metal-organic compounds
Bis[μ-(3-acetyl-2-hydroxy-6-methyl-4H-pyran-4-one-κ3O:O′,O′′)]diaquatetrakis(pyridine-κN)dicopper(II) diperchlorate
aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, bUnité de Recherche de Cimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000, Algeria, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and dLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the centrosymmetric binuclear cation of the title compound, [Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2, the CuII atoms are bridged by a pair of two dehydroacetate anions in a bis-/monodentate mode. The distorted octahedral N2O4 coordination sphere of the metal cation is completed by two pyridine N atoms and one O atom of a water molecule. The complex cations and the perchlorate counter anions are arranged in layers parallel to (100). O—H⋯O hydrogen bonds between the coordinating water molecules and the perchlorate anions constitute ribbons parallel to [10-1]. C—H⋯O hydrogen bonds are also observed.
Related literature
For the synthesis of similar compounds, see: Tan & Kok-Peng Ang (1988); El-Kubaisi & Ismail (1994); Danilova et al. (2003); Munde et al. (2010); Ourari et al. (2011). For applications of related compounds, see: Maiti et al. (1988); Mohan et al. (1981); Das & Livingstone (1976); Ourari et al. (2008, 2012).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812041608/wm2685sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812041608/wm2685Isup2.hkl
0.168 g (1 mmol) dehydroacetic acid and 0.373 g (1 mmol) copper bis-perchlorate hexahydrate were dissolved in 20 ml of methanol. To this solution 0.108 g (1 mmol) of 1,2-phenylendiamine was added with an excess of pyridine. The mixture was held under stirring and argon atmosphere for two hours. After that time a precipitate appeared that was recovered by filtration. The solid was washed several times with methanol before it was dried under vacuum (yield 64%). From the resulting filtrate crystals were obtained by slow evaporation.
The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl). H1W and H2W protons of the water molecule were located in a difference Fourier map and were refined isotropically with Uiso(H) = 1.5Ueq(O).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2 | Z = 1 |
Mr = 1012.70 | F(000) = 518 |
Triclinic, P1 | Dx = 1.611 Mg m−3 |
a = 9.9371 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3072 (4) Å | Cell parameters from 12265 reflections |
c = 10.4440 (5) Å | θ = 2.6–28.3° |
α = 99.624 (4)° | µ = 1.23 mm−1 |
β = 90.540 (3)° | T = 180 K |
γ = 97.895 (4)° | Fragment, dark blue |
V = 1044.09 (8) Å3 | 0.44 × 0.34 × 0.13 mm |
Agilent Xcalibur diffractometer | 4692 independent reflections |
Radiation source: fine-focus sealed tube | 3889 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 28.2°, θmin = 2.7° |
ω scans | h = −13→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −13→13 |
Tmin = 0.505, Tmax = 1.000 | l = −13→13 |
20280 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0426P)2 + 3.6572P] where P = (Fo2 + 2Fc2)/3 |
4692 reflections | (Δ/σ)max < 0.001 |
288 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
[Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2 | γ = 97.895 (4)° |
Mr = 1012.70 | V = 1044.09 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.9371 (4) Å | Mo Kα radiation |
b = 10.3072 (4) Å | µ = 1.23 mm−1 |
c = 10.4440 (5) Å | T = 180 K |
α = 99.624 (4)° | 0.44 × 0.34 × 0.13 mm |
β = 90.540 (3)° |
Agilent Xcalibur diffractometer | 4692 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3889 reflections with I > 2σ(I) |
Tmin = 0.505, Tmax = 1.000 | Rint = 0.037 |
20280 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.140 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 1.14 e Å−3 |
4692 reflections | Δρmin = −0.65 e Å−3 |
288 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.13889 (5) | 0.33620 (4) | 0.22133 (5) | 0.02379 (14) | |
Cl1 | 0.54880 (11) | 0.73089 (10) | 0.34098 (11) | 0.0366 (3) | |
O3 | 0.2147 (3) | 0.7115 (3) | −0.0994 (3) | 0.0314 (6) | |
O4 | 0.0272 (3) | 0.7603 (3) | −0.0061 (3) | 0.0397 (7) | |
O2 | 0.0424 (3) | 0.4919 (3) | 0.2469 (3) | 0.0287 (6) | |
O1 | 0.2610 (3) | 0.4210 (3) | 0.1090 (3) | 0.0294 (6) | |
O1W | 0.2668 (4) | 0.4378 (4) | 0.4076 (4) | 0.0436 (8) | |
H1W | 0.322 (6) | 0.498 (6) | 0.387 (6) | 0.052* | |
H2W | 0.304 (6) | 0.415 (6) | 0.459 (6) | 0.052* | |
O14 | 0.5337 (5) | 0.8399 (4) | 0.4391 (4) | 0.0721 (13) | |
N1 | 0.2368 (3) | 0.1771 (3) | 0.1824 (3) | 0.0240 (6) | |
N2 | −0.0062 (3) | 0.2363 (3) | 0.3136 (3) | 0.0248 (7) | |
O13 | 0.5953 (5) | 0.7736 (5) | 0.2227 (4) | 0.0706 (12) | |
C12 | 0.3329 (4) | 0.5426 (4) | −0.0505 (4) | 0.0270 (8) | |
H12 | 0.404 | 0.4928 | −0.0678 | 0.032* | |
C1 | 0.2806 (4) | 0.1181 (4) | 0.2765 (4) | 0.0293 (8) | |
H1 | 0.2662 | 0.1531 | 0.3625 | 0.035* | |
C16 | 0.1369 (4) | 0.5980 (3) | 0.0778 (4) | 0.0223 (7) | |
C15 | 0.1196 (4) | 0.6938 (4) | −0.0055 (4) | 0.0267 (8) | |
C2 | 0.3464 (5) | 0.0069 (4) | 0.2508 (4) | 0.0347 (10) | |
H2 | 0.3773 | −0.0312 | 0.3182 | 0.042* | |
C18 | −0.0449 (5) | 0.6868 (4) | 0.2296 (4) | 0.0332 (9) | |
H18A | −0.1173 | 0.6794 | 0.1662 | 0.05* | |
H18B | 0.0055 | 0.7746 | 0.2409 | 0.05* | |
H18C | −0.0821 | 0.6706 | 0.3109 | 0.05* | |
C5 | 0.2587 (4) | 0.1269 (4) | 0.0587 (4) | 0.0302 (9) | |
H5 | 0.2309 | 0.1692 | −0.0069 | 0.036* | |
C11 | 0.2416 (4) | 0.5159 (3) | 0.0508 (4) | 0.0230 (7) | |
C4 | 0.3208 (5) | 0.0149 (4) | 0.0251 (4) | 0.0372 (10) | |
H4 | 0.3326 | −0.019 | −0.0616 | 0.045* | |
C3 | 0.3650 (5) | −0.0458 (4) | 0.1227 (4) | 0.0371 (10) | |
H3 | 0.407 | −0.1216 | 0.1024 | 0.044* | |
C10 | −0.0591 (4) | 0.1101 (4) | 0.2648 (4) | 0.0293 (8) | |
H10 | −0.021 | 0.0671 | 0.1914 | 0.035* | |
C13 | 0.3180 (4) | 0.6368 (4) | −0.1201 (4) | 0.0277 (8) | |
C14 | 0.4058 (5) | 0.6759 (5) | −0.2262 (5) | 0.0427 (11) | |
H14A | 0.4826 | 0.6283 | −0.2323 | 0.064* | |
H14B | 0.4368 | 0.7697 | −0.2076 | 0.064* | |
H14C | 0.3545 | 0.6549 | −0.3071 | 0.064* | |
C17 | 0.0485 (4) | 0.5860 (4) | 0.1837 (4) | 0.0230 (7) | |
C9 | −0.1668 (5) | 0.0422 (4) | 0.3184 (4) | 0.0363 (10) | |
H9 | −0.1997 | −0.0455 | 0.2829 | 0.044* | |
C8 | −0.2253 (5) | 0.1065 (5) | 0.4261 (5) | 0.0395 (10) | |
H8 | −0.3 | 0.0637 | 0.4629 | 0.047* | |
C7 | −0.1711 (5) | 0.2350 (5) | 0.4780 (4) | 0.0410 (11) | |
H7 | −0.2075 | 0.2797 | 0.5515 | 0.049* | |
O11 | 0.6447 (9) | 0.6599 (10) | 0.3795 (6) | 0.179 (5) | |
O12 | 0.4201 (7) | 0.6613 (8) | 0.3069 (6) | 0.140 (3) | |
C6 | −0.0622 (5) | 0.2967 (4) | 0.4196 (4) | 0.0318 (9) | |
H6 | −0.0261 | 0.3835 | 0.455 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0241 (3) | 0.0198 (2) | 0.0295 (2) | 0.00679 (17) | 0.00515 (18) | 0.00681 (17) |
Cl1 | 0.0365 (6) | 0.0255 (5) | 0.0483 (6) | 0.0053 (4) | 0.0024 (5) | 0.0072 (4) |
O3 | 0.0299 (16) | 0.0301 (14) | 0.0389 (16) | 0.0094 (12) | 0.0052 (12) | 0.0152 (12) |
O4 | 0.0356 (17) | 0.0455 (18) | 0.0476 (18) | 0.0221 (14) | 0.0078 (14) | 0.0220 (15) |
O2 | 0.0314 (15) | 0.0247 (13) | 0.0324 (14) | 0.0084 (11) | 0.0070 (12) | 0.0075 (11) |
O1 | 0.0255 (15) | 0.0268 (14) | 0.0412 (16) | 0.0114 (11) | 0.0075 (12) | 0.0143 (12) |
O1W | 0.050 (2) | 0.0353 (18) | 0.0444 (19) | 0.0003 (15) | −0.0157 (16) | 0.0085 (15) |
O14 | 0.107 (4) | 0.050 (2) | 0.054 (2) | 0.015 (2) | −0.005 (2) | −0.0095 (18) |
N1 | 0.0224 (16) | 0.0226 (15) | 0.0284 (16) | 0.0053 (12) | 0.0029 (13) | 0.0068 (12) |
N2 | 0.0257 (17) | 0.0219 (15) | 0.0277 (16) | 0.0055 (13) | 0.0012 (13) | 0.0044 (12) |
O13 | 0.080 (3) | 0.078 (3) | 0.057 (2) | 0.005 (2) | 0.007 (2) | 0.028 (2) |
C12 | 0.0186 (19) | 0.0291 (19) | 0.034 (2) | 0.0055 (15) | 0.0027 (16) | 0.0067 (16) |
C1 | 0.033 (2) | 0.030 (2) | 0.0273 (19) | 0.0101 (17) | 0.0069 (16) | 0.0080 (15) |
C16 | 0.0181 (18) | 0.0178 (16) | 0.0297 (18) | −0.0008 (14) | −0.0027 (14) | 0.0030 (14) |
C15 | 0.0223 (19) | 0.0242 (18) | 0.034 (2) | 0.0038 (15) | −0.0024 (16) | 0.0063 (15) |
C2 | 0.041 (3) | 0.032 (2) | 0.036 (2) | 0.0147 (19) | 0.0022 (19) | 0.0151 (17) |
C18 | 0.037 (2) | 0.032 (2) | 0.034 (2) | 0.0153 (18) | 0.0069 (18) | 0.0038 (17) |
C5 | 0.033 (2) | 0.031 (2) | 0.0293 (19) | 0.0107 (17) | 0.0014 (17) | 0.0066 (16) |
C11 | 0.0191 (18) | 0.0190 (16) | 0.0306 (19) | 0.0011 (14) | −0.0028 (15) | 0.0050 (14) |
C4 | 0.044 (3) | 0.035 (2) | 0.032 (2) | 0.016 (2) | −0.0001 (19) | −0.0030 (17) |
C3 | 0.039 (3) | 0.030 (2) | 0.045 (2) | 0.0190 (19) | 0.002 (2) | 0.0024 (18) |
C10 | 0.029 (2) | 0.0258 (19) | 0.032 (2) | 0.0012 (16) | 0.0049 (17) | 0.0031 (15) |
C13 | 0.0200 (19) | 0.0275 (19) | 0.035 (2) | 0.0015 (15) | −0.0001 (16) | 0.0067 (16) |
C14 | 0.038 (3) | 0.045 (3) | 0.052 (3) | 0.011 (2) | 0.015 (2) | 0.022 (2) |
C17 | 0.0201 (18) | 0.0207 (17) | 0.0277 (18) | 0.0035 (14) | −0.0028 (14) | 0.0020 (14) |
C9 | 0.037 (2) | 0.032 (2) | 0.038 (2) | −0.0039 (18) | 0.0037 (19) | 0.0062 (18) |
C8 | 0.032 (2) | 0.048 (3) | 0.041 (2) | 0.000 (2) | 0.0091 (19) | 0.016 (2) |
C7 | 0.045 (3) | 0.045 (3) | 0.036 (2) | 0.012 (2) | 0.019 (2) | 0.0074 (19) |
O11 | 0.250 (9) | 0.288 (10) | 0.075 (4) | 0.234 (9) | 0.050 (5) | 0.081 (5) |
O12 | 0.113 (5) | 0.165 (6) | 0.098 (4) | −0.085 (5) | 0.023 (4) | −0.027 (4) |
C6 | 0.037 (2) | 0.029 (2) | 0.028 (2) | 0.0066 (17) | 0.0056 (17) | 0.0011 (16) |
Cu1—O1 | 1.922 (3) | C16—C11 | 1.431 (5) |
Cu1—O2 | 1.962 (3) | C16—C15 | 1.447 (5) |
Cu1—N2 | 2.005 (3) | C2—C3 | 1.382 (6) |
Cu1—N1 | 2.006 (3) | C2—H2 | 0.93 |
Cu1—O1W | 2.325 (3) | C18—C17 | 1.509 (5) |
Cu1—O4i | 2.737 (3) | C18—H18A | 0.96 |
Cl1—O11 | 1.374 (5) | C18—H18B | 0.96 |
Cl1—O12 | 1.390 (6) | C18—H18C | 0.96 |
Cl1—O14 | 1.414 (4) | C5—C4 | 1.379 (5) |
Cl1—O13 | 1.439 (4) | C5—H5 | 0.93 |
O3—C13 | 1.363 (5) | C4—C3 | 1.380 (6) |
O3—C15 | 1.386 (5) | C4—H4 | 0.93 |
O4—C15 | 1.219 (5) | C3—H3 | 0.93 |
O2—C17 | 1.256 (4) | C10—C9 | 1.373 (6) |
O1—C11 | 1.269 (4) | C10—H10 | 0.93 |
O1W—H1W | 0.82 (6) | C13—C14 | 1.491 (6) |
O1W—H2W | 0.74 (6) | C14—H14A | 0.96 |
N1—C1 | 1.337 (5) | C14—H14B | 0.96 |
N1—C5 | 1.340 (5) | C14—H14C | 0.96 |
N2—C6 | 1.341 (5) | C9—C8 | 1.383 (6) |
N2—C10 | 1.346 (5) | C9—H9 | 0.93 |
C12—C13 | 1.329 (5) | C8—C7 | 1.377 (7) |
C12—C11 | 1.437 (5) | C8—H8 | 0.93 |
C12—H12 | 0.93 | C7—C6 | 1.378 (6) |
C1—C2 | 1.385 (5) | C7—H7 | 0.93 |
C1—H1 | 0.93 | C6—H6 | 0.93 |
C16—C17 | 1.430 (5) | ||
O1—Cu1—O2 | 89.43 (12) | C1—C2—H2 | 120.8 |
O1—Cu1—N2 | 171.16 (14) | C17—C18—H18A | 109.5 |
O2—Cu1—N2 | 90.52 (13) | C17—C18—H18B | 109.5 |
O1—Cu1—N1 | 88.01 (13) | H18A—C18—H18B | 109.5 |
O2—Cu1—N1 | 176.25 (14) | C17—C18—H18C | 109.5 |
N2—Cu1—N1 | 91.58 (14) | H18A—C18—H18C | 109.5 |
O1—Cu1—O1W | 92.98 (14) | H18B—C18—H18C | 109.5 |
O2—Cu1—O1W | 86.49 (13) | N1—C5—C4 | 122.4 (4) |
N2—Cu1—O1W | 95.84 (14) | N1—C5—H5 | 118.8 |
N1—Cu1—O1W | 96.38 (14) | C4—C5—H5 | 118.8 |
O1—Cu1—O4i | 87.05 (12) | O1—C11—C16 | 125.5 (4) |
O2—Cu1—O4i | 87.41 (12) | O1—C11—C12 | 117.0 (3) |
N2—Cu1—O4i | 84.12 (13) | C16—C11—C12 | 117.6 (3) |
N1—Cu1—O4i | 89.71 (12) | C5—C4—C3 | 118.7 (4) |
O1W—Cu1—O4i | 173.90 (11) | C5—C4—H4 | 120.6 |
O11—Cl1—O12 | 116.7 (6) | C3—C4—H4 | 120.6 |
O11—Cl1—O14 | 110.3 (4) | C4—C3—C2 | 119.4 (4) |
O12—Cl1—O14 | 107.6 (4) | C4—C3—H3 | 120.3 |
O11—Cl1—O13 | 106.5 (4) | C2—C3—H3 | 120.3 |
O12—Cl1—O13 | 103.9 (4) | N2—C10—C9 | 122.9 (4) |
O14—Cl1—O13 | 111.7 (3) | N2—C10—H10 | 118.5 |
C13—O3—C15 | 122.2 (3) | C9—C10—H10 | 118.5 |
C17—O2—Cu1 | 129.4 (2) | C12—C13—O3 | 121.5 (4) |
C11—O1—Cu1 | 127.4 (2) | C12—C13—C14 | 127.0 (4) |
Cu1—O1W—H1W | 107 (4) | O3—C13—C14 | 111.5 (3) |
Cu1—O1W—H2W | 135 (5) | C13—C14—H14A | 109.5 |
H1W—O1W—H2W | 103 (6) | C13—C14—H14B | 109.5 |
C1—N1—C5 | 118.5 (3) | H14A—C14—H14B | 109.5 |
C1—N1—Cu1 | 122.0 (3) | C13—C14—H14C | 109.5 |
C5—N1—Cu1 | 119.5 (3) | H14A—C14—H14C | 109.5 |
C6—N2—C10 | 117.7 (4) | H14B—C14—H14C | 109.5 |
C6—N2—Cu1 | 120.9 (3) | O2—C17—C16 | 123.2 (3) |
C10—N2—Cu1 | 121.1 (3) | O2—C17—C18 | 114.3 (3) |
C13—C12—C11 | 121.4 (4) | C16—C17—C18 | 122.4 (3) |
C13—C12—H12 | 119.3 | C10—C9—C8 | 118.8 (4) |
C11—C12—H12 | 119.3 | C10—C9—H9 | 120.6 |
N1—C1—C2 | 122.5 (4) | C8—C9—H9 | 120.6 |
N1—C1—H1 | 118.7 | C7—C8—C9 | 118.8 (4) |
C2—C1—H1 | 118.7 | C7—C8—H8 | 120.6 |
C17—C16—C11 | 121.5 (3) | C9—C8—H8 | 120.6 |
C17—C16—C15 | 119.6 (3) | C8—C7—C6 | 119.2 (4) |
C11—C16—C15 | 118.9 (3) | C8—C7—H7 | 120.4 |
O4—C15—O3 | 114.4 (3) | C6—C7—H7 | 120.4 |
O4—C15—C16 | 127.6 (4) | N2—C6—C7 | 122.5 (4) |
O3—C15—C16 | 118.0 (3) | N2—C6—H6 | 118.7 |
C3—C2—C1 | 118.4 (4) | C7—C6—H6 | 118.7 |
C3—C2—H2 | 120.8 | ||
O1—Cu1—O2—C17 | 14.4 (3) | Cu1—O1—C11—C16 | 13.9 (6) |
N2—Cu1—O2—C17 | −156.7 (3) | Cu1—O1—C11—C12 | −166.1 (3) |
O1W—Cu1—O2—C17 | 107.5 (3) | C17—C16—C11—O1 | 5.2 (6) |
O2—Cu1—O1—C11 | −19.7 (3) | C15—C16—C11—O1 | −174.0 (4) |
N1—Cu1—O1—C11 | 157.4 (3) | C17—C16—C11—C12 | −174.8 (3) |
O1W—Cu1—O1—C11 | −106.1 (3) | C15—C16—C11—C12 | 6.0 (5) |
O1—Cu1—N1—C1 | 130.8 (3) | C13—C12—C11—O1 | 177.6 (4) |
N2—Cu1—N1—C1 | −58.0 (3) | C13—C12—C11—C16 | −2.4 (6) |
O1W—Cu1—N1—C1 | 38.0 (3) | N1—C5—C4—C3 | −1.6 (7) |
O1—Cu1—N1—C5 | −49.7 (3) | C5—C4—C3—C2 | −0.1 (7) |
N2—Cu1—N1—C5 | 121.5 (3) | C1—C2—C3—C4 | 1.5 (7) |
O1W—Cu1—N1—C5 | −142.6 (3) | C6—N2—C10—C9 | 0.2 (6) |
O2—Cu1—N2—C6 | −39.9 (3) | Cu1—N2—C10—C9 | −174.0 (3) |
N1—Cu1—N2—C6 | 143.3 (3) | C11—C12—C13—O3 | −0.7 (6) |
O1W—Cu1—N2—C6 | 46.5 (3) | C11—C12—C13—C14 | 179.1 (4) |
O2—Cu1—N2—C10 | 134.0 (3) | C15—O3—C13—C12 | −0.1 (6) |
N1—Cu1—N2—C10 | −42.8 (3) | C15—O3—C13—C14 | −179.9 (4) |
O1W—Cu1—N2—C10 | −139.6 (3) | Cu1—O2—C17—C16 | −2.4 (5) |
C5—N1—C1—C2 | −0.5 (6) | Cu1—O2—C17—C18 | 178.1 (3) |
Cu1—N1—C1—C2 | 179.0 (3) | C11—C16—C17—O2 | −11.1 (6) |
C13—O3—C15—O4 | −174.1 (4) | C15—C16—C17—O2 | 168.1 (4) |
C13—O3—C15—C16 | 3.8 (5) | C11—C16—C17—C18 | 168.4 (4) |
C17—C16—C15—O4 | −8.3 (6) | C15—C16—C17—C18 | −12.4 (5) |
C11—C16—C15—O4 | 170.9 (4) | N2—C10—C9—C8 | 1.1 (7) |
C17—C16—C15—O3 | 174.0 (3) | C10—C9—C8—C7 | −1.9 (7) |
C11—C16—C15—O3 | −6.7 (5) | C9—C8—C7—C6 | 1.4 (7) |
N1—C1—C2—C3 | −1.2 (7) | C10—N2—C6—C7 | −0.7 (6) |
C1—N1—C5—C4 | 2.0 (6) | Cu1—N2—C6—C7 | 173.5 (3) |
Cu1—N1—C5—C4 | −177.5 (3) | C8—C7—C6—N2 | −0.1 (7) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O12 | 0.83 (6) | 2.13 (6) | 2.934 (9) | 165 (6) |
O1W—H2W···O11ii | 0.74 (6) | 2.06 (6) | 2.772 (9) | 164 (6) |
C9—H9···O13iii | 0.93 | 2.56 | 3.389 (7) | 148 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2 |
Mr | 1012.70 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 9.9371 (4), 10.3072 (4), 10.4440 (5) |
α, β, γ (°) | 99.624 (4), 90.540 (3), 97.895 (4) |
V (Å3) | 1044.09 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.23 |
Crystal size (mm) | 0.44 × 0.34 × 0.13 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.505, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20280, 4692, 3889 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.140, 1.12 |
No. of reflections | 4692 |
No. of parameters | 288 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.14, −0.65 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
Cu1—O1 | 1.922 (3) | Cu1—N1 | 2.006 (3) |
Cu1—O2 | 1.962 (3) | Cu1—O1W | 2.325 (3) |
Cu1—N2 | 2.005 (3) | Cu1—O4i | 2.737 (3) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O12 | 0.83 (6) | 2.13 (6) | 2.934 (9) | 165 (6) |
O1W—H2W···O11ii | 0.74 (6) | 2.06 (6) | 2.772 (9) | 164 (6) |
C9—H9···O13iii | 0.9300 | 2.5600 | 3.389 (7) | 148.00 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, y−1, z. |
Acknowledgements
The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Danilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375–1383. Web of Science CSD CrossRef CAS Google Scholar
Das, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10. CrossRef CAS Web of Science Google Scholar
El-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785–1788. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Maiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57–65. CrossRef CAS PubMed Web of Science Google Scholar
Mohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41–54. CrossRef Web of Science Google Scholar
Munde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349–359. Web of Science CrossRef CAS Google Scholar
Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736–1739. Web of Science CrossRef CAS Google Scholar
Ourari, A., Derafa, W., Bouacida, S. & Aggoun, D. (2011). Acta Cryst. E67, m1720–m1721. Web of Science CrossRef IUCr Journals Google Scholar
Ourari, A., Khelafi, M., Aggoun, D., Jutand, A. & Amatore, C. (2012). Electrochim. Acta, 75, 366–370. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64–68. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dehydroacetic acid is used for the synthesis of heterocyclic compounds, some of them with therapeutic activities useful for treatment of human diseases (Das & Livingstone, 1976; Mohan et al., 1981; Maiti et al., 1988). Schiff bases, on the other hand, are widely applied in the synthesis transition metal coordination compounds (Tan & Kok-Peng Ang, 1988; El-Kubaisi & Ismail, 1994; Munde et al., 2010), showing catalytic activities particularly in the oxidation reactions carried out according to the cytochrome P450 model (Ourari et al., 2008, 2011, 2012). Thus, we attempted to synthesize Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). Here we describe the formation of a new dinuclear complex, [Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2], (I), prepared from dehydroacetic acid, copper perchlorate and pyridine in methanolic solution.
The molecular structure of the complex binuclear and centrosymmetric cation of (I) is illustrated in Fig. 1. The connection mode of the copper cations exhibits dimers, i.e. two copper cations are bridged by two dehydroacetate anions in a bis-/monodentate fashion. The asymmetric unit of (I) contains only half of such a dimer. The distorted octahedral coordination sphere around the copper cation is completed by two pyridine ligands and one water molecule. The bond lengths range from 1.922 (3) to 2.325 (3) Å for the Cu—O distances with one more considerably longer bond for Cu—O4 of 2.737 (3) Å; the Cu—N bond lengths are 2.005 (3) and 2.006 (3) Å.
The crystal packing in (I) can be described by alterning layers of cations and tetrahedral perchlorate anions arranged parallel to (100) (Fig. 2). Intermolecular O—H···O hydrogen bonds (Table 2) between the coordinating water molecules and perchlorate anions constitute ribbons parallel to [101]; C—H···O hydrogen bonding interactions eventually links these constituents (Fig. 3).