organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-Chloro-3-(tri­fluoro­meth­yl)phen­yl]-4-phenyl-1H-1,2,3-triazole

aSRC for Biotechnology, Chemistry and Systems Biology, Faculty of Science and Technology, Deakin University, Vic, 3216, Australia, bQueensland Micro and Nanotechnology Centre, Griffith University, Brisbane 4111, Australia, and cInstitute for Frontier Materials, SRC for Biotechnology, Chemistry and Systems Biology, Faculty of Science and Technology, Deakin University, Vic, 3216, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 11 October 2012; accepted 12 October 2012; online 20 October 2012)

In the title compound, C15H9ClF3N3, the phenyl and chloro-trifluoro­methyl benzene rings are twisted with respect to the planar triazole group, making dihedral angles of 21.29 (12) and 32.19 (11)°, respectively. In the crystal, the mol­ecules pack in a head-to-tail arrangement along the a axis with closest inter-centroid distances between the triazole rings of 3.7372 (12) Å.

Related literature

For background to the synthesis of N-aryl-1,2,3-triazoles, see: Bock et al. (2006[Bock, V. D., Hiemstra, H. & van Maarseveen, J. H. (2006). Eur. J. Org. Chem. pp. 51-68.]); Irie et al. (2012[Irie, T., Fujii, I. & Sawa, M. (2012). Bioorg. Med. Chem. Lett. 22, 591-596.]). For biological background, see: Jia & Zhu (2010[Jia, Z. & Zhu, Q. (2010). Bioorg. Med. Chem. Lett. 20, 6222-6225.]); Henderson et al. (2012[Henderson, L. C., Altimari, J. M., Dyson, G., Servinis, L., Niranjan, B. & Risbridger, G. P. (2012). Bioorg. Chem. 40, 1-5.]); Alam et al. (2006[Alam, M. S., Kajiki, R., Hanatani, H., Kong, X., Ozoe, F., Matsui, Y., Matsumura, F. & Ozoe, Y. (2006). J. Agric. Food Chem. 54, 1361-1372.], 2007[Alam, M. S., Ozoe, F., Matsumura, F. & Ozoe, Y. (2007). Bioorg. Med. Chem. 15, 5090-5104.]). For related structures, see: Lin et al. (2008[Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.]); Lin (2010[Lin, J. R. (2010). Acta Cryst. E66, o1967.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9ClF3N3

  • Mr = 323.70

  • Monoclinic, C 2/c

  • a = 30.7475 (16) Å

  • b = 5.8877 (3) Å

  • c = 15.4364 (8) Å

  • β = 105.470 (5)°

  • V = 2693.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 249 K

  • 0.33 × 0.26 × 0.24 mm

Data collection
  • Oxford Diffraction GEMINI S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), Tmin = 0.902, Tmax = 0.928

  • 3934 measured reflections

  • 2355 independent reflections

  • 1899 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.091

  • S = 1.07

  • 2355 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis PRO; program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation. (2001). TEXSAN for Windows. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.]) and SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structure of the title compound, (I), was determined as part of an ongoing project developing N-aryl-1,2,3-triazoles as amide mimetics for medicinal applications. The synthesis of 1,2,3-triazoles via copper mediated 1,3-dipolar reactions has become one of the most widely used methodologies to tether molecules together or to a surface (Bock et al., 2006; Irie et al., 2012). Electronically deactivated N-phenyl-1,2,3-triazoles have been employed in several areas such as the combinatorial development of kinase inhibitors (Jia & Zhu, 2010) in the development of monoamine oxidase inhibitors, androgen receptor antagonists (Henderson et al., 2012) and as GABA receptor antagonists (Alam et al., 2006; Alam et al., 2007). This compound provides an aryl chloride moiety in the para-position relative to the triazole ring providing a synthetic handle for further structural elaboration.

In the molecular structure of (I) (Fig. 1) the planar phenyl and chloro-trifluoromethyl benzene rings are twisted with respect to the central planar triazole group with dihedral angles of 21.29 (12) and 32.19 (11)°, respectively. In the triazole ring, the N1—N2 and N2—N3 bond lengths are 1.357 (3) and 1.310 (3) Å, respectively. and are similar to those reported for related compounds (Lin et al., 2008; Lin, 2010). In the crystal lattice, the molecules stack in a head to tail arrangement along the a axis (Fig. 2) with the centroid-centroid distances between the triazole rings 4.1494 (12) and 3.7372 (12) Å.

Related literature top

For background to the synthesis of N-aryl-1,2,3-triazoles, see: Bock et al. (2006); Irie et al. (2012). For biological background, see: Jia & Zhu (2010); Henderson et al. (2012); Alam et al. (2006, 2007). For related structures, see: Lin et al. (2008); Lin (2010).

Experimental top

Phenyl acetylene (127 mg, 1.25 mmol, 1 eq), 4-azido-1-chloro-2-(trifluoromethyl) benzene (230 mg, 1.04 mmol, 1 eq) and copper(I) chloride (10 mg, 10 mol%) were stirred in water (3 ml) for 10 min. The solution was then stirred under microwave irradiation at 100°C for 30 min in a sealed vessel. The solution cooled to room temperature, dichloromethane (3 ml) was added and the biphasic mixture stirred for 3 min. The aqueous phase was then extracted using dichloromethane (2 x 10 ml), the combined organic layers were washed with HCl (4M, 5 ml), NaOH (1M, 5 ml), water (5 ml). The organic phase dried over MgSO4, filtered and concentrated under vacuum. The solution was then taken up in chloroform and allowed to slowly evaporate. ν (max) cm-1 3124, 1495, 1310, 1147, 1037. 1H NMR (400 MHz, CDCl3): δ = 9.50 (1H, s, triazole H), 8.42 (1H, s, ArH), 8.32 (1H, dd, J = 8.7, 2.6 Hz, ArH), 8.02 (1H, d, J = 8.7 Hz, ArH), 7.95 (2H, d, J = 8 Hz, ArH), 7.51 (2H, m, ArH), 7.40 (1H, m, ArH). 13C NMR (100 MHz, CDCl3): δ = 148.22, 136.16, 133.98, 130.91 (m), 130.47, 129.65, 129.04, 128.53 (q, J2C—F = 32 Hz), 125.93, 125.70 (m), 122.89 (q, J1C—F = 272 Hz), 120.62, 119.75. M.pt: 443–445.3 K. HRMS, m/z calcd for(C15H9ClF3N3) 324.05099, found 324.05011.

Refinement top

The carbon-bound H atoms were constrained as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq of the parent C atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labelling and displacement ellipsoids for non-H atoms drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed along [0 1 0].
1-[4-Chloro-3-(trifluoromethyl)phenyl]-4-phenyl-1H-1,2,3-triazole top
Crystal data top
C15H9ClF3N3F(000) = 1312
Mr = 323.70Dx = 1.597 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 1854 reflections
a = 30.7475 (16) Åθ = 3.4–30.3°
b = 5.8877 (3) ŵ = 0.32 mm1
c = 15.4364 (8) ÅT = 249 K
β = 105.470 (5)°Block, colourless
V = 2693.2 (2) Å30.33 × 0.26 × 0.24 mm
Z = 8
Data collection top
Oxford Diffraction GEMINI S Ultra
diffractometer
2355 independent reflections
Radiation source: Enhance (Mo) X-ray Source1899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0774 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω and ϕ scansh = 3633
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012),
k = 56
Tmin = 0.902, Tmax = 0.928l = 918
3934 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0327P)2 + 2.2063P]
where P = (Fo2 + 2Fc2)/3
2355 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H9ClF3N3V = 2693.2 (2) Å3
Mr = 323.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.7475 (16) ŵ = 0.32 mm1
b = 5.8877 (3) ÅT = 249 K
c = 15.4364 (8) Å0.33 × 0.26 × 0.24 mm
β = 105.470 (5)°
Data collection top
Oxford Diffraction GEMINI S Ultra
diffractometer
2355 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012),
1899 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.928Rint = 0.021
3934 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2355 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78052 (2)0.33228 (12)0.32573 (4)0.0454 (2)
F10.76886 (4)0.0366 (3)0.48769 (11)0.0575 (6)
F20.78035 (5)0.1587 (3)0.37911 (10)0.0587 (5)
F30.81441 (4)0.2452 (3)0.51428 (10)0.0522 (5)
N10.96027 (6)0.1414 (3)0.56964 (11)0.0285 (6)
N20.97402 (6)0.0774 (3)0.58511 (13)0.0369 (6)
N31.01508 (6)0.0729 (3)0.63832 (12)0.0358 (6)
C41.02780 (7)0.1481 (4)0.65769 (13)0.0276 (7)
C50.99302 (7)0.2849 (4)0.61383 (14)0.0281 (7)
C110.91648 (7)0.1919 (4)0.51321 (13)0.0275 (6)
C120.88165 (7)0.0422 (4)0.51110 (13)0.0281 (7)
C130.83879 (7)0.0861 (4)0.45597 (13)0.0277 (7)
C140.83212 (7)0.2782 (4)0.40213 (13)0.0293 (7)
C150.86683 (7)0.4302 (4)0.40630 (14)0.0335 (7)
C160.90929 (7)0.3881 (4)0.46234 (14)0.0324 (7)
C170.80065 (7)0.0695 (4)0.45873 (15)0.0365 (8)
C411.07225 (7)0.2101 (4)0.71678 (13)0.0276 (7)
C421.10818 (7)0.0584 (4)0.73080 (14)0.0344 (7)
C431.15027 (7)0.1168 (5)0.78475 (15)0.0394 (8)
C441.15723 (8)0.3258 (5)0.82582 (15)0.0398 (8)
C451.12182 (8)0.4780 (5)0.81243 (14)0.0389 (8)
C461.07966 (7)0.4216 (4)0.75828 (14)0.0333 (7)
H50.992100.434300.614300.0340*
H120.887000.090900.547400.0330*
H150.861400.564000.370400.0400*
H160.933200.493000.465800.0390*
H421.103800.086700.702600.0410*
H431.174500.011600.793500.0470*
H441.186100.365000.863400.0480*
H451.126500.622700.840800.0470*
H461.055700.527900.749400.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0334 (3)0.0438 (4)0.0481 (3)0.0047 (3)0.0079 (3)0.0048 (3)
F10.0322 (7)0.0558 (11)0.0906 (11)0.0039 (8)0.0271 (8)0.0025 (9)
F20.0579 (9)0.0458 (10)0.0574 (9)0.0175 (8)0.0109 (7)0.0089 (8)
F30.0371 (8)0.0447 (10)0.0679 (9)0.0101 (7)0.0019 (7)0.0210 (8)
N10.0223 (9)0.0286 (11)0.0336 (9)0.0001 (8)0.0055 (7)0.0002 (8)
N20.0283 (10)0.0288 (12)0.0489 (11)0.0018 (9)0.0020 (9)0.0005 (9)
N30.0257 (9)0.0317 (12)0.0447 (11)0.0000 (9)0.0003 (8)0.0003 (9)
C40.0243 (11)0.0294 (13)0.0300 (11)0.0012 (10)0.0087 (9)0.0004 (10)
C50.0246 (11)0.0266 (13)0.0331 (11)0.0036 (10)0.0077 (9)0.0017 (10)
C110.0225 (10)0.0309 (13)0.0288 (10)0.0002 (10)0.0066 (9)0.0014 (10)
C120.0260 (11)0.0294 (13)0.0280 (10)0.0024 (10)0.0058 (9)0.0011 (10)
C130.0255 (11)0.0288 (13)0.0286 (11)0.0020 (10)0.0068 (9)0.0048 (9)
C140.0264 (11)0.0326 (14)0.0276 (11)0.0034 (10)0.0051 (9)0.0022 (10)
C150.0341 (12)0.0321 (14)0.0346 (12)0.0041 (11)0.0096 (10)0.0064 (10)
C160.0274 (11)0.0332 (14)0.0372 (12)0.0039 (10)0.0099 (10)0.0015 (10)
C170.0263 (11)0.0368 (15)0.0419 (13)0.0019 (11)0.0012 (10)0.0003 (12)
C410.0262 (11)0.0310 (13)0.0259 (10)0.0011 (10)0.0075 (9)0.0030 (10)
C420.0306 (11)0.0335 (14)0.0373 (12)0.0007 (11)0.0059 (10)0.0005 (11)
C430.0284 (12)0.0453 (17)0.0417 (13)0.0045 (12)0.0044 (10)0.0083 (12)
C440.0305 (12)0.0508 (17)0.0324 (12)0.0082 (13)0.0016 (10)0.0047 (12)
C450.0422 (13)0.0381 (15)0.0323 (12)0.0082 (12)0.0026 (10)0.0042 (11)
C460.0332 (12)0.0345 (14)0.0315 (11)0.0031 (11)0.0076 (10)0.0002 (10)
Geometric parameters (Å, º) top
Cl1—C141.735 (2)C15—C161.383 (3)
F1—C171.334 (3)C41—C421.392 (3)
F2—C171.329 (3)C41—C461.391 (3)
F3—C171.338 (3)C42—C431.383 (3)
N1—N21.357 (3)C43—C441.375 (4)
N1—C51.352 (3)C44—C451.382 (4)
N1—C111.426 (3)C45—C461.383 (3)
N2—N31.310 (3)C5—H50.8800
N3—C41.369 (3)C12—H120.9500
C4—C51.366 (3)C15—H150.9500
C4—C411.473 (3)C16—H160.9500
C11—C121.381 (3)C42—H420.9500
C11—C161.381 (3)C43—H430.9500
C12—C131.389 (3)C44—H440.9500
C13—C141.386 (3)C45—H450.9500
C13—C171.498 (3)C46—H460.9500
C14—C151.381 (3)
Cl1···F13.1445 (18)C41···H15x3.0300
Cl1···F23.0063 (19)C42···H45vi3.0400
Cl1···F2i3.1086 (19)C42···H15x3.0100
Cl1···F2ii3.2167 (16)C43···H15x2.9900
F1···Cl13.1445 (18)C44···H15x3.0000
F1···F1iii2.835 (2)C45···H42i3.0400
F1···F3iv3.075 (2)C45···H15x3.0100
F2···Cl1v3.2167 (16)C46···H53.0000
F2···Cl1vi3.1085 (19)C46···H15x3.0300
F2···Cl13.0063 (19)H5···N2i2.9400
F3···C45vii3.295 (3)H5···C162.9800
F3···C15vi3.235 (3)H5···C463.0000
F3···F1iv3.075 (2)H5···H162.5400
F1···H44viii2.8100H5···H462.5100
F3···H45vii2.6000H12···F32.3400
F3···H122.3400H12···N22.5800
N2···H5vi2.9400H12···H45vii2.5300
N2···H122.5800H15···C41x3.0300
N3···H422.6400H15···C42x3.0100
C5···C46ix3.449 (3)H15···C43x2.9900
C12···C43ix3.569 (3)H15···C44x3.0000
C12···C44ix3.487 (3)H15···C45x3.0100
C15···C45x3.527 (3)H15···C46x3.0300
C15···C46x3.486 (3)H16···C52.8000
C15···F3i3.235 (3)H16···H52.5400
C43···C12ix3.569 (3)H42···N32.6400
C44···C12ix3.487 (3)H42···C45vi3.0400
C45···F3xi3.295 (3)H42···C14xii3.0800
C45···C15x3.527 (3)H42···C15xii2.9200
C46···C5ix3.449 (3)H42···C16xii3.0400
C46···C15x3.486 (3)H44···F1xiii2.8100
C5···H162.8000H45···C42i3.0400
C5···H462.8300H45···F3xi2.6000
C14···H42xii3.0800H45···H12xi2.5300
C15···H42xii2.9200H46···C52.8300
C16···H42xii3.0400H46···H52.5100
C16···H52.9800
N2—N1—C5110.45 (18)C4—C41—C42120.3 (2)
N2—N1—C11120.29 (18)C4—C41—C46121.2 (2)
C5—N1—C11129.26 (19)C42—C41—C46118.5 (2)
N1—N2—N3107.10 (17)C41—C42—C43120.7 (2)
N2—N3—C4109.13 (17)C42—C43—C44120.4 (2)
N3—C4—C5108.19 (19)C43—C44—C45119.5 (2)
N3—C4—C41122.3 (2)C44—C45—C46120.6 (2)
C5—C4—C41129.5 (2)C41—C46—C45120.4 (2)
N1—C5—C4105.1 (2)N1—C5—H5127.00
N1—C11—C12118.77 (19)C4—C5—H5127.00
N1—C11—C16120.2 (2)C11—C12—H12120.00
C12—C11—C16121.0 (2)C13—C12—H12120.00
C11—C12—C13119.9 (2)C14—C15—H15120.00
C12—C13—C14118.9 (2)C16—C15—H15120.00
C12—C13—C17119.4 (2)C11—C16—H16120.00
C14—C13—C17121.63 (19)C15—C16—H16120.00
Cl1—C14—C13121.30 (17)C41—C42—H42120.00
Cl1—C14—C15117.89 (17)C43—C42—H42120.00
C13—C14—C15120.8 (2)C42—C43—H43120.00
C14—C15—C16120.1 (2)C44—C43—H43120.00
C11—C16—C15119.1 (2)C43—C44—H44120.00
F1—C17—F2106.84 (18)C45—C44—H44120.00
F1—C17—F3106.38 (18)C44—C45—H45120.00
F1—C17—C13111.87 (19)C46—C45—H45120.00
F2—C17—F3106.10 (19)C41—C46—H46120.00
F2—C17—C13113.17 (18)C45—C46—H46120.00
F3—C17—C13112.02 (18)
C5—N1—N2—N30.2 (2)C11—C12—C13—C17176.1 (2)
C11—N1—N2—N3179.82 (18)C12—C13—C14—C153.3 (3)
N2—N1—C5—C40.1 (2)C17—C13—C14—Cl17.2 (3)
C11—N1—C5—C4179.94 (19)C12—C13—C17—F1116.4 (2)
N2—N1—C11—C1232.1 (3)C12—C13—C17—F2122.9 (2)
N2—N1—C11—C16148.4 (2)C17—C13—C14—C15174.3 (2)
C5—N1—C11—C12147.9 (2)C12—C13—C14—Cl1175.22 (16)
C5—N1—C11—C1631.6 (3)C14—C13—C17—F259.6 (3)
N1—N2—N3—C40.4 (2)C14—C13—C17—F3179.48 (19)
N2—N3—C4—C50.4 (2)C12—C13—C17—F33.0 (3)
N2—N3—C4—C41179.51 (19)C14—C13—C17—F161.2 (3)
C41—C4—C5—N1179.6 (2)Cl1—C14—C15—C16176.31 (17)
N3—C4—C5—N10.3 (2)C13—C14—C15—C162.2 (3)
C5—C4—C41—C42158.3 (2)C14—C15—C16—C110.5 (3)
C5—C4—C41—C4620.4 (3)C4—C41—C42—C43178.7 (2)
N3—C4—C41—C46159.5 (2)C42—C41—C46—C450.3 (3)
N3—C4—C41—C4221.9 (3)C46—C41—C42—C430.0 (3)
C16—C11—C12—C131.2 (3)C4—C41—C46—C45179.0 (2)
N1—C11—C12—C13179.29 (19)C41—C42—C43—C440.3 (3)
N1—C11—C16—C15178.24 (19)C42—C43—C44—C450.3 (4)
C12—C11—C16—C152.2 (3)C43—C44—C45—C460.0 (4)
C11—C12—C13—C141.6 (3)C44—C45—C46—C410.3 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1; (iv) x+3/2, y1/2, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x, y1, z; (vii) x+2, y1, z+3/2; (viii) x1/2, y+1/2, z1/2; (ix) x+2, y, z+3/2; (x) x+2, y+1, z+1; (xi) x+2, y+1, z+3/2; (xii) x+2, y, z+1; (xiii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H9ClF3N3
Mr323.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)249
a, b, c (Å)30.7475 (16), 5.8877 (3), 15.4364 (8)
β (°) 105.470 (5)
V3)2693.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.33 × 0.26 × 0.24
Data collection
DiffractometerOxford Diffraction GEMINI S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012),
Tmin, Tmax0.902, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
3934, 2355, 1899
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.091, 1.07
No. of reflections2355
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: CrysAlis PRO (Agilent, 2012), TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999), TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

We acknowledge support of this work by Griffith University, the Queensland University of Technology, the Strategic Research Center for Biotechnology, Chemistry and Systems Biology and the Institute for Frontier Materials Deakin University.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlam, M. S., Kajiki, R., Hanatani, H., Kong, X., Ozoe, F., Matsui, Y., Matsumura, F. & Ozoe, Y. (2006). J. Agric. Food Chem. 54, 1361–1372.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlam, M. S., Ozoe, F., Matsumura, F. & Ozoe, Y. (2007). Bioorg. Med. Chem. 15, 5090–5104.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBock, V. D., Hiemstra, H. & van Maarseveen, J. H. (2006). Eur. J. Org. Chem. pp. 51–68.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHenderson, L. C., Altimari, J. M., Dyson, G., Servinis, L., Niranjan, B. & Risbridger, G. P. (2012). Bioorg. Chem. 40, 1–5.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIrie, T., Fujii, I. & Sawa, M. (2012). Bioorg. Med. Chem. Lett. 22, 591–596.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJia, Z. & Zhu, Q. (2010). Bioorg. Med. Chem. Lett. 20, 6222–6225.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLin, J. R. (2010). Acta Cryst. E66, o1967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation. (2001). TEXSAN for Windows. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds