metal-organic compounds
μ2-Oxalato-bis[triphenyl(thiourea-κS)tin(IV)]
aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh, Anta Diop Dakar Senegal, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: yayasow81@yahoo.fr
The 2(C2O4)(C6H5)6(CH4N2S)2], consists of one half of the organotin(IV) molecule. The remainder is generated by a twofold rotation axis passing through the mid-point of the oxalate C—C bond. The SnIV atom exhibits a distorted trigonal–bipyramidal coordination environment with the phenyl groups in equatorial positions and the thiourea and the monodentately bridging oxalate anion in axial positions. The molecules are linked through N—H⋯O hydrogen bonds involving the amino group of the thiourea ligand and the uncoordinating oxalate O atoms, forming layers parallel to (001). Weak C—H⋯O interactions are also present.
of the binuclear title compound, [SnRelated literature
For background to organotin(IV) chemistry, see: Evans & Karpel (1985); Gielen et al. (1995). For triphenyltin(IV)-containing compounds and their biological activity, see: Kamruddin et al. (1996). For related compounds, see: Diallo et al. (2009); Diasse-Sarr et al. (1997); Diop et al. (1997, 1999, 2003); Tiekink (1992).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1999); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).
Supporting information
10.1107/S1600536812040706/wm2662sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812040706/wm2662Isup2.hkl
All chemicals were purchased from Aldrich or Merck and used without any further purification. [Sn2(C2O4)(C6H5)6] has been obtained on allowing Sn(C6H5)3OH to react with oxalic acid in a 2:1 ratio in ethanol. A white powder is collected after slow evaporation. When [Sn2(C2O4)(C6H5)6] is mixed with SC(NH2)2 in a 1:2 ratio, both as ethanolic solutions, a colorless solution is obtained which gives crystals of [Sn2(C2O4)(C6H5)6(CH4N2S)2] suitable for X-ray work, after a slow solvent evaporation.
The maximum remaining electron density is 0.79 Å from C3 while the minimum density is in the immediate vicinity of tin. Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. The other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å and Uiso(H)= 1.2Ueq(C).
Data collection: COLLECT (Nonius, 1999); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).[Sn2(C2O4)(C6H5)6(CH4N2S)2] | F(000) = 1880 |
Mr = 940.24 | Dx = 1.605 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 26977 reflections |
a = 12.9161 (2) Å | θ = 2.9–27.5° |
b = 13.9870 (2) Å | µ = 1.44 mm−1 |
c = 21.8215 (3) Å | T = 150 K |
β = 99.238 (1)° | Block, colourless |
V = 3891.09 (10) Å3 | 0.30 × 0.30 × 0.20 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 4472 independent reflections |
Radiation source: fine-focus sealed tube | 3665 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
400 1.5 degree images with ϕ and ω scans | θmax = 27.5°, θmin = 3.8° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −16→16 |
Tmin = 0.659, Tmax = 0.747 | k = −18→18 |
31403 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0248P)2 + 7.4801P] where P = (Fo2 + 2Fc2)/3 |
4472 reflections | (Δ/σ)max = 0.001 |
251 parameters | Δρmax = 1.34 e Å−3 |
0 restraints | Δρmin = −1.11 e Å−3 |
[Sn2(C2O4)(C6H5)6(CH4N2S)2] | V = 3891.09 (10) Å3 |
Mr = 940.24 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.9161 (2) Å | µ = 1.44 mm−1 |
b = 13.9870 (2) Å | T = 150 K |
c = 21.8215 (3) Å | 0.30 × 0.30 × 0.20 mm |
β = 99.238 (1)° |
Nonius KappaCCD diffractometer | 4472 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 3665 reflections with I > 2σ(I) |
Tmin = 0.659, Tmax = 0.747 | Rint = 0.057 |
31403 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 1.34 e Å−3 |
4472 reflections | Δρmin = −1.11 e Å−3 |
251 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.165377 (13) | 0.128741 (12) | 0.141781 (7) | 0.01783 (7) | |
S | 0.33347 (5) | 0.18709 (5) | 0.09290 (3) | 0.02648 (16) | |
O1 | 0.03210 (13) | 0.08111 (13) | 0.18919 (8) | 0.0223 (4) | |
O2 | 0.09855 (14) | −0.05868 (13) | 0.22806 (8) | 0.0247 (4) | |
N1 | 0.3214 (2) | 0.34372 (19) | 0.16116 (13) | 0.0319 (6) | |
H1A | 0.340 (3) | 0.385 (3) | 0.1866 (18) | 0.050 (12)* | |
H1B | 0.256 (3) | 0.351 (2) | 0.1449 (16) | 0.040 (10)* | |
N2 | 0.4815 (2) | 0.2725 (2) | 0.17068 (13) | 0.0342 (6) | |
H2A | 0.509 (3) | 0.319 (3) | 0.1931 (16) | 0.044 (10)* | |
H2B | 0.519 (3) | 0.228 (3) | 0.1620 (17) | 0.050 (12)* | |
C1 | 0.07308 (19) | 0.25438 (17) | 0.11628 (11) | 0.0190 (5) | |
C2 | 0.0815 (2) | 0.30357 (19) | 0.06162 (12) | 0.0245 (6) | |
H2 | 0.1363 | 0.2876 | 0.0392 | 0.029* | |
C3 | 0.0110 (2) | 0.3755 (2) | 0.03950 (14) | 0.0308 (6) | |
H3 | 0.0181 | 0.4082 | 0.0023 | 0.037* | |
C4 | −0.0697 (2) | 0.3998 (2) | 0.07159 (14) | 0.0317 (7) | |
H4 | −0.1187 | 0.4480 | 0.0560 | 0.038* | |
C5 | −0.0780 (2) | 0.35315 (19) | 0.12646 (13) | 0.0266 (6) | |
H5 | −0.1323 | 0.3702 | 0.1491 | 0.032* | |
C6 | −0.0075 (2) | 0.28136 (19) | 0.14865 (12) | 0.0229 (6) | |
H6 | −0.0140 | 0.2500 | 0.1865 | 0.027* | |
C7 | 0.2578 (2) | 0.11799 (18) | 0.23207 (12) | 0.0215 (5) | |
C8 | 0.2292 (2) | 0.1691 (3) | 0.28081 (13) | 0.0410 (8) | |
H8 | 0.1752 | 0.2157 | 0.2724 | 0.049* | |
C9 | 0.2764 (3) | 0.1547 (4) | 0.34114 (15) | 0.0574 (11) | |
H9 | 0.2549 | 0.1913 | 0.3735 | 0.069* | |
C10 | 0.3516 (3) | 0.0900 (3) | 0.35449 (15) | 0.0576 (12) | |
H10 | 0.3830 | 0.0797 | 0.3964 | 0.069* | |
C11 | 0.3848 (4) | 0.0368 (3) | 0.3069 (2) | 0.0700 (14) | |
H11 | 0.4388 | −0.0095 | 0.3162 | 0.084* | |
C12 | 0.3373 (3) | 0.0529 (2) | 0.24521 (16) | 0.0515 (10) | |
H12 | 0.3605 | 0.0184 | 0.2125 | 0.062* | |
C13 | 0.15172 (19) | 0.01853 (18) | 0.07300 (11) | 0.0202 (5) | |
C14 | 0.1501 (2) | 0.0447 (2) | 0.01093 (12) | 0.0298 (6) | |
H14 | 0.1558 | 0.1102 | 0.0004 | 0.036* | |
C15 | 0.1403 (2) | −0.0245 (2) | −0.03532 (13) | 0.0360 (7) | |
H15 | 0.1396 | −0.0062 | −0.0773 | 0.043* | |
C16 | 0.1317 (2) | −0.1194 (2) | −0.02054 (14) | 0.0333 (7) | |
H16 | 0.1249 | −0.1665 | −0.0523 | 0.040* | |
C17 | 0.1328 (2) | −0.1461 (2) | 0.04042 (14) | 0.0343 (7) | |
H17 | 0.1266 | −0.2117 | 0.0506 | 0.041* | |
C18 | 0.1429 (2) | −0.0774 (2) | 0.08685 (12) | 0.0270 (6) | |
H18 | 0.1438 | −0.0964 | 0.1287 | 0.032* | |
C19 | 0.03827 (19) | 0.01088 (18) | 0.22640 (11) | 0.0190 (5) | |
C20 | 0.3813 (2) | 0.2744 (2) | 0.14526 (12) | 0.0260 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02036 (10) | 0.01769 (10) | 0.01559 (9) | 0.00087 (7) | 0.00337 (6) | −0.00049 (7) |
S | 0.0272 (3) | 0.0299 (4) | 0.0242 (3) | −0.0054 (3) | 0.0098 (3) | −0.0070 (3) |
O1 | 0.0227 (9) | 0.0238 (10) | 0.0211 (9) | 0.0002 (8) | 0.0056 (7) | 0.0060 (8) |
O2 | 0.0294 (10) | 0.0208 (10) | 0.0254 (10) | 0.0042 (8) | 0.0093 (8) | 0.0000 (8) |
N1 | 0.0311 (15) | 0.0292 (14) | 0.0346 (14) | −0.0033 (12) | 0.0029 (11) | −0.0081 (12) |
N2 | 0.0297 (14) | 0.0301 (15) | 0.0427 (16) | −0.0074 (13) | 0.0057 (12) | −0.0087 (13) |
C1 | 0.0217 (13) | 0.0153 (12) | 0.0193 (12) | −0.0001 (10) | 0.0011 (10) | 0.0000 (10) |
C2 | 0.0277 (14) | 0.0250 (14) | 0.0208 (13) | 0.0001 (11) | 0.0039 (11) | 0.0013 (11) |
C3 | 0.0364 (16) | 0.0237 (15) | 0.0309 (15) | 0.0021 (13) | 0.0015 (12) | 0.0069 (12) |
C4 | 0.0295 (15) | 0.0247 (15) | 0.0389 (17) | 0.0063 (12) | −0.0006 (12) | 0.0012 (13) |
C5 | 0.0222 (14) | 0.0216 (14) | 0.0358 (15) | 0.0014 (11) | 0.0046 (11) | −0.0065 (12) |
C6 | 0.0255 (14) | 0.0197 (13) | 0.0240 (13) | −0.0012 (11) | 0.0054 (10) | −0.0013 (11) |
C7 | 0.0205 (12) | 0.0232 (14) | 0.0201 (12) | −0.0027 (11) | 0.0015 (10) | 0.0026 (11) |
C8 | 0.0254 (15) | 0.072 (2) | 0.0251 (15) | 0.0055 (16) | 0.0021 (12) | −0.0117 (15) |
C9 | 0.0331 (18) | 0.117 (4) | 0.0207 (16) | −0.010 (2) | 0.0009 (13) | −0.0065 (19) |
C10 | 0.069 (3) | 0.075 (3) | 0.0207 (16) | −0.046 (2) | −0.0189 (16) | 0.0201 (17) |
C11 | 0.077 (3) | 0.037 (2) | 0.077 (3) | 0.012 (2) | −0.045 (2) | 0.006 (2) |
C12 | 0.062 (2) | 0.039 (2) | 0.044 (2) | 0.0230 (18) | −0.0196 (17) | −0.0121 (16) |
C13 | 0.0170 (12) | 0.0228 (14) | 0.0202 (12) | 0.0005 (10) | 0.0017 (10) | −0.0059 (10) |
C14 | 0.0387 (17) | 0.0275 (15) | 0.0224 (14) | 0.0005 (13) | 0.0024 (12) | −0.0017 (11) |
C15 | 0.0424 (18) | 0.046 (2) | 0.0187 (14) | −0.0021 (15) | 0.0026 (12) | −0.0073 (13) |
C16 | 0.0330 (16) | 0.0374 (18) | 0.0292 (15) | −0.0032 (14) | 0.0036 (12) | −0.0176 (13) |
C17 | 0.0414 (17) | 0.0265 (16) | 0.0350 (16) | −0.0030 (13) | 0.0064 (13) | −0.0084 (13) |
C18 | 0.0292 (14) | 0.0288 (15) | 0.0234 (14) | −0.0015 (12) | 0.0051 (11) | −0.0032 (12) |
C19 | 0.0217 (13) | 0.0192 (13) | 0.0164 (12) | −0.0032 (11) | 0.0042 (10) | −0.0016 (10) |
C20 | 0.0303 (15) | 0.0252 (14) | 0.0241 (14) | −0.0062 (12) | 0.0095 (11) | 0.0012 (11) |
Sn—C7 | 2.139 (2) | C6—H6 | 0.9500 |
Sn—C13 | 2.139 (2) | C7—C12 | 1.368 (4) |
Sn—C1 | 2.146 (2) | C7—C8 | 1.381 (4) |
Sn—O1 | 2.2471 (17) | C8—C9 | 1.374 (4) |
Sn—S | 2.6945 (7) | C8—H8 | 0.9500 |
S—C20 | 1.718 (3) | C9—C10 | 1.325 (6) |
O1—C19 | 1.269 (3) | C9—H9 | 0.9500 |
O2—C19 | 1.243 (3) | C10—C11 | 1.398 (6) |
N1—C20 | 1.321 (4) | C10—H10 | 0.9500 |
N1—H1A | 0.81 (4) | C11—C12 | 1.406 (5) |
N1—H1B | 0.86 (4) | C11—H11 | 0.9500 |
N2—C20 | 1.324 (4) | C12—H12 | 0.9500 |
N2—H2A | 0.85 (4) | C13—C18 | 1.384 (4) |
N2—H2B | 0.82 (4) | C13—C14 | 1.400 (4) |
C1—C2 | 1.396 (3) | C14—C15 | 1.389 (4) |
C1—C6 | 1.400 (4) | C14—H14 | 0.9500 |
C2—C3 | 1.391 (4) | C15—C16 | 1.375 (4) |
C2—H2 | 0.9500 | C15—H15 | 0.9500 |
C3—C4 | 1.388 (4) | C16—C17 | 1.380 (4) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.383 (4) | C17—C18 | 1.388 (4) |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.390 (4) | C18—H18 | 0.9500 |
C5—H5 | 0.9500 | C19—C19i | 1.538 (5) |
C7—Sn—C13 | 124.52 (10) | C9—C8—C7 | 122.0 (3) |
C7—Sn—C1 | 120.08 (9) | C9—C8—H8 | 119.0 |
C13—Sn—C1 | 115.36 (9) | C7—C8—H8 | 119.0 |
C7—Sn—O1 | 84.87 (8) | C10—C9—C8 | 120.5 (4) |
C13—Sn—O1 | 97.26 (8) | C10—C9—H9 | 119.7 |
C1—Sn—O1 | 85.84 (8) | C8—C9—H9 | 119.7 |
C7—Sn—S | 91.14 (7) | C9—C10—C11 | 120.1 (3) |
C13—Sn—S | 85.49 (7) | C9—C10—H10 | 120.0 |
C1—Sn—S | 95.66 (7) | C11—C10—H10 | 120.0 |
O1—Sn—S | 175.97 (5) | C10—C11—C12 | 119.2 (3) |
C20—S—Sn | 100.29 (9) | C10—C11—H11 | 120.4 |
C19—O1—Sn | 123.37 (16) | C12—C11—H11 | 120.4 |
C20—N1—H1A | 126 (3) | C7—C12—C11 | 120.3 (3) |
C20—N1—H1B | 123 (2) | C7—C12—H12 | 119.8 |
H1A—N1—H1B | 111 (3) | C11—C12—H12 | 119.8 |
C20—N2—H2A | 121 (2) | C18—C13—C14 | 118.4 (2) |
C20—N2—H2B | 119 (3) | C18—C13—Sn | 123.08 (19) |
H2A—N2—H2B | 120 (3) | C14—C13—Sn | 118.5 (2) |
C2—C1—C6 | 117.7 (2) | C15—C14—C13 | 120.4 (3) |
C2—C1—Sn | 120.59 (19) | C15—C14—H14 | 119.8 |
C6—C1—Sn | 121.12 (18) | C13—C14—H14 | 119.8 |
C3—C2—C1 | 121.1 (3) | C16—C15—C14 | 120.2 (3) |
C3—C2—H2 | 119.4 | C16—C15—H15 | 119.9 |
C1—C2—H2 | 119.4 | C14—C15—H15 | 119.9 |
C4—C3—C2 | 120.3 (3) | C15—C16—C17 | 120.0 (3) |
C4—C3—H3 | 119.8 | C15—C16—H16 | 120.0 |
C2—C3—H3 | 119.8 | C17—C16—H16 | 120.0 |
C5—C4—C3 | 119.4 (3) | C16—C17—C18 | 120.1 (3) |
C5—C4—H4 | 120.3 | C16—C17—H17 | 120.0 |
C3—C4—H4 | 120.3 | C18—C17—H17 | 120.0 |
C4—C5—C6 | 120.3 (3) | C13—C18—C17 | 120.9 (3) |
C4—C5—H5 | 119.9 | C13—C18—H18 | 119.5 |
C6—C5—H5 | 119.9 | C17—C18—H18 | 119.5 |
C5—C6—C1 | 121.2 (3) | O2—C19—O1 | 126.8 (2) |
C5—C6—H6 | 119.4 | O2—C19—C19i | 116.57 (17) |
C1—C6—H6 | 119.4 | O1—C19—C19i | 116.58 (18) |
C12—C7—C8 | 117.9 (3) | N1—C20—N2 | 118.6 (3) |
C12—C7—Sn | 121.9 (2) | N1—C20—S | 122.2 (2) |
C8—C7—Sn | 119.6 (2) | N2—C20—S | 119.2 (2) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2ii | 0.81 (4) | 2.06 (4) | 2.824 (3) | 157 (4) |
N2—H2A···O2iii | 0.86 (4) | 2.14 (4) | 2.970 (3) | 164 (3) |
C6—H6···O1 | 0.95 | 2.44 | 2.957 (3) | 114 |
C18—H18···O2 | 0.95 | 2.39 | 3.234 (3) | 147 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Sn2(C2O4)(C6H5)6(CH4N2S)2] |
Mr | 940.24 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 12.9161 (2), 13.9870 (2), 21.8215 (3) |
β (°) | 99.238 (1) |
V (Å3) | 3891.09 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.44 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.659, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31403, 4472, 3665 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.066, 1.09 |
No. of reflections | 4472 |
No. of parameters | 251 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.34, −1.11 |
Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia,1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.81 (4) | 2.06 (4) | 2.824 (3) | 157 (4) |
N2—H2A···O2ii | 0.86 (4) | 2.14 (4) | 2.970 (3) | 164 (3) |
C6—H6···O1 | 0.95 | 2.44 | 2.957 (3) | 114 |
C18—H18···O2 | 0.95 | 2.39 | 3.234 (3) | 147 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1/2, y+1/2, z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Diallo, W., Okio, K. Y. A., Diop, C. A. K., Diop, L., Diop, L. A. & Russo, U. (2009). Main Group. Met. Chem. 32, 93–100. CAS Google Scholar
Diasse-Sarr, A., Diop, L., Mahon, M. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229. CAS Google Scholar
Diop, C. A. K., Diop, L. & Russo, U. (1999). Main Group. Met. Chem. 22, 217–220. CAS Google Scholar
Diop, C. A. K., Lahlou, M., Diop, L., Mahieu, B. & Russo, U. (1997). Main Group Met. Chem. 20, 681–686. CAS Google Scholar
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882. Web of Science CSD CrossRef CAS Google Scholar
Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257. CrossRef CAS Web of Science Google Scholar
Kamruddin, S. K., Chattopadhyaya, T. K., Roy, A. & Tiekink, E. R. T. (1996). Appl. Organomet. Chem. 10, 513–521. CrossRef CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W.Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. (1992). Main Group Met.Chem. 15, 161–186. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Interest in organotin (IV) chemistry remains high because of several applications found in molecules belonging to this family (Evans & Karpel, 1985; Gielen et al., 1995), specifically triphenyltin(IV)-residue containing compounds for which biological activity has been reported (Kamruddin et al., 1996). Our specific interest lies also in the coordinating behavior of oxy-anions to these organometallic centers; we have previously published several crystal structures dealing with such systems (Diallo et al., 2009; Diasse-Sarr et al., 1997; Diop et al., 1997). Moreover, we have reported spectroscopic data (Diop et al., 1999) and the crystal structure of [Sn2(C2O4)(C6H5)6] which exhibits tetrahedrally coordinate tin atoms (Diop et al., 2003). Here we report a study of the interactions between this species and thiourea, which has yielded the title compound, [Sn2(C2O4)(C6H5)6(CH4N2S)2].
The molecule of the title compound has site symmetry 2 with the twofold rotation axcis passing through the mid-point of the central oxalate C—C bond. The Sn(IV) atom is five-coordinate by one oxygen atom of the oxalate anion, a sulfur atom of the thiourea ligand [Sn—O 2.2471 (17), Sn—S 2.6945 (7) Å] which are in apical positions and to three phenyl groups [Sn—C 2.146 (2), 2.139 (2), 2.139 (2) Å] occupying the equatorial positions of the trigonal bipyramid (Fig. 1). The Sn—S bond length is longer than the Sn—S bond length [2.573 (1) Å] found, for example, in {t(C4H9)2Sn[S2CN(CH3)2]2} which contains a trigonal bipyramidally coordinate tin(IV) atom (Tiekink, 1992). The angle S—Sn—O [175.97 (5)°] deviates slightly from linearity. The sum of the C—Sn—C angles (359.96°) indicates a nearly perfectly planar Sn(C6H5)3 residue consistent with the near linearity of the axial substituents. The Sn—O bond length is remarkably long when compared with the Sn—O distance [2.111 (1) Å] in the tetrahedrally coordinate tin(IV) atom in [Sn2(C2O4)(C6H5)6] (Diop et al., 2003). The addition of SC(NH2)2 apparently has caused a change in the coordination from tetrahedral to trigonal-bipyramidal along with a Sn—O bond length increase. The two C—O bond length of the oxalate anion are slightly different because the O atom of the C19—O1 bond [1.269 (3) Å] is also involved in bonding to the Sn(IV) atom, whereas the O atom of the C19—O2 bond [1.243 (3) Å] is involved in hydrogen bonding with the amino group. These interactions lead to the formation of layers parallel to (001) (Figs. 2,3). Weak C—H···O hydrogen bonding is also observed.