organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3199-o3200

3-Ethyl-3-hy­dr­oxy-8-meth­­oxy­quinoline-2,4(1H,3H)-dione monohydrate

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin 76272, Czech Republic, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: andrej.pevec@fkkt.uni-lj.si

(Received 15 October 2012; accepted 17 October 2012; online 24 October 2012)

In the title hydrate, C12H13NO4·H2O, the piperidine ring that is fused to the benzene ring is in a sofa conformation with the chiral C atom lying 0.4084 (18) Å out of the plane of the nine fused-ring atoms. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the organic mol­ecules and water mol­ecules into chains running along the b-axis direction. The chains are further connected into layers parallel to the bc plane by ππ inter­actions between inversion-related benzene rings [centroid–centroid distance = 3.8846 (9) Å].

Related literature

For methods of preparation of 3-alkyl- or 3-aryl-3-hy­droxy­quinoline-2,4-diones by oxidation of the corresponding 3-alkyl- or 3-aryl­quinolin-2-ones, see: Stadlbauer & Kappe (1982[Stadlbauer, W. & Kappe, T. (1982). Z. Naturforsch. Teil B, 37, 1196-1200.]); Stadlbauer et al. (1992[Stadlbauer, W., Lutschounig, H., Schindler, G., Witoszynskyj, T. & Kappe, T. (1992). J. Heterocycl. Chem. 29, 1535-1540.]). For naturally occurring 3-hy­droxy­quinoline-2,4-diones, see: Neuenhaus & Budzikiewicz (1979[Neuenhaus, W. & Budzikiewicz, H. (1979). Z. Naturforsch. Teil B, 34, 313-315.]); Luo et al. (2009[Luo, X. M., Qi, S. H., Yin, H., Gao, C. H. & Zhang, S. (2009). Chem. Pharm. Bull. 57, 600-602.]). For the biological activity of 3-hy­droxy­quinoline-2,4-diones, see: Prisyazhnyuk et al. (1984[Prisyazhnyuk, P. V., Patratii, V. K., Prodanchuk, N. G., Tashchuk, K. G. & Fedoryak, S. D. (1984). Khim. Farm. Zh. 18, 440-444.]); Luo et al. (2009[Luo, X. M., Qi, S. H., Yin, H., Gao, C. H. & Zhang, S. (2009). Chem. Pharm. Bull. 57, 600-602.]). For a related structure, see: Kafka et al. (2012[Kafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3198.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO4·H2O

  • Mr = 253.25

  • Orthorhombic, P b c a

  • a = 16.5055 (4) Å

  • b = 8.8068 (2) Å

  • c = 16.6690 (4) Å

  • V = 2423.02 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.50 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.948, Tmax = 0.979

  • 5200 measured reflections

  • 2779 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.03

  • 2779 reflections

  • 175 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.35 2.9430 (17) 130
N1—H1N⋯O1W 0.86 (1) 2.01 (2) 2.8438 (19) 163 (2)
O1W—H1W⋯O2ii 0.92 (2) 2.07 (2) 2.9425 (19) 158 (2)
O1W—H2W⋯O3iii 0.92 (2) 2.15 (2) 2.9401 (19) 144 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.] and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

3-Alkyl- and 3-aryl-3-hydroxyquinoline-2,4-diones have been prepared by oxidation of the corresponding 3-alkyl- or 3-arylquinolin-2-ones by means of oxygen under UV irradiation (Stadlbauer & Kappe, 1982), m-chloroperoxybenzoic acid (Stadlbauer & Kappe, 1982), hydrogen peroxide (Stadlbauer & Kappe, 1982), nitric acid (Stadlbauer et al., 1992), or peracetic acid (Stadlbauer et al., 1992). Several 3-hydroxyquinoline-2,4-diones were isolated from bacteria Pseudomonas aeruginosa (Neuenhaus & Budzikiewicz, 1979) and from stem bark of Micromelum falcatum (Luo et al., 2009). Biological activity of several 3-hydroxyquinoline-2,4-diones has been investigated (Prisyazhnyuk et al., 1984; Luo et al., 2009). 3-Alkyl- and 3-aryl-3-hydroxyquinoline-2,4-diones are important synthetic intermediates for the preparation of new types of heterocyclic compounds.

The asymmetric unit of the title compound (I) consists of a single 3-ethyl-3-hydroxy-8-methoxyquinoline-2,4(1H,3H)-dione molecule and solvated water molecule (Fig. 1). The piperidine ring that is fused to the benzene ring has a sofa shape with chiral carbon center 0.4084 (18) Å out of the plane for 9 ring atoms. In the crystal packing organic molecules and solvated water molecules are connected by two intermolecular O—H···O and one N—H···O hydrogen bonds. These connections altogether with additional O—H···O hydrogen bonding between hydroxyl and carbonyl groups (Table 1) form linear chain running along the b axis. Non–covalent ππ interactions occur between inversion–related benzene rings [centroid–centroid distance = 3.8846 (9) Å], which stabilize the crystal packing and connect the chains into a two-dimensional supramolecular layer parallel to the bc plane (Fig. 2).

Related literature top

For methods of preparation of 3-alkyl- or 3-aryl-3-hydroxyquinoline-2,4-diones by oxidation of the corresponding 3-alkyl- or 3-arylquinolin-2-ones, see: Stadlbauer & Kappe (1982); Stadlbauer et al. (1992). For naturally occurring 3-hydroxyquinoline-2,4-diones, see: Neuenhaus & Budzikiewicz (1979); Luo et al. (2009). For the biological activity of 3-hydroxyquinoline-2,4-diones, see: Prisyazhnyuk et al. (1984); Luo et al. (2009). For a related structure, see: Kafka et al. (2012).

Experimental top

To a solution of 3-ethyl-4-hydroxy-8-methoxyquinolin-2(1H)-one (4.38 g, 20.0 mmol) in 0.5 M sodium hydroxide (120 ml), 30% peroxyacetic acid in acetic acid (6.7 ml, 30 mmol) was added drop-wise within 30 min under stirring at room temperature. After several minutes a precipitate started to form. The reaction mixture was stirred for additional 30 min and then left at 10 °C overnight. The solid phase was filtered off under suction, dispersed in 5% aqueous sodium bicarbonate solution (25 ml), filtered off and washed with water (3 x 20 ml). Crystallization of the above air-dried solid from toluene afforded 3.92 g (83%) of the final product (I), M.pt 371–372 K.

Refinement top

The N-bonded hydrogen atom was located in a difference map and refined with the using distance restraint with N—H = 0.86±0.02 Å and with Uiso(H) = 1.2Ueq(N). Water H atoms were located in a difference map and refined with Uiso(H) = 1.2Ueq(O). The O—H distance of water were restrained to be 0.96±0.02 Å. All other H atoms were included in the model at geometrically calculated positions and refined using a riding model, with C—H bond lengths constrained to 0.93 Å (aromatic H), 0.96 Å (methyl H), 0.97 Å (methylene H) and O—H = 0.82 Å, and with Uiso(H) values of 1.2Ueq(C) [for aromatic and methylene H] or 1.5Ueq(C) [for oxygen and methyl H].

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), with the O—H···O and N—H···O hydrogen bonds, and ππ interactions denoted by dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) x, y + 1, z; (iii) -x, y + 1/2, -z + 3/2]
3-Ethyl-3-hydroxy-8-methoxyquinoline-2,4(1H,3H)-dione monohydrate top
Crystal data top
C12H13NO4·H2ODx = 1.388 Mg m3
Mr = 253.25Melting point = 371–372 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3161 reflections
a = 16.5055 (4) Åθ = 1.0–27.5°
b = 8.8068 (2) ŵ = 0.11 mm1
c = 16.6690 (4) ÅT = 293 K
V = 2423.02 (10) Å3Prism, yellow
Z = 80.50 × 0.25 × 0.20 mm
F(000) = 1072
Data collection top
Nonius KappaCCD area-detector
diffractometer
2779 independent reflections
Radiation source: fine-focus sealed tube1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ scans + ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 2121
Tmin = 0.948, Tmax = 0.979k = 1111
5200 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.4669P]
where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max = 0.0001
175 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H13NO4·H2OV = 2423.02 (10) Å3
Mr = 253.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.5055 (4) ŵ = 0.11 mm1
b = 8.8068 (2) ÅT = 293 K
c = 16.6690 (4) Å0.50 × 0.25 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2779 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1963 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.979Rint = 0.019
5200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
2779 reflectionsΔρmin = 0.23 e Å3
175 parameters
Special details top

Experimental. 211 frames in 4 sets of ϕ scans + ω scans. Rotation/frame = 2 °. Crystal-detector distance = 31 mm. Measuring time = 20 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08014 (8)0.56475 (12)0.75104 (6)0.0505 (3)
O20.04557 (8)0.18242 (13)0.56925 (8)0.0576 (4)
O30.05871 (8)0.26982 (13)0.72594 (7)0.0527 (3)
H30.03590.19650.70580.079*
O40.14902 (8)0.81485 (13)0.51080 (7)0.0542 (3)
N10.11348 (8)0.61105 (15)0.62211 (7)0.0395 (3)
H1N0.1065 (10)0.7068 (16)0.6299 (11)0.047*
C10.09586 (9)0.51728 (17)0.68405 (8)0.0374 (3)
C20.10269 (9)0.34757 (17)0.66669 (9)0.0392 (4)
C30.07607 (9)0.30617 (16)0.58203 (10)0.0408 (4)
C40.09477 (9)0.41692 (17)0.51912 (9)0.0381 (3)
C50.09051 (10)0.3782 (2)0.43780 (10)0.0481 (4)
H50.07770.27950.42270.058*
C60.10534 (11)0.4863 (2)0.38047 (10)0.0527 (4)
H60.10230.46080.32640.063*
C70.12485 (10)0.6336 (2)0.40285 (9)0.0492 (4)
H70.13440.70620.36340.059*
C80.13022 (9)0.67423 (18)0.48253 (9)0.0410 (4)
C90.11398 (9)0.56549 (17)0.54186 (8)0.0358 (3)
C100.19372 (10)0.3023 (2)0.67026 (10)0.0523 (4)
H10A0.19860.19500.65810.063*
H10B0.22280.35790.62910.063*
C110.23315 (12)0.3326 (3)0.74990 (11)0.0683 (6)
H11A0.20350.28170.79150.102*
H11B0.23330.43990.76020.102*
H11C0.28790.29570.74900.102*
C120.16490 (14)0.9320 (2)0.45424 (12)0.0670 (6)
H12A0.11790.94770.42140.101*
H12B0.20990.90330.42100.101*
H12C0.17771.02430.48220.101*
O1W0.06321 (11)0.90745 (16)0.66799 (10)0.0752 (5)
H1W0.0478 (14)0.978 (3)0.6301 (13)0.090*
H2W0.0132 (11)0.900 (3)0.6914 (14)0.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0709 (8)0.0477 (7)0.0329 (6)0.0008 (5)0.0073 (5)0.0009 (5)
O20.0692 (8)0.0379 (6)0.0657 (8)0.0052 (5)0.0121 (6)0.0034 (5)
O30.0674 (8)0.0436 (6)0.0472 (7)0.0100 (6)0.0055 (6)0.0084 (5)
O40.0786 (9)0.0454 (6)0.0386 (6)0.0116 (6)0.0060 (6)0.0066 (5)
N10.0543 (8)0.0341 (6)0.0301 (6)0.0024 (5)0.0009 (5)0.0008 (5)
C10.0403 (8)0.0402 (8)0.0318 (7)0.0000 (6)0.0002 (6)0.0013 (6)
C20.0440 (8)0.0380 (8)0.0357 (8)0.0022 (6)0.0002 (6)0.0046 (6)
C30.0398 (8)0.0368 (8)0.0457 (9)0.0065 (6)0.0034 (7)0.0034 (6)
C40.0369 (7)0.0427 (8)0.0346 (7)0.0054 (6)0.0030 (6)0.0040 (6)
C50.0512 (9)0.0533 (10)0.0399 (9)0.0082 (8)0.0058 (7)0.0118 (7)
C60.0588 (10)0.0682 (11)0.0312 (8)0.0108 (9)0.0013 (7)0.0079 (8)
C70.0531 (9)0.0626 (11)0.0319 (8)0.0079 (8)0.0049 (7)0.0053 (7)
C80.0429 (8)0.0451 (9)0.0349 (8)0.0033 (6)0.0040 (6)0.0024 (7)
C90.0360 (7)0.0418 (8)0.0295 (7)0.0037 (6)0.0001 (6)0.0000 (6)
C100.0496 (9)0.0584 (10)0.0490 (10)0.0130 (8)0.0069 (8)0.0009 (8)
C110.0583 (11)0.0913 (16)0.0553 (11)0.0106 (11)0.0155 (9)0.0012 (10)
C120.0872 (15)0.0552 (11)0.0587 (12)0.0077 (10)0.0127 (10)0.0164 (9)
O1W0.0992 (11)0.0548 (8)0.0715 (10)0.0047 (8)0.0365 (9)0.0061 (7)
Geometric parameters (Å, º) top
O1—C11.2202 (17)C6—C71.388 (3)
O2—C31.2193 (19)C6—H60.9300
O3—C21.4040 (18)C7—C81.378 (2)
O3—H30.8200C7—H70.9300
O4—C81.361 (2)C8—C91.402 (2)
O4—C121.422 (2)C10—C111.502 (2)
N1—C11.3537 (19)C10—H10A0.9700
N1—C91.3966 (18)C10—H10B0.9700
N1—H1N0.861 (14)C11—H11A0.9600
C1—C21.527 (2)C11—H11B0.9600
C2—C31.522 (2)C11—H11C0.9600
C2—C101.555 (2)C12—H12A0.9600
C3—C41.465 (2)C12—H12B0.9600
C4—C91.399 (2)C12—H12C0.9600
C4—C51.399 (2)O1W—H1W0.923 (16)
C5—C61.371 (3)O1W—H2W0.916 (16)
C5—H50.9300
C2—O3—H3109.5C8—C7—H7119.5
C8—O4—C12118.23 (14)C6—C7—H7119.5
C1—N1—C9123.82 (13)O4—C8—C7125.75 (15)
C1—N1—H1N117.0 (12)O4—C8—C9114.89 (13)
C9—N1—H1N115.2 (12)C7—C8—C9119.34 (15)
O1—C1—N1122.32 (14)N1—C9—C4121.80 (13)
O1—C1—C2121.64 (13)N1—C9—C8118.71 (13)
N1—C1—C2115.90 (12)C4—C9—C8119.41 (13)
O3—C2—C3112.71 (13)C11—C10—C2114.01 (15)
O3—C2—C1107.81 (12)C11—C10—H10A108.8
C3—C2—C1112.89 (12)C2—C10—H10A108.8
O3—C2—C10110.35 (13)C11—C10—H10B108.8
C3—C2—C10104.65 (12)C2—C10—H10B108.8
C1—C2—C10108.35 (13)H10A—C10—H10B107.6
O2—C3—C4123.84 (15)C10—C11—H11A109.5
O2—C3—C2119.69 (14)C10—C11—H11B109.5
C4—C3—C2116.32 (13)H11A—C11—H11B109.5
C9—C4—C5120.10 (14)C10—C11—H11C109.5
C9—C4—C3118.46 (13)H11A—C11—H11C109.5
C5—C4—C3121.38 (14)H11B—C11—H11C109.5
C6—C5—C4119.83 (16)O4—C12—H12A109.5
C6—C5—H5120.1O4—C12—H12B109.5
C4—C5—H5120.1H12A—C12—H12B109.5
C5—C6—C7120.20 (15)O4—C12—H12C109.5
C5—C6—H6119.9H12A—C12—H12C109.5
C7—C6—H6119.9H12B—C12—H12C109.5
C8—C7—C6121.09 (16)H1W—O1W—H2W95 (2)
C9—N1—C1—O1165.15 (15)C4—C5—C6—C70.2 (2)
C9—N1—C1—C219.1 (2)C5—C6—C7—C80.4 (3)
O1—C1—C2—O322.8 (2)C12—O4—C8—C70.1 (3)
N1—C1—C2—O3161.35 (13)C12—O4—C8—C9178.93 (16)
O1—C1—C2—C3147.98 (15)C6—C7—C8—O4179.85 (16)
N1—C1—C2—C336.19 (18)C6—C7—C8—C91.4 (2)
O1—C1—C2—C1096.60 (17)C1—N1—C9—C40.9 (2)
N1—C1—C2—C1079.22 (16)C1—N1—C9—C8177.65 (14)
O3—C2—C3—O226.4 (2)C5—C4—C9—N1175.61 (14)
C1—C2—C3—O2148.87 (14)C3—C4—C9—N11.8 (2)
C10—C2—C3—O293.51 (17)C5—C4—C9—C81.1 (2)
O3—C2—C3—C4157.87 (13)C3—C4—C9—C8178.52 (14)
C1—C2—C3—C435.42 (18)O4—C8—C9—N13.8 (2)
C10—C2—C3—C482.20 (16)C7—C8—C9—N1175.08 (14)
O2—C3—C4—C9167.10 (15)O4—C8—C9—C4179.40 (14)
C2—C3—C4—C917.4 (2)C7—C8—C9—C41.7 (2)
O2—C3—C4—C510.3 (2)O3—C2—C10—C1158.1 (2)
C2—C3—C4—C5165.20 (14)C3—C2—C10—C11179.62 (16)
C9—C4—C5—C60.1 (2)C1—C2—C10—C1159.70 (19)
C3—C4—C5—C6177.47 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.352.9430 (17)130
N1—H1N···O1W0.86 (1)2.01 (2)2.8438 (19)163 (2)
O1W—H1W···O2ii0.92 (2)2.07 (2)2.9425 (19)158 (2)
O1W—H2W···O3iii0.92 (2)2.15 (2)2.9401 (19)144 (2)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H13NO4·H2O
Mr253.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.5055 (4), 8.8068 (2), 16.6690 (4)
V3)2423.02 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.948, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5200, 2779, 1963
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.03
No. of reflections2779
No. of parameters175
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.352.9430 (17)130
N1—H1N···O1W0.861 (14)2.009 (15)2.8438 (19)163.1 (17)
O1W—H1W···O2ii0.923 (16)2.065 (19)2.9425 (19)158 (2)
O1W—H2W···O3iii0.916 (16)2.15 (2)2.9401 (19)144 (2)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

This study was supported by the inter­nal grant of TBU in Zlin (No. IGA/FT/2012/043), funded from the resources of specific university research, and the Slovenian Research Agency (Project P1–0230–0103 and Joint Project BI–CZ/07–08–018). This work was also partly supported through the infrastructure of the EN-FIST Centre of Excellence, Ljubljana.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKafka, S., Pevec, A., Proisl, K., Kimmel, R. & Košmrlj, J. (2012). Acta Cryst. E68, o3198.  CSD CrossRef IUCr Journals Google Scholar
First citationLuo, X. M., Qi, S. H., Yin, H., Gao, C. H. & Zhang, S. (2009). Chem. Pharm. Bull. 57, 600–602.  CrossRef PubMed CAS Google Scholar
First citationNeuenhaus, W. & Budzikiewicz, H. (1979). Z. Naturforsch. Teil B, 34, 313–315.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrisyazhnyuk, P. V., Patratii, V. K., Prodanchuk, N. G., Tashchuk, K. G. & Fedoryak, S. D. (1984). Khim. Farm. Zh. 18, 440–444.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadlbauer, W. & Kappe, T. (1982). Z. Naturforsch. Teil B, 37, 1196–1200.  Google Scholar
First citationStadlbauer, W., Lutschounig, H., Schindler, G., Witoszynskyj, T. & Kappe, T. (1992). J. Heterocycl. Chem. 29, 1535–1540.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3199-o3200
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds