3) 151
C14—H14⋯Cg1iii 0.95 2.68 3.623 (3) 173
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phosphonium salts are widely used in organic synthesis for the preparation of alkenes (Maercker, 1965; Carruthers, 1971) and are formed by alkylation of triaryl or trialkyl phosphines. Reports on (cycloalkylidenemethyl)triphenylphosphonium salts being used as versatile intermediate reagents have been published (Minami et al., 1988). The crystal structures of several mixed alkyl-aryl phosphonium bromides have been reported such as (3-cyanopropyl)triphenylphosphonium bromide (Czerwinski & Ponnuswamy, 1988a) and (3-bromopropyl)triphenylphosphonium bromide (Czerwinski & Ponnuswamy, 1988b).

The phosphorus atom is coordinated tetrahedrally. The C–P–C angles span a range of 107.20 (10)–111.18 (10)° with the smallest angle found in between two phenyl groups and the largest angle in between a phenyl and the 3-chloropropyl group. The non-hydrogen atoms of the 3-chloropropyl group adopt a staggered conformation, the corresponding C–C–C–Cl angle is found at -72.0 (3)° (Fig. 1).

In the crystal, two C–H···Br contacts whose range falls by more than 0.1 Å below the sum of van der Waals radii of the corresponding atoms are observed. These are supported by a hydrogen atom of a phenyl group as well as a hydrogen atom of the methylene group directly bonded to the phosphorus atom. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is DD on the unary level. Furthermore, a C–H···π contact stemming from one of the H atoms on a phenyl group is observed. Taking into account only the contacts that involve the bromide ion, the entities of the title compound are connected to a double zigzag chain along the crystallographic b axis. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.8882 (16) Å and is apparent between one of the phenyl groups and its symmetry-generated equivalent (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For synthetic applications of phosphonium salts in organic chemistry, see: Maercker (1965); Carruthers (1971); Minami et al. (1988). For related structures, see: Czerwinski & Ponnuswamy (1988a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem., Bengaluru, India. The compound was recrystallized from methanol by slow evaporation at room temperature and was used as such for diffraction studies.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. C–H···Br contacts, viewed along [-1 0 0]. Symmetry operators: i -x, -y + 1, -z; ii x, -y + 3/2, z - 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
(3-Chloropropyl)triphenylphosphonium bromide top
Crystal data top
C21H21ClP+·BrF(000) = 856
Mr = 419.71Dx = 1.477 Mg m3
Monoclinic, P21/cMelting point: 498 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0708 (2) ÅCell parameters from 9926 reflections
b = 10.0435 (2) Åθ = 2.4–28.3°
c = 17.5740 (4) ŵ = 2.40 mm1
β = 104.973 (1)°T = 200 K
V = 1887.70 (7) Å3Block, colourless
Z = 40.51 × 0.35 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4690 independent reflections
Radiation source: fine-focus sealed tube4202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.324, Tmax = 0.694k = 1213
18046 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0596P)2 + 2.6325P]
where P = (Fo2 + 2Fc2)/3
4690 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C21H21ClP+·BrV = 1887.70 (7) Å3
Mr = 419.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0708 (2) ŵ = 2.40 mm1
b = 10.0435 (2) ÅT = 200 K
c = 17.5740 (4) Å0.51 × 0.35 × 0.16 mm
β = 104.973 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4690 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4202 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 0.694Rint = 0.014
18046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 1.69 e Å3
4690 reflectionsΔρmin = 0.64 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11226 (2)0.37223 (2)0.168258 (14)0.02748 (9)
Cl10.19533 (8)0.23552 (6)0.03470 (4)0.03790 (17)
P10.27583 (5)0.69448 (6)0.03725 (3)0.01760 (12)
C10.1762 (2)0.5615 (2)0.01109 (13)0.0210 (4)
H1A0.16930.49370.02840.025*
H1B0.09140.59720.03470.025*
C20.2259 (2)0.4953 (3)0.07590 (14)0.0264 (5)
H2A0.21840.55870.12000.032*
H2B0.31570.47430.05450.032*
C30.1561 (3)0.3691 (3)0.10672 (16)0.0309 (5)
H3A0.17740.34150.15580.037*
H3B0.06500.38620.11950.037*
C110.4085 (2)0.6285 (2)0.10851 (13)0.0204 (4)
C120.4923 (2)0.7181 (3)0.15544 (15)0.0292 (5)
H120.47980.81120.14770.035*
C130.5936 (3)0.6713 (3)0.21322 (17)0.0354 (6)
H130.65090.73210.24490.043*
C140.6108 (2)0.5356 (3)0.22457 (15)0.0351 (6)
H140.68000.50340.26440.042*
C150.5282 (3)0.4463 (3)0.17839 (16)0.0324 (6)
H150.54100.35330.18660.039*
C160.4263 (2)0.4921 (2)0.12005 (14)0.0251 (5)
H160.36950.43080.08840.030*
C210.3235 (2)0.7892 (2)0.03666 (13)0.0209 (4)
C220.4486 (2)0.8127 (3)0.03397 (15)0.0272 (5)
H220.51300.77950.00850.033*
C230.4780 (3)0.8854 (3)0.09427 (18)0.0349 (6)
H230.56300.90060.09350.042*
C240.3837 (3)0.9355 (3)0.15517 (16)0.0344 (6)
H240.40460.98610.19570.041*
C250.2597 (3)0.9131 (3)0.15792 (15)0.0329 (6)
H250.19570.94840.19990.039*
C260.2288 (2)0.8389 (3)0.09917 (15)0.0284 (5)
H260.14360.82180.10130.034*
C310.1948 (2)0.8024 (2)0.08894 (13)0.0199 (4)
C320.1688 (2)0.9347 (2)0.06715 (15)0.0267 (5)
H320.19290.97040.02320.032*
C330.1073 (3)1.0143 (3)0.10998 (16)0.0318 (5)
H330.09011.10490.09580.038*
C340.0712 (2)0.9608 (3)0.17351 (16)0.0305 (5)
H340.02851.01510.20240.037*
C350.0965 (2)0.8299 (3)0.19506 (15)0.0295 (5)
H350.07100.79440.23850.035*
C360.1593 (2)0.7495 (2)0.15347 (14)0.0256 (5)
H360.17790.65950.16870.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03111 (15)0.02528 (14)0.02542 (14)0.00090 (9)0.00617 (10)0.00151 (9)
Cl10.0561 (4)0.0166 (3)0.0364 (3)0.0049 (3)0.0036 (3)0.0049 (2)
P10.0175 (3)0.0176 (3)0.0169 (2)0.0003 (2)0.00315 (19)0.00100 (19)
C10.0201 (10)0.0225 (11)0.0196 (10)0.0031 (8)0.0036 (8)0.0018 (8)
C20.0300 (12)0.0267 (12)0.0235 (11)0.0052 (10)0.0090 (9)0.0035 (9)
C30.0325 (13)0.0294 (13)0.0291 (12)0.0046 (10)0.0049 (10)0.0065 (10)
C110.0181 (10)0.0239 (11)0.0183 (10)0.0016 (8)0.0031 (8)0.0008 (8)
C120.0278 (12)0.0275 (12)0.0288 (12)0.0031 (10)0.0011 (10)0.0035 (10)
C130.0231 (12)0.0500 (17)0.0289 (13)0.0046 (12)0.0011 (10)0.0062 (12)
C140.0239 (12)0.0552 (18)0.0240 (11)0.0134 (12)0.0022 (9)0.0040 (12)
C150.0348 (13)0.0334 (13)0.0285 (12)0.0127 (11)0.0074 (10)0.0064 (10)
C160.0276 (11)0.0246 (11)0.0227 (11)0.0028 (9)0.0057 (9)0.0016 (9)
C210.0229 (10)0.0202 (10)0.0203 (10)0.0016 (8)0.0066 (8)0.0016 (8)
C220.0247 (12)0.0294 (12)0.0278 (12)0.0042 (9)0.0073 (9)0.0000 (10)
C230.0334 (14)0.0371 (14)0.0381 (14)0.0124 (11)0.0165 (12)0.0004 (11)
C240.0520 (17)0.0277 (13)0.0283 (12)0.0093 (12)0.0191 (12)0.0004 (10)
C250.0438 (15)0.0317 (13)0.0233 (11)0.0032 (12)0.0092 (11)0.0059 (10)
C260.0279 (12)0.0344 (13)0.0232 (11)0.0016 (10)0.0072 (9)0.0057 (10)
C310.0191 (10)0.0197 (10)0.0202 (10)0.0001 (8)0.0039 (8)0.0022 (8)
C320.0310 (12)0.0228 (11)0.0254 (11)0.0034 (9)0.0056 (9)0.0023 (9)
C330.0332 (13)0.0245 (12)0.0350 (13)0.0070 (10)0.0037 (11)0.0022 (10)
C340.0210 (11)0.0377 (14)0.0311 (12)0.0040 (10)0.0033 (9)0.0111 (11)
C350.0264 (12)0.0379 (14)0.0264 (12)0.0042 (10)0.0108 (9)0.0048 (10)
C360.0277 (12)0.0236 (11)0.0267 (11)0.0017 (9)0.0092 (9)0.0009 (9)
Geometric parameters (Å, º) top
Cl1—C31.818 (3)C16—H160.9500
P1—C111.793 (2)C21—C221.393 (3)
P1—C211.796 (2)C21—C261.400 (3)
P1—C311.796 (2)C22—C231.393 (4)
P1—C11.799 (2)C22—H220.9500
C1—C21.539 (3)C23—C241.383 (4)
C1—H1A0.9900C23—H230.9500
C1—H1B0.9900C24—C251.380 (4)
C2—C31.511 (3)C24—H240.9500
C2—H2A0.9900C25—C261.386 (4)
C2—H2B0.9900C25—H250.9500
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C31—C321.392 (3)
C11—C161.392 (3)C31—C361.398 (3)
C11—C121.398 (3)C32—C331.391 (4)
C12—C131.386 (4)C32—H320.9500
C12—H120.9500C33—C341.388 (4)
C13—C141.384 (5)C33—H330.9500
C13—H130.9500C34—C351.377 (4)
C14—C151.384 (4)C34—H340.9500
C14—H140.9500C35—C361.390 (4)
C15—C161.392 (3)C35—H350.9500
C15—H150.9500C36—H360.9500
C11—P1—C21111.13 (11)C11—C16—C15119.3 (2)
C11—P1—C31107.20 (10)C11—C16—H16120.3
C21—P1—C31108.92 (11)C15—C16—H16120.3
C11—P1—C1110.32 (11)C22—C21—C26120.2 (2)
C21—P1—C1108.10 (11)C22—C21—P1122.69 (18)
C31—P1—C1111.18 (10)C26—C21—P1117.13 (18)
C2—C1—P1112.15 (16)C21—C22—C23119.3 (2)
C2—C1—H1A109.2C21—C22—H22120.4
P1—C1—H1A109.2C23—C22—H22120.4
C2—C1—H1B109.2C24—C23—C22120.1 (3)
P1—C1—H1B109.2C24—C23—H23120.0
H1A—C1—H1B107.9C22—C23—H23120.0
C3—C2—C1112.3 (2)C25—C24—C23120.9 (2)
C3—C2—H2A109.1C25—C24—H24119.6
C1—C2—H2A109.1C23—C24—H24119.6
C3—C2—H2B109.1C24—C25—C26119.8 (3)
C1—C2—H2B109.1C24—C25—H25120.1
H2A—C2—H2B107.9C26—C25—H25120.1
C2—C3—Cl1111.20 (18)C25—C26—C21119.8 (2)
C2—C3—H3A109.4C25—C26—H26120.1
Cl1—C3—H3A109.4C21—C26—H26120.1
C2—C3—H3B109.4C32—C31—C36120.3 (2)
Cl1—C3—H3B109.4C32—C31—P1122.14 (18)
H3A—C3—H3B108.0C36—C31—P1117.55 (18)
C16—C11—C12120.0 (2)C33—C32—C31119.7 (2)
C16—C11—P1121.69 (18)C33—C32—H32120.2
C12—C11—P1118.23 (18)C31—C32—H32120.2
C13—C12—C11120.1 (3)C34—C33—C32119.7 (2)
C13—C12—H12119.9C34—C33—H33120.1
C11—C12—H12119.9C32—C33—H33120.1
C14—C13—C12119.7 (3)C35—C34—C33120.7 (2)
C14—C13—H13120.2C35—C34—H34119.7
C12—C13—H13120.2C33—C34—H34119.7
C13—C14—C15120.5 (2)C34—C35—C36120.3 (2)
C13—C14—H14119.7C34—C35—H35119.9
C15—C14—H14119.7C36—C35—H35119.9
C14—C15—C16120.3 (3)C35—C36—C31119.3 (2)
C14—C15—H15119.8C35—C36—H36120.4
C16—C15—H15119.8C31—C36—H36120.4
C11—P1—C1—C279.46 (19)C1—P1—C21—C2654.5 (2)
C21—P1—C1—C242.2 (2)C26—C21—C22—C230.3 (4)
C31—P1—C1—C2161.75 (16)P1—C21—C22—C23179.0 (2)
P1—C1—C2—C3169.87 (18)C21—C22—C23—C241.2 (4)
C1—C2—C3—Cl172.0 (3)C22—C23—C24—C250.9 (4)
C21—P1—C11—C16118.7 (2)C23—C24—C25—C260.3 (4)
C31—P1—C11—C16122.4 (2)C24—C25—C26—C211.2 (4)
C1—P1—C11—C161.2 (2)C22—C21—C26—C250.9 (4)
C21—P1—C11—C1264.1 (2)P1—C21—C26—C25179.8 (2)
C31—P1—C11—C1254.8 (2)C11—P1—C31—C32124.8 (2)
C1—P1—C11—C12176.03 (19)C21—P1—C31—C324.5 (2)
C16—C11—C12—C130.4 (4)C1—P1—C31—C32114.5 (2)
P1—C11—C12—C13177.7 (2)C11—P1—C31—C3654.4 (2)
C11—C12—C13—C140.4 (4)C21—P1—C31—C36174.73 (18)
C12—C13—C14—C150.4 (4)C1—P1—C31—C3666.2 (2)
C13—C14—C15—C160.2 (4)C36—C31—C32—C330.1 (4)
C12—C11—C16—C150.2 (4)P1—C31—C32—C33179.1 (2)
P1—C11—C16—C15177.39 (19)C31—C32—C33—C340.7 (4)
C14—C15—C16—C110.1 (4)C32—C33—C34—C350.5 (4)
C11—P1—C21—C223.6 (2)C33—C34—C35—C360.3 (4)
C31—P1—C21—C22114.3 (2)C34—C35—C36—C310.9 (4)
C1—P1—C21—C22124.8 (2)C32—C31—C36—C350.7 (4)
C11—P1—C21—C26175.69 (19)P1—C31—C36—C35179.96 (19)
C31—P1—C21—C2666.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Br1i0.992.823.703 (2)149
C25—H25···Br1ii0.952.893.751 (3)151
C14—H14···Cg1iii0.952.683.623 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H21ClP+·Br
Mr419.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.0708 (2), 10.0435 (2), 17.5740 (4)
β (°) 104.973 (1)
V3)1887.70 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.51 × 0.35 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.324, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
18046, 4690, 4202
Rint0.014
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.107, 1.06
No. of reflections4690
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 0.64

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Br1i0.992.823.703 (2)149
C25—H25···Br1ii0.952.893.751 (3)151
C14—H14···Cg1iii0.952.683.623 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities. HSY is grateful to R. L. Fine Chem., Bengaluru, India, for the gift sample of the title compound.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCarruthers, W. (1971). Some Modern Methods of Organic Synthesis, pp. 81–90. Cambridge University Press.  Google Scholar
First citationCzerwinski, E. W. & Ponnuswamy, M. N. (1988a). Acta Cryst. C44, 862–865.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCzerwinski, E. W. & Ponnuswamy, M. N. (1988b). Acta Cryst. C44, 1862–1864.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaercker, A. (1965). Org. React. 14, 270–490.  CAS Google Scholar
First citationMinami, T., Shikita, S., So, S., Nakayama, M. & Yamamoto, I. (1988). J. Org. Chem. 53, 2937–2942.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds