organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,5-Trimeth­­oxy­phenol

aTianjin Entry–Exit Inspection and Quarantine Bureau, Tianjin 300201, People's Republic of China
*Correspondence e-mail: xiaochuanjia2012@163.com

(Received 12 October 2012; accepted 15 October 2012; online 20 October 2012)

The asymmetric unit of the title compound, C9H12O4, consists of two crystallographically independent mol­ecules with similar conformations: essentially planar [r.m.s deviations for C6O4 = 0.0057 and 0.0137 Å] except for the central meth­oxy-methyl group [C—C—O—C torsion angles = 83.3 (2) and 83.9 (2)°]. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules, generating supra­molecular chains along the b axis.The three-dimensional crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For background information on the energetics and anti-oxidant potential of phenolic compounds, see: Matos et al. (2008[Matos, M. A. R., Miranda, M. S. & Morais, V. M. F. (2008). J. Chem. Thermodyn. 40, 625-631.]); Gong et al. (2009[Gong, J. X., Huang, K. X., Wang, F., Yang, L. X., Feng, Y. B., Li, H. B., Li, X. K., Zeng, S., Wu, X. M., Stöckigt, J., Zhao, Y. & Qu, J. (2009). Bioorg. Med. Chem. 17, 3414-3425.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12O4

  • Mr = 184.19

  • Monoclinic, P 21 /c

  • a = 15.355 (3) Å

  • b = 11.139 (2) Å

  • c = 11.546 (2) Å

  • β = 111.38 (3)°

  • V = 1839.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.990

  • 16747 measured reflections

  • 3257 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.123

  • S = 1.05

  • 3257 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C3,C5,C7,C9 and C10–C12,C14,C16,C18 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O7i 0.82 1.93 2.7484 (18) 179
O1—H1⋯O3ii 0.82 1.90 2.7204 (17) 175
C6—H6A⋯O1iii 0.96 2.57 3.256 (3) 129
C15—H15A⋯O5iv 0.96 2.59 3.270 (3) 128
C4—H4BCg1v 0.96 2.86 3.777 (2) 160
C17—H17BCg2vi 0.96 2.85 3.736 (2) 154
C13—H13B⋯O1vii 0.96 2.49 3.303 (3) 142
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+2, -z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of the energetics of phenolic compounds (Matos et al., 2008) has considerable practical interest since this class of chemical compound includes a large number of synthetic and naturally occurring antioxidants. They inhibit the oxidation of materials of both commercial and biological importance. This antioxidant function is due to the ability of phenols to trap the peroxyl radicals via the hydrogen transfer reaction (Gong et al., 2009). In order to expand this field, we now report the structure of the title compound.

The molecule of the title compound (Fig. 1), consists of two crystallographically independent molecules, A and B, with similar conformations. All O-atoms in both molecules are coplanar with the benzene rings they are attached to, and the mean r.s.m in molecules A and B are 0.0057 and 0.0137 Å, respectively.

In the crystal, it is worth mentioning that strong intermolecular O—H···O hydrogen bonds link molecules A and B to generate a one dimensional chain (Fig. 2 and Table 1) along the b axis. These are connected into a supramolecular layer in the bc plane by C—H···O and C-H···π interactions (Table 1). The layers are connected into a three-dimensional crystal structure by C—H···O hydrogen bonds (Table 2) involving the C13 and O1 atoms (Table 1).

Related literature top

For background information on the energetics and anti-oxidant potential of phenolic compounds, see: Matos et al. (2008); Gong et al. (2009).

Experimental top

3,4,5-Trimethoxyphenol was obtained commercially from Aldrich Chemical Co. Single crystals suitable for X-ray diffraction were obtained by recrystallizing the prude product from its chloroform solution by slow evaporation at room temperature over a period of seven days.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A potion of the unit cell contents highlighting the chain structure of the title compound, linked via O—H···O hydrogen bonds (dashed lines). H atoms have been omitted for clarity, except for those involved in hydrogen-bonded interactions.
3,4,5-Trimethoxyphenol top
Crystal data top
C9H12O4F(000) = 784
Mr = 184.19Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5944 reflections
a = 15.355 (3) Åθ = 3.3–25.4°
b = 11.139 (2) ŵ = 0.11 mm1
c = 11.546 (2) ÅT = 296 K
β = 111.38 (3)°Block, colourless
V = 1839.0 (6) Å30.20 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3257 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.981, Tmax = 0.990k = 1313
16747 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3972P]
where P = (Fo2 + 2Fc2)/3
3257 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C9H12O4V = 1839.0 (6) Å3
Mr = 184.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.355 (3) ŵ = 0.11 mm1
b = 11.139 (2) ÅT = 296 K
c = 11.546 (2) Å0.20 × 0.15 × 0.10 mm
β = 111.38 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3257 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2957 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.025
16747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.12 e Å3
3257 reflectionsΔρmin = 0.16 e Å3
243 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33376 (8)0.41617 (11)0.19861 (12)0.0525 (3)
H10.35210.36290.16420.079*
O40.64034 (9)0.58079 (12)0.27042 (13)0.0602 (4)
O30.61501 (8)0.74092 (10)0.42789 (11)0.0509 (3)
C20.39182 (12)0.57694 (14)0.33613 (15)0.0445 (4)
H20.33660.57720.35200.053*
C30.46239 (12)0.65836 (14)0.39471 (15)0.0443 (4)
C50.54480 (11)0.65824 (14)0.37034 (15)0.0443 (4)
C70.55643 (11)0.57554 (15)0.28722 (15)0.0447 (4)
O20.45748 (9)0.74281 (11)0.47812 (13)0.0579 (4)
C90.48632 (11)0.49346 (15)0.22769 (15)0.0452 (4)
H90.49380.43840.17150.054*
C10.40488 (11)0.49505 (14)0.25354 (15)0.0426 (4)
C80.64850 (16)0.5093 (2)0.1731 (2)0.0805 (7)
H8A0.64230.42610.19030.121*
H8B0.70850.52250.16730.121*
H8C0.60020.53090.09580.121*
C60.67555 (14)0.7061 (2)0.55005 (19)0.0676 (6)
H6A0.64200.70980.60570.101*
H6B0.72810.75960.57860.101*
H6C0.69720.62560.54780.101*
C40.38077 (15)0.73582 (19)0.5198 (2)0.0644 (5)
H4A0.32350.75190.45140.097*
H4B0.38900.79400.58430.097*
H4C0.37820.65680.55170.097*
O70.11271 (9)0.75191 (10)0.18255 (12)0.0519 (3)
O50.16694 (8)1.08198 (11)0.13218 (12)0.0557 (3)
H50.15011.13230.18780.084*
O60.13740 (8)0.91453 (12)0.36143 (12)0.0587 (4)
C160.03779 (12)0.83857 (15)0.06267 (15)0.0462 (4)
C120.05455 (11)0.92090 (15)0.26236 (15)0.0440 (4)
C180.10754 (12)0.92213 (15)0.05119 (16)0.0479 (4)
H180.16170.92350.01970.058*
C140.04348 (11)0.83728 (14)0.16863 (15)0.0439 (4)
C110.01507 (11)1.00391 (15)0.25244 (15)0.0456 (4)
H110.00791.05900.31580.055*
O80.04248 (9)0.75347 (11)0.02475 (12)0.0606 (4)
C100.09552 (11)1.00336 (15)0.14650 (16)0.0450 (4)
C170.11899 (15)0.75973 (19)0.14040 (19)0.0659 (6)
H17A0.17650.74960.12660.099*
H17B0.11310.69740.19450.099*
H17C0.11900.83650.17820.099*
C150.17645 (16)0.7822 (2)0.1232 (2)0.0735 (6)
H15A0.14500.77790.03460.110*
H15B0.22790.72680.14870.110*
H15C0.19940.86220.14630.110*
C130.14821 (16)0.9927 (2)0.46273 (19)0.0749 (6)
H13A0.14351.07440.43480.112*
H13B0.20840.97980.52670.112*
H13C0.10010.97660.49530.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0433 (6)0.0543 (8)0.0560 (7)0.0037 (5)0.0135 (6)0.0136 (6)
O40.0501 (7)0.0696 (9)0.0688 (9)0.0055 (6)0.0311 (7)0.0059 (7)
O30.0527 (7)0.0453 (7)0.0509 (7)0.0101 (5)0.0143 (6)0.0044 (5)
C20.0429 (9)0.0426 (9)0.0496 (10)0.0027 (7)0.0186 (8)0.0017 (7)
C30.0492 (9)0.0375 (9)0.0460 (9)0.0017 (7)0.0172 (7)0.0010 (7)
C50.0463 (9)0.0387 (9)0.0454 (9)0.0035 (7)0.0139 (7)0.0049 (7)
C70.0438 (9)0.0461 (10)0.0458 (9)0.0033 (7)0.0182 (7)0.0074 (7)
O20.0614 (8)0.0503 (7)0.0698 (9)0.0090 (6)0.0330 (7)0.0185 (6)
C90.0490 (9)0.0439 (9)0.0427 (9)0.0047 (8)0.0167 (7)0.0002 (7)
C10.0406 (8)0.0418 (9)0.0408 (8)0.0029 (7)0.0092 (7)0.0035 (7)
C80.0706 (14)0.0924 (17)0.0975 (17)0.0050 (12)0.0533 (13)0.0198 (14)
C60.0596 (12)0.0693 (13)0.0594 (12)0.0081 (10)0.0047 (10)0.0066 (10)
C40.0720 (13)0.0632 (12)0.0698 (13)0.0076 (10)0.0399 (11)0.0177 (10)
O70.0555 (7)0.0461 (7)0.0579 (8)0.0084 (5)0.0253 (6)0.0097 (5)
O50.0506 (7)0.0549 (8)0.0590 (8)0.0072 (6)0.0167 (6)0.0080 (6)
O60.0483 (7)0.0689 (9)0.0505 (7)0.0006 (6)0.0079 (6)0.0046 (6)
C160.0547 (10)0.0395 (9)0.0449 (9)0.0035 (8)0.0188 (8)0.0016 (7)
C120.0416 (9)0.0468 (10)0.0434 (9)0.0064 (7)0.0151 (7)0.0038 (7)
C180.0481 (9)0.0477 (10)0.0437 (9)0.0014 (8)0.0117 (8)0.0004 (7)
C140.0459 (9)0.0402 (9)0.0478 (9)0.0005 (7)0.0197 (8)0.0048 (7)
C110.0493 (10)0.0442 (9)0.0448 (9)0.0058 (8)0.0189 (8)0.0047 (7)
O80.0676 (8)0.0514 (8)0.0547 (8)0.0062 (6)0.0126 (6)0.0130 (6)
C100.0444 (9)0.0419 (9)0.0516 (10)0.0010 (7)0.0210 (8)0.0019 (7)
C170.0733 (13)0.0658 (13)0.0511 (11)0.0015 (10)0.0139 (10)0.0141 (9)
C150.0728 (14)0.0749 (14)0.0894 (16)0.0121 (11)0.0492 (13)0.0126 (12)
C130.0688 (13)0.0847 (16)0.0551 (12)0.0053 (12)0.0034 (10)0.0148 (11)
Geometric parameters (Å, º) top
O1—C11.364 (2)O7—C141.391 (2)
O1—H10.8200O7—C151.425 (2)
O4—C71.372 (2)O5—C101.366 (2)
O4—C81.420 (2)O5—H50.8200
O3—C51.389 (2)O6—C121.368 (2)
O3—C61.431 (2)O6—C131.418 (2)
C2—C31.386 (2)C16—O81.367 (2)
C2—C11.386 (2)C16—C181.388 (2)
C2—H20.9300C16—C141.393 (2)
C3—O21.368 (2)C12—C111.386 (2)
C3—C51.393 (2)C12—C141.391 (2)
C5—C71.388 (2)C18—C101.384 (2)
C7—C91.389 (2)C18—H180.9300
O2—C41.428 (2)C11—C101.386 (2)
C9—C11.388 (2)C11—H110.9300
C9—H90.9300O8—C171.423 (2)
C8—H8A0.9600C17—H17A0.9600
C8—H8B0.9600C17—H17B0.9600
C8—H8C0.9600C17—H17C0.9600
C6—H6A0.9600C15—H15A0.9600
C6—H6B0.9600C15—H15B0.9600
C6—H6C0.9600C15—H15C0.9600
C4—H4A0.9600C13—H13A0.9600
C4—H4B0.9600C13—H13B0.9600
C4—H4C0.9600C13—H13C0.9600
C1—O1—H1109.5C14—O7—C15114.37 (14)
C7—O4—C8116.51 (15)C10—O5—H5109.5
C5—O3—C6113.81 (13)C12—O6—C13116.83 (15)
C3—C2—C1118.89 (16)O8—C16—C18124.27 (16)
C3—C2—H2120.6O8—C16—C14115.49 (15)
C1—C2—H2120.6C18—C16—C14120.24 (15)
O2—C3—C2124.04 (15)O6—C12—C11123.91 (15)
O2—C3—C5115.48 (15)O6—C12—C14115.38 (15)
C2—C3—C5120.48 (15)C11—C12—C14120.71 (15)
C7—C5—O3119.84 (15)C10—C18—C16119.19 (16)
C7—C5—C3119.71 (15)C10—C18—H18120.4
O3—C5—C3120.44 (15)C16—C18—H18120.4
O4—C7—C5115.70 (15)C12—C14—O7119.76 (15)
O4—C7—C9123.82 (15)C12—C14—C16119.52 (15)
C5—C7—C9120.48 (15)O7—C14—C16120.71 (15)
C3—O2—C4117.63 (14)C10—C11—C12118.84 (15)
C1—C9—C7118.82 (15)C10—C11—H11120.6
C1—C9—H9120.6C12—C11—H11120.6
C7—C9—H9120.6C16—O8—C17117.52 (14)
O1—C1—C2116.85 (15)O5—C10—C18117.03 (15)
O1—C1—C9121.55 (15)O5—C10—C11121.48 (15)
C2—C1—C9121.61 (15)C18—C10—C11121.49 (16)
O4—C8—H8A109.5O8—C17—H17A109.5
O4—C8—H8B109.5O8—C17—H17B109.5
H8A—C8—H8B109.5H17A—C17—H17B109.5
O4—C8—H8C109.5O8—C17—H17C109.5
H8A—C8—H8C109.5H17A—C17—H17C109.5
H8B—C8—H8C109.5H17B—C17—H17C109.5
O3—C6—H6A109.5O7—C15—H15A109.5
O3—C6—H6B109.5O7—C15—H15B109.5
H6A—C6—H6B109.5H15A—C15—H15B109.5
O3—C6—H6C109.5O7—C15—H15C109.5
H6A—C6—H6C109.5H15A—C15—H15C109.5
H6B—C6—H6C109.5H15B—C15—H15C109.5
O2—C4—H4A109.5O6—C13—H13A109.5
O2—C4—H4B109.5O6—C13—H13B109.5
H4A—C4—H4B109.5H13A—C13—H13B109.5
O2—C4—H4C109.5O6—C13—H13C109.5
H4A—C4—H4C109.5H13A—C13—H13C109.5
H4B—C4—H4C109.5H13B—C13—H13C109.5
C1—C2—C3—O2179.75 (15)C13—O6—C12—C114.7 (2)
C1—C2—C3—C50.4 (2)C13—O6—C12—C14175.54 (17)
C6—O3—C5—C797.21 (19)O8—C16—C18—C10179.30 (16)
C6—O3—C5—C383.3 (2)C14—C16—C18—C100.4 (3)
O2—C3—C5—C7179.80 (15)O6—C12—C14—O72.6 (2)
C2—C3—C5—C70.3 (2)C11—C12—C14—O7177.60 (14)
O2—C3—C5—O30.7 (2)O6—C12—C14—C16178.57 (15)
C2—C3—C5—O3179.16 (14)C11—C12—C14—C161.2 (2)
C8—O4—C7—C5171.18 (17)C15—O7—C14—C1297.3 (2)
C8—O4—C7—C99.5 (3)C15—O7—C14—C1683.9 (2)
O3—C5—C7—O41.5 (2)O8—C16—C14—C12179.76 (15)
C3—C5—C7—O4179.02 (15)C18—C16—C14—C120.5 (2)
O3—C5—C7—C9179.10 (14)O8—C16—C14—O71.5 (2)
C3—C5—C7—C90.4 (2)C18—C16—C14—O7178.29 (15)
C2—C3—O2—C48.9 (2)O6—C12—C11—C10178.80 (15)
C5—C3—O2—C4171.24 (16)C14—C12—C11—C100.9 (2)
O4—C7—C9—C1178.85 (15)C18—C16—O8—C177.3 (3)
C5—C7—C9—C10.5 (2)C14—C16—O8—C17173.01 (16)
C3—C2—C1—O1179.64 (14)C16—C18—C10—O5178.55 (15)
C3—C2—C1—C90.5 (2)C16—C18—C10—C110.7 (3)
C7—C9—C1—O1179.58 (14)C12—C11—C10—O5179.19 (15)
C7—C9—C1—C20.6 (2)C12—C11—C10—C180.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C3,C5,C7,C9 and C10–C12,C14,C16,C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5···O7i0.821.932.7484 (18)179
O1—H1···O3ii0.821.902.7204 (17)175
C6—H6A···O1iii0.962.573.256 (3)129
C15—H15A···O5iv0.962.593.270 (3)128
C4—H4B···Cg1v0.962.863.777 (2)160
C17—H17B···Cg2vi0.962.853.736 (2)154
C13—H13B···O1vii0.962.493.303 (3)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+2, z; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z3/2; (vii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H12O4
Mr184.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.355 (3), 11.139 (2), 11.546 (2)
β (°) 111.38 (3)
V3)1839.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16747, 3257, 2957
Rint0.025
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.123, 1.05
No. of reflections3257
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C3,C5,C7,C9 and C10–C12,C14,C16,C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5···O7i0.821.932.7484 (18)179
O1—H1···O3ii0.821.902.7204 (17)175
C6—H6A···O1iii0.962.573.256 (3)129
C15—H15A···O5iv0.962.593.270 (3)128
C4—H4B···Cg1v0.962.863.777 (2)160
C17—H17B···Cg2vi0.962.853.736 (2)154
C13—H13B···O1vii0.962.493.303 (3)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+2, z; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z3/2; (vii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the Tianjin Entry–Exit Inspection and Quarantine Bureau for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGong, J. X., Huang, K. X., Wang, F., Yang, L. X., Feng, Y. B., Li, H. B., Li, X. K., Zeng, S., Wu, X. M., Stöckigt, J., Zhao, Y. & Qu, J. (2009). Bioorg. Med. Chem. 17, 3414–3425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatos, M. A. R., Miranda, M. S. & Morais, V. M. F. (2008). J. Chem. Thermodyn. 40, 625–631.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds