metal-organic compounds
Bis(benzene-1,2-diamine-κ2N,N′)(sulfato-κO)copper(II) monohydrate
aUniversité Mentouri de Constantine, 25000 Constantine, Algeria, bUniversité 20 Aout 1955, 21000 Skikda, Algeria, and cSciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: boufas_sihem@yahoo.fr
The title complex, [Cu(SO4)(C6H8N2)2]·H2O, was obtained under hydrothermal conditions. The CuII ion is five-coordinated in a distorted square-pyramidal manner by four N atoms from two benzene-1,2-diamine ligands at the base and one O atom from a monodentate sulfate anion at the apex of the N—H⋯O hydrogen bonding between the amino functions and the sulfate groups leads to the formation of layers parallel to (001). C—H⋯O hydrogen bonding interactions between the layers consolidate the three-dimensional set-up. There are voids in the structure filled with lattice water molecules that are disordered over three sites in a 0.430 (6):0.270 (6):0.300 (6) ratio.
Related literature
For bio-inorganic chemistry and the coordination chemistry of copper(II), see: Datta et al. (2008); Diallo et al. (2008); Khalaji et al. (2009). For graph-set notation, see: Bernstein et al. (1995); Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536812041967/wm2682sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812041967/wm2682Isup2.hkl
Benzene-1,2-diamine (0.2 mmol) and CuSO4.5H2O (0.1 mmol) were dissolved in H2O (5 ml). The mixture was stirred for 16 h at room temperature to give a violet solution. After allowing the resulting solution to stand in air, violet plate-shaped crystals of the compound were formed on slow evaporation of the solvent.
C—H and N—H hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H distances of 0.95 Å with Uiso(H) = 1.2Ueq(C) and N—H distances of 0.92 Å, with Uiso(H) = 1.2Ueq(N).
The water molecule was localized in a difference map and was interpreted as disordered over three positions with the site-occupancy ratio of 0.220 (6):0.270 (6):0.300 (6). The H atoms on the disordered water molecules were not included in the refinement.
Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).Fig. 1. The molecular structure of the title compound drawn with displacement parameters at the 50% probability level. | |
Fig. 2. Part of the crystal structure of (I), showing the formation of R22(8), R21(4),hy2596 R12(6) and R33(9) rings. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. |
[Cu(SO4)(C6H8N2)2]·H2O | F(000) = 1624 |
Mr = 393.90 | Dx = 1.693 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 102968 reflections |
a = 18.6794 (4) Å | θ = 2.9–27.5° |
b = 7.5317 (2) Å | µ = 1.58 mm−1 |
c = 21.9757 (5) Å | T = 120 K |
V = 3091.71 (13) Å3 | Plate, violet |
Z = 8 | 0.38 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 3555 independent reflections |
Radiation source: Enraf Nonius FR590 | 2957 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
CCD rotation images, thin slices scans | h = −24→24 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −9→9 |
Tmin = 0.543, Tmax = 0.924 | l = −28→28 |
42067 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0455P)2 + 5.6842P] where P = (Fo2 + 2Fc2)/3 |
3555 reflections | (Δ/σ)max = 0.005 |
212 parameters | Δρmax = 1.29 e Å−3 |
1 restraint | Δρmin = −0.64 e Å−3 |
[Cu(SO4)(C6H8N2)2]·H2O | V = 3091.71 (13) Å3 |
Mr = 393.90 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 18.6794 (4) Å | µ = 1.58 mm−1 |
b = 7.5317 (2) Å | T = 120 K |
c = 21.9757 (5) Å | 0.38 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 3555 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2957 reflections with I > 2σ(I) |
Tmin = 0.543, Tmax = 0.924 | Rint = 0.057 |
42067 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 1 restraint |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.29 e Å−3 |
3555 reflections | Δρmin = −0.64 e Å−3 |
212 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.088690 (15) | 0.58928 (4) | 0.199850 (13) | 0.01191 (11) | |
S2 | 0.12634 (3) | 0.15921 (8) | 0.18987 (3) | 0.01166 (14) | |
O4 | 0.06308 (9) | 0.1072 (3) | 0.15332 (8) | 0.0193 (4) | |
O1 | 0.14861 (9) | 0.3423 (2) | 0.17409 (8) | 0.0174 (4) | |
O2 | 0.10796 (10) | 0.1495 (3) | 0.25522 (8) | 0.0192 (4) | |
O3 | 0.18635 (9) | 0.0364 (2) | 0.17653 (9) | 0.0186 (4) | |
N3 | 0.09519 (11) | 0.7199 (3) | 0.11963 (10) | 0.0155 (4) | |
H3A | 0.1012 | 0.8368 | 0.1265 | 0.019* | |
H3B | 0.1332 | 0.6804 | 0.0985 | 0.019* | |
N4 | −0.00490 (11) | 0.4952 (3) | 0.16695 (9) | 0.0145 (4) | |
H4A | −0.0018 | 0.3769 | 0.1618 | 0.017* | |
H4B | −0.0403 | 0.5171 | 0.1937 | 0.017* | |
N1 | 0.06897 (11) | 0.5075 (3) | 0.28588 (9) | 0.0135 (4) | |
H1A | 0.0255 | 0.5456 | 0.2977 | 0.016* | |
H1B | 0.0692 | 0.3881 | 0.2874 | 0.016* | |
N2 | 0.17909 (11) | 0.6930 (3) | 0.23489 (9) | 0.0141 (4) | |
H2A | 0.2174 | 0.6385 | 0.2185 | 0.017* | |
H2B | 0.1817 | 0.8093 | 0.2257 | 0.017* | |
C7 | 0.12327 (12) | 0.5774 (3) | 0.32658 (11) | 0.0134 (5) | |
C8 | 0.17991 (13) | 0.6705 (3) | 0.30072 (11) | 0.0134 (5) | |
C3 | 0.01846 (14) | 0.7716 (4) | 0.02813 (12) | 0.0194 (5) | |
H3 | 0.0529 | 0.8467 | 0.0116 | 0.023* | |
C11 | 0.17574 (14) | 0.6137 (4) | 0.42584 (12) | 0.0189 (5) | |
H11 | 0.1747 | 0.5948 | 0.4676 | 0.023* | |
C9 | 0.23454 (13) | 0.7353 (4) | 0.33737 (12) | 0.0188 (5) | |
H9 | 0.2725 | 0.7972 | 0.3201 | 0.023* | |
C1 | −0.02133 (13) | 0.5799 (3) | 0.10905 (11) | 0.0149 (5) | |
C2 | 0.03023 (13) | 0.6913 (3) | 0.08463 (11) | 0.0152 (5) | |
C10 | 0.23241 (13) | 0.7075 (4) | 0.39984 (12) | 0.0193 (5) | |
H10 | 0.2689 | 0.7515 | 0.4244 | 0.023* | |
C6 | −0.08541 (14) | 0.5499 (4) | 0.07848 (12) | 0.0197 (6) | |
H6 | −0.1204 | 0.4778 | 0.0957 | 0.024* | |
C4 | −0.04457 (15) | 0.7389 (4) | −0.00323 (12) | 0.0228 (6) | |
H4 | −0.0521 | 0.7903 | −0.0412 | 0.027* | |
C12 | 0.12084 (14) | 0.5486 (4) | 0.38939 (11) | 0.0170 (5) | |
H12 | 0.0829 | 0.4865 | 0.4066 | 0.02* | |
C5 | −0.09680 (14) | 0.6283 (4) | 0.02224 (13) | 0.0222 (6) | |
H5 | −0.1393 | 0.6074 | 0.0014 | 0.027* | |
O1WA | 0.2247 (3) | 0.4801 (9) | 0.0775 (2) | 0.0328 (9)* | 0.430 (6) |
O1WB | 0.2410 (5) | 0.6775 (15) | 0.0687 (4) | 0.0328 (9)* | 0.270 (6) |
O1WC | 0.2338 (4) | 0.5778 (17) | 0.0693 (4) | 0.0328 (9)* | 0.300 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00820 (16) | 0.01169 (17) | 0.01585 (16) | −0.00014 (12) | 0.00131 (10) | 0.00052 (11) |
S2 | 0.0078 (3) | 0.0102 (3) | 0.0170 (3) | 0.0003 (2) | 0.0020 (2) | 0.0010 (2) |
O4 | 0.0113 (8) | 0.0240 (10) | 0.0228 (9) | −0.0026 (8) | −0.0024 (7) | 0.0009 (8) |
O1 | 0.0139 (8) | 0.0089 (9) | 0.0295 (10) | 0.0013 (7) | 0.0074 (7) | 0.0019 (7) |
O2 | 0.0205 (9) | 0.0205 (10) | 0.0168 (9) | −0.0019 (8) | 0.0026 (7) | 0.0015 (7) |
O3 | 0.0125 (8) | 0.0124 (9) | 0.0310 (10) | 0.0038 (7) | 0.0045 (7) | 0.0017 (8) |
N3 | 0.0118 (10) | 0.0151 (11) | 0.0197 (10) | −0.0023 (8) | 0.0023 (8) | 0.0007 (9) |
N4 | 0.0114 (9) | 0.0130 (10) | 0.0190 (10) | −0.0008 (8) | 0.0025 (8) | 0.0012 (8) |
N1 | 0.0086 (9) | 0.0133 (11) | 0.0186 (10) | −0.0013 (9) | 0.0013 (8) | −0.0021 (8) |
N2 | 0.0104 (9) | 0.0119 (10) | 0.0201 (10) | −0.0004 (8) | 0.0019 (8) | 0.0027 (8) |
C7 | 0.0089 (11) | 0.0118 (12) | 0.0195 (12) | 0.0014 (10) | −0.0001 (9) | −0.0015 (9) |
C8 | 0.0115 (11) | 0.0106 (12) | 0.0182 (12) | 0.0032 (10) | 0.0015 (9) | 0.0009 (9) |
C3 | 0.0212 (13) | 0.0186 (13) | 0.0183 (12) | 0.0041 (11) | 0.0046 (10) | 0.0007 (10) |
C11 | 0.0182 (12) | 0.0205 (14) | 0.0180 (12) | 0.0031 (11) | −0.0023 (10) | −0.0017 (10) |
C9 | 0.0119 (11) | 0.0155 (13) | 0.0292 (13) | −0.0022 (11) | −0.0005 (10) | 0.0025 (11) |
C1 | 0.0149 (11) | 0.0119 (12) | 0.0178 (11) | 0.0036 (10) | 0.0013 (9) | −0.0032 (10) |
C2 | 0.0135 (11) | 0.0152 (13) | 0.0168 (11) | 0.0030 (10) | 0.0030 (9) | −0.0038 (10) |
C10 | 0.0139 (12) | 0.0181 (13) | 0.0260 (13) | 0.0015 (10) | −0.0064 (10) | −0.0025 (11) |
C6 | 0.0150 (12) | 0.0190 (14) | 0.0250 (13) | 0.0008 (10) | −0.0010 (10) | −0.0034 (11) |
C4 | 0.0273 (14) | 0.0247 (14) | 0.0163 (12) | 0.0099 (12) | −0.0010 (10) | −0.0035 (11) |
C12 | 0.0143 (12) | 0.0189 (13) | 0.0177 (12) | −0.0005 (10) | 0.0020 (9) | 0.0003 (10) |
C5 | 0.0175 (12) | 0.0269 (15) | 0.0221 (13) | 0.0065 (11) | −0.0060 (10) | −0.0064 (11) |
Cu1—N2 | 2.014 (2) | C7—C12 | 1.398 (3) |
Cu1—N4 | 2.020 (2) | C8—C9 | 1.389 (4) |
Cu1—N1 | 2.022 (2) | C3—C4 | 1.386 (4) |
Cu1—N3 | 2.023 (2) | C3—C2 | 1.398 (4) |
Cu1—O1 | 2.2433 (18) | C3—H3 | 0.93 |
S2—O2 | 1.4783 (18) | C11—C12 | 1.391 (4) |
S2—O4 | 1.4817 (18) | C11—C10 | 1.395 (4) |
S2—O1 | 1.4818 (19) | C11—H11 | 0.93 |
S2—O3 | 1.4827 (18) | C9—C10 | 1.389 (4) |
N3—C2 | 1.453 (3) | C9—H9 | 0.93 |
N3—H3A | 0.9 | C1—C2 | 1.386 (4) |
N3—H3B | 0.9 | C1—C6 | 1.391 (4) |
N4—C1 | 1.456 (3) | C10—H10 | 0.93 |
N4—H4A | 0.9 | C6—C5 | 1.386 (4) |
N4—H4B | 0.9 | C6—H6 | 0.93 |
N1—C7 | 1.451 (3) | C4—C5 | 1.399 (4) |
N1—H1A | 0.9 | C4—H4 | 0.93 |
N1—H1B | 0.9 | C12—H12 | 0.93 |
N2—C8 | 1.457 (3) | C5—H5 | 0.93 |
N2—H2A | 0.9 | O1WA—O1WC | 0.777 (10) |
N2—H2B | 0.9 | O1WA—O1WB | 1.530 (11) |
C7—C8 | 1.391 (3) | O1WB—O1WC | 0.763 (11) |
N2—Cu1—N4 | 177.02 (9) | Cu1—N2—H2B | 109.6 |
N2—Cu1—N1 | 85.04 (8) | H2A—N2—H2B | 108.2 |
N4—Cu1—N1 | 94.02 (8) | C8—C7—C12 | 120.4 (2) |
N2—Cu1—N3 | 95.41 (8) | C8—C7—N1 | 117.6 (2) |
N4—Cu1—N3 | 84.88 (8) | C12—C7—N1 | 122.0 (2) |
N1—Cu1—N3 | 166.90 (9) | C9—C8—C7 | 120.0 (2) |
N2—Cu1—O1 | 89.99 (8) | C9—C8—N2 | 122.9 (2) |
N4—Cu1—O1 | 92.89 (8) | C7—C8—N2 | 117.2 (2) |
N1—Cu1—O1 | 94.26 (8) | C4—C3—C2 | 119.9 (3) |
N3—Cu1—O1 | 98.82 (8) | C4—C3—H3 | 120.1 |
O2—S2—O4 | 109.16 (10) | C2—C3—H3 | 120.1 |
O2—S2—O1 | 109.79 (11) | C12—C11—C10 | 120.1 (2) |
O4—S2—O1 | 110.08 (11) | C12—C11—H11 | 119.9 |
O2—S2—O3 | 109.68 (11) | C10—C11—H11 | 119.9 |
O4—S2—O3 | 109.30 (11) | C8—C9—C10 | 119.9 (2) |
O1—S2—O3 | 108.81 (10) | C8—C9—H9 | 120 |
S2—O1—Cu1 | 124.94 (10) | C10—C9—H9 | 120 |
C2—N3—Cu1 | 109.83 (15) | C2—C1—C6 | 120.6 (2) |
C2—N3—H3A | 109.7 | C2—C1—N4 | 117.2 (2) |
Cu1—N3—H3A | 109.7 | C6—C1—N4 | 122.2 (2) |
C2—N3—H3B | 109.7 | C1—C2—C3 | 119.8 (2) |
Cu1—N3—H3B | 109.7 | C1—C2—N3 | 117.7 (2) |
H3A—N3—H3B | 108.2 | C3—C2—N3 | 122.5 (2) |
C1—N4—Cu1 | 109.96 (15) | C9—C10—C11 | 120.2 (2) |
C1—N4—H4A | 109.7 | C9—C10—H10 | 119.9 |
Cu1—N4—H4A | 109.7 | C11—C10—H10 | 119.9 |
C1—N4—H4B | 109.7 | C5—C6—C1 | 119.6 (3) |
Cu1—N4—H4B | 109.7 | C5—C6—H6 | 120.2 |
H4A—N4—H4B | 108.2 | C1—C6—H6 | 120.2 |
C7—N1—Cu1 | 109.78 (15) | C3—C4—C5 | 119.9 (3) |
C7—N1—H1A | 109.7 | C3—C4—H4 | 120 |
Cu1—N1—H1A | 109.7 | C5—C4—H4 | 120 |
C7—N1—H1B | 109.7 | C11—C12—C7 | 119.3 (2) |
Cu1—N1—H1B | 109.7 | C11—C12—H12 | 120.3 |
H1A—N1—H1B | 108.2 | C7—C12—H12 | 120.3 |
C8—N2—Cu1 | 110.08 (15) | C6—C5—C4 | 120.2 (2) |
C8—N2—H2A | 109.6 | C6—C5—H5 | 119.9 |
Cu1—N2—H2A | 109.6 | C4—C5—H5 | 119.9 |
C8—N2—H2B | 109.6 | ||
O2—S2—O1—Cu1 | −48.22 (16) | N1—C7—C8—N2 | 1.2 (3) |
O4—S2—O1—Cu1 | 71.97 (15) | Cu1—N2—C8—C9 | −177.5 (2) |
O3—S2—O1—Cu1 | −168.27 (12) | Cu1—N2—C8—C7 | 3.4 (3) |
N2—Cu1—O1—S2 | 128.22 (14) | C7—C8—C9—C10 | −0.2 (4) |
N4—Cu1—O1—S2 | −51.05 (14) | N2—C8—C9—C10 | −179.3 (2) |
N1—Cu1—O1—S2 | 43.19 (14) | Cu1—N4—C1—C2 | 5.9 (3) |
N3—Cu1—O1—S2 | −136.31 (13) | Cu1—N4—C1—C6 | −175.0 (2) |
N2—Cu1—N3—C2 | −172.48 (16) | C6—C1—C2—C3 | −1.4 (4) |
N4—Cu1—N3—C2 | 4.55 (16) | N4—C1—C2—C3 | 177.8 (2) |
N1—Cu1—N3—C2 | −81.2 (4) | C6—C1—C2—N3 | 178.6 (2) |
O1—Cu1—N3—C2 | 96.69 (16) | N4—C1—C2—N3 | −2.2 (3) |
N1—Cu1—N4—C1 | 161.29 (16) | C4—C3—C2—C1 | −0.2 (4) |
N3—Cu1—N4—C1 | −5.62 (16) | C4—C3—C2—N3 | 179.8 (2) |
O1—Cu1—N4—C1 | −104.23 (16) | Cu1—N3—C2—C1 | −2.6 (3) |
N2—Cu1—N1—C7 | 5.41 (16) | Cu1—N3—C2—C3 | 177.4 (2) |
N4—Cu1—N1—C7 | −171.75 (16) | C8—C9—C10—C11 | 0.4 (4) |
N3—Cu1—N1—C7 | −87.1 (4) | C12—C11—C10—C9 | −0.4 (4) |
O1—Cu1—N1—C7 | 95.04 (16) | C2—C1—C6—C5 | 1.9 (4) |
N1—Cu1—N2—C8 | −4.83 (16) | N4—C1—C6—C5 | −177.2 (2) |
N3—Cu1—N2—C8 | 162.02 (16) | C2—C3—C4—C5 | 1.2 (4) |
O1—Cu1—N2—C8 | −99.11 (16) | C10—C11—C12—C7 | 0.3 (4) |
Cu1—N1—C7—C8 | −5.1 (3) | C8—C7—C12—C11 | −0.1 (4) |
Cu1—N1—C7—C12 | 176.9 (2) | N1—C7—C12—C11 | 177.8 (2) |
C12—C7—C8—C9 | 0.1 (4) | C1—C6—C5—C4 | −0.9 (4) |
N1—C7—C8—C9 | −177.9 (2) | C3—C4—C5—C6 | −0.7 (4) |
C12—C7—C8—N2 | 179.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.90 | 2.03 | 2.904 (3) | 164 |
N1—H1B···O2 | 0.90 | 2.06 | 2.873 (4) | 149 |
N2—H2A···O3ii | 0.90 | 2.16 | 3.059 (4) | 174 |
N2—H2B···O3iii | 0.90 | 2.02 | 2.890 (4) | 161 |
N3—H3A···O3iii | 0.90 | 2.45 | 3.188 (4) | 139 |
N3—H3A···O4iii | 0.90 | 2.24 | 3.068 (4) | 153 |
N4—H4A···O4 | 0.90 | 2.37 | 3.202 (4) | 153 |
N4—H4B···O2i | 0.90 | 1.96 | 2.825 (4) | 160 |
C4—H4···O4iv | 0.93 | 2.59 | 3.512 (4) | 172 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(SO4)(C6H8N2)2]·H2O |
Mr | 393.90 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 18.6794 (4), 7.5317 (2), 21.9757 (5) |
V (Å3) | 3091.71 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.58 |
Crystal size (mm) | 0.38 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.543, 0.924 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42067, 3555, 2957 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.097, 1.08 |
No. of reflections | 3555 |
No. of parameters | 212 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.29, −0.64 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Cu1—N2 | 2.014 (2) | Cu1—N3 | 2.023 (2) |
Cu1—N4 | 2.020 (2) | Cu1—O1 | 2.2433 (18) |
Cu1—N1 | 2.022 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.9000 | 2.0300 | 2.904 (3) | 164.00 |
N1—H1B···O2 | 0.9000 | 2.0600 | 2.873 (4) | 149.00 |
N2—H2A···O3ii | 0.9000 | 2.1600 | 3.059 (4) | 174.00 |
N2—H2B···O3iii | 0.9000 | 2.0200 | 2.890 (4) | 161.00 |
N3—H3A···O3iii | 0.9000 | 2.4500 | 3.188 (4) | 139.00 |
N3—H3A···O4iii | 0.9000 | 2.2400 | 3.068 (4) | 153.00 |
N4—H4A···O4 | 0.9000 | 2.3700 | 3.202 (4) | 153.00 |
N4—H4B···O2i | 0.9000 | 1.9600 | 2.825 (4) | 160.00 |
C4—H4···O4iv | 0.9300 | 2.5900 | 3.512 (4) | 172.00 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) −x, −y+1, −z. |
Acknowledgements
This work was supported by the Laboratoire de Chimie des Materiaux, Faculté des Sciences, Université Mentouri. We would like to thank J.-Y. Saillard of Rennes 1 University for providing the diffraction facilities.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Datta, A., Huang, J.-H. & Lee, H. M. (2008). Acta Cryst. E64, m1497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Diallo, M., Tamboura, F. B., Gaye, M., Barry, A. H. & Bah, Y. (2008). Acta Cryst. E64, m1124–m1125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Khalaji, A. D., Hadadzadeh, H., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, m70. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(II) complexes have been widely investigated in both bioinorganic chemistry and coordination chemistry (Datta et al., 2008; Diallo et al., 2008; Khalaji et al., 2009) due to the important role of copper in living organisms and its peculiar coordination chemistry, i.e. the Jahn-Teller distortion. We report here the structure of the title mononuclear copper(II) complex, [Cu(SO4)(C6H8N2)2].H2O.
As shown in Fig. 1, the complex molecule exhibits copper(II) in a distorted [4 + 1] square-pyramidal coordination environment. The basal plane is defined by the amino nitrogen donors of the benzene-1,2-diamine ligand, while the apical position is occupied by one oxygen atom of the SO42- anion. As expected, the organic moieties are approximately planar. In the organic moiety bonded to the copper atom with N1 and N2, the r.m.s. deviation for the non-H atoms is 0.0103 Å, with the maximum deviation of N1 from the mean plane being -0.018 (2) Å. The 1,2 benzene-1,2-diamine molecule linked to Cu(II) with N3 and N4 has a r.m.s deviation for non-H atoms of 0.0173 Å with a maximum deviation from the mean plane being -0.027 (2) Å (for N4). In the crystal structure, π···π stacking interactions occur between adjacent rings, with centroid-centroid separations of 3.583 (2) Å for Cg1···Cg2i (Cg1 and Cg2 are the centroids of the C1—C6 and C7—C12 rings, respectively; symmetry code: (i) (-x, -y, -z)).
In the title compound, the individual molecules are linked by N—H···O hydrogen bonds into a two-dimensional network parallel to (001). In the layers alternating R22(8), R21(4), R12(6) and dual R33(9) (Bernstein et al., 1995) hydrogen-bonded motifs are formed. These layers are linked by means of C15—H15···O22 hydrogen bonds. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this pattern is R24(16).
In the structure voids with an approximate volume of 62 Å3 are present. These voids are filled with a water molecule disordered over three positions with an occupancy ratio of 0.4320 (6):0.270 (6):0.300 (6). Although the H positions of the disordered water molecule could not be located, O···O and O···N interactions suggest likewise an involvement in hydrogen bonding, e.g. N3···O1WC = 2.98 (4) Å, O1···O1WA = 2.73 (3) Å.