metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1365-m1366

(μ2-Chlorido)-(μ2-pyridine-2-carboxyl­ato-1:2κN,O:O)-di­chlorido(ethanol-κO)bis­­[N-hy­dr­oxy-1-(pyridin-2-yl)methan­imine-κ2N,N′]dicobalt(II)

aShandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, Business School, Linyi University, Linyi 276005, People's Republic of China
*Correspondence e-mail: lytucl@126.com

(Received 20 September 2012; accepted 5 October 2012; online 13 October 2012)

The dinuclear title compound, [Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H5OH)], contains two six-coordinate CoII atoms with different octa­hedral coordination environments. One CoII atom is coordinated by two N atoms from one pyridine-2-carbaldehyde oxime ligand, by one terminal and one bridging Cl ion, by one O atom from an ethanol mol­ecule, and by one O atom from a bridging pyridine-2-carboxyl­ate (picolinate) anion. The second CoII atom is coordinated by two N atoms from another pyridine-2-carbaldehyde oxime ligand, one N and one O atom from the bridging picolinate anion, and by one terminal Cl and one bridging Cl anion. The structure displays intra­molecular O—H⋯O and O—H⋯Cl hydrogen bonds. Weak C—H⋯Cl hydrogen-bonding inter­actions connect the mol­ecules into a three-dimensional network.

Related literature

For examples of CoII complexes with pyridine-2-carbaldehyde oxime ligands, see: Stamatatos et al. (2005a[Stamatatos, T. C., Bell, A., Cooper, P., Terzis, A., Raptopoulou, C. P., Heath, S. L., Winpenny, R. E. P. & Perlepes, S. P. (2005a). Inorg. Chem. Commun. 8, 533-538.],b[Stamatatos, T. C., Dionyssopoulou, S., Efthymiou, G., Kyritsis, P., Raptop­oulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005b). Inorg. Chem. 44, 3374-3376.], 2009[Stamatatos, T. C., Katsoulakou, E., Terzis, A., Raptopoulou, C. P., Winpenny, R. E. P. & Perlepes, S. P. (2009). Polyhedron, 28, 1638-1645.]); Ross et al. (2001[Ross, S., Weyhermuller, T., Bill, E., Wieghardt, K. & Chaudhuri, P. (2001). Inorg. Chem. 40, 6656-6665.]). For the isostructural NiII analogue, see: Zheng et al. (2011[Zheng, L.-N., Hu, B., Chen, W.-Q., Chen, Y.-M., Lei, T. & Li, Y.-H. (2011). Chin. J. Inorg. Chem. 27, 2162-2166.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H6O)]

  • Mr = 636.64

  • Monoclinic, P 21 /c

  • a = 8.7443 (17) Å

  • b = 18.144 (4) Å

  • c = 16.643 (3) Å

  • β = 99.23 (3)°

  • V = 2606.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.642, Tmax = 0.727

  • 17261 measured reflections

  • 4520 independent reflections

  • 3778 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.165

  • S = 1.18

  • 4520 reflections

  • 319 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 2.087 (2)
Co1—O5 2.110 (3)
Co1—N1 2.111 (3)
Co1—N2 2.118 (4)
Co1—Cl5 2.3648 (11)
Co1—Cl3 2.4781 (12)
O3—Co2 2.111 (3)
Co2—N3 2.118 (3)
Co2—N5 2.117 (3)
Co2—N4 2.133 (3)
Co2—Cl4 2.3948 (10)
Co2—Cl3 2.4603 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl5 0.82 2.29 3.103 (3) 172
O1—H1⋯O4 0.82 1.83 2.615 (4) 160
O5—H5A⋯Cl4 0.85 2.32 3.147 (3) 164
C12—H12⋯Cl4i 0.93 2.80 3.684 (4) 160
C10—H10⋯Cl5ii 0.93 2.82 3.684 (5) 156
C14—H14⋯Cl4iii 0.93 2.74 3.556 (4) 147
C2—H2⋯Cl4iv 0.93 2.81 3.654 (5) 152
C17—H17⋯Cl5v 0.93 2.80 3.491 (4) 132
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-2-carbaldehyde oxime is a frequently used ligand in synthesis of metal complexes. A large number of cobalt complexes based on pyridine-2-carbaldehyde oxime have been reported, such as mononuclear Co complexes (Stamatatos et al., 2005a), mixed-valence complexes with trinuclear Co3 clusters (Stamatatos et al., 2009), mixed-valence cobalt(III/II/III) complexes with a linear arrangement (Stamatatos et al., 2005a), mixed-valence 12-metallacrown-4 complexes (Stamatatos et al., 2005b) and some heterodinuclear complexes (Ross et al., 2001). Some of these complexes exhibit interesting magnetic properties (Ross et al., 2001; Stamatatos et al., 2005b, 2009). We are interested in the coordination chemistry of cobalt in combination with pyridine-2-carbaldehyde oxime and carboxylic acids. Here, we report a new mixed-bridged binuclear cobalt(II) complex, [Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H5OH)], (I).

Compound (I) is isostructural with its Ni(II) analogue (Zheng et al., 2011). There are two six-coordinate Co(II) atoms with different coordination environments present in the structure (Fig. 1). The coordination sphere around each Co(II) atom is distorted octahedral. The two Co(II) cations are bridged through one Cl- ion and one carboxylic oxygen atom (O3) from the picolinate anion. The coordination sphere around Co1 is completed by two N atoms from one pyridine-2-carbaldehyde oxime ligand, by one terminal Cl- ion and by one O atom from an ethanol molecule. For Co2 the coordination sphere contains also two N atoms from another pyridine-2-carbaldehyde oxime ligand, one N from the bridging picolinate anion, and one terminal Cl- anion. The Co···Co distance in the dinuclear species is 3.4153 (9) Å.

Intramolecular O—H···O and O—H···Cl hydrogen bonds consolidate the conformation of the complex whereas weak C—H···Cl hydrogen bonding interactions connect the molecules into a three-dimensional network. (Table 2; Fig. 2).

Related literature top

For examples of CoII complexes with pyridine-2-carbaldehyde oxime ligands, see: Stamatatos et al. (2005a,b, 2009); Ross et al. (2001). For the isostructural NiII analogue, see: Zheng et al. (2011).

Experimental top

A mixture of CoCl2.6H2O (0.0476 g, 0.20 mmol), pyridine-2-carbaldehyde oxime (0.0246 g, 0.20 mmol), pyridine-2-carboxylic acid (0.0250 g, 0.20 mmol) and ethanol (4 ml) was sealed into a 10 ml sample bottle reactor and heated at 393 K for 3 d under autogenous pressure, and then cooled to room temperature. Brown block-shaped crystals of the title compound were isolated, washed with distilled water, and dried in air (yield: 25%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for CH3 type H atoms and 0.97 Å for CH2 type H atoms, respectively. Uiso(H) values were set at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C) for the rest of the H atoms. H atoms bound to O atoms were found from difference maps and were refined with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O) for ethanol, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for the oxime H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing within the structure of compound (I) showing intermolecular C—H···Cl hydrogen bonding interactions.
2-Chlorido)-(µ2-pyridine-2-carboxylato-1:2κN,O:O) -dichlorido(ethanol-κO)bis[N-hydroxy-1-(pyridin-2-yl)methanimine- κ2N,N']dicobalt(II) top
Crystal data top
[Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H6O)]F(000) = 1288
Mr = 636.64char
Monoclinic, P21/cDx = 1.622 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7443 (17) ÅCell parameters from 3510 reflections
b = 18.144 (4) Åθ = 2.6–25.3°
c = 16.643 (3) ŵ = 1.62 mm1
β = 99.23 (3)°T = 293 K
V = 2606.4 (9) Å3Block, brown
Z = 40.30 × 0.25 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
4520 independent reflections
Radiation source: fine-focus sealed tube3778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 107
Tmin = 0.642, Tmax = 0.727k = 2117
17261 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4520 reflections(Δ/σ)max = 0.035
319 parametersΔρmax = 1.09 e Å3
14 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H6O)]V = 2606.4 (9) Å3
Mr = 636.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7443 (17) ŵ = 1.62 mm1
b = 18.144 (4) ÅT = 293 K
c = 16.643 (3) Å0.30 × 0.25 × 0.21 mm
β = 99.23 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4520 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3778 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.727Rint = 0.026
17261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03614 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.18Δρmax = 1.09 e Å3
4520 reflectionsΔρmin = 1.31 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24774 (6)0.45656 (2)0.21872 (3)0.0402 (2)
O30.2615 (3)0.34808 (12)0.26096 (15)0.0431 (5)
Co20.14638 (5)0.27859 (2)0.16890 (3)0.0375 (2)
N10.2554 (3)0.56337 (14)0.16917 (18)0.0390 (7)
Cl30.08768 (10)0.39748 (4)0.09972 (5)0.0428 (3)
N50.1902 (3)0.20948 (15)0.27256 (18)0.0405 (7)
Cl40.38894 (10)0.25504 (5)0.12436 (5)0.0446 (3)
N20.4077 (4)0.51273 (17)0.3068 (2)0.0532 (8)
Cl50.04241 (13)0.47676 (5)0.29287 (7)0.0599 (3)
C130.2646 (4)0.24129 (18)0.3398 (2)0.0422 (8)
C50.1754 (4)0.58864 (19)0.1008 (2)0.0452 (8)
H50.10810.55690.06860.054*
O50.4324 (4)0.42495 (16)0.1587 (2)0.0755 (9)
H5A0.41810.38160.13950.091*
N30.0182 (4)0.20307 (16)0.0874 (2)0.0474 (7)
C170.1477 (5)0.13908 (19)0.2775 (3)0.0499 (9)
H170.09670.11590.23090.060*
N40.0840 (4)0.28758 (17)0.1948 (2)0.0508 (8)
C60.4351 (5)0.5793 (2)0.2900 (3)0.0539 (10)
H60.50610.60730.32480.065*
C10.3537 (4)0.61002 (19)0.2159 (2)0.0436 (8)
C20.3710 (5)0.6820 (2)0.1930 (3)0.0533 (10)
H20.43990.71300.22530.064*
C180.3098 (5)0.32080 (19)0.3299 (2)0.0473 (7)
O40.3859 (5)0.35214 (16)0.3880 (2)0.0806 (10)
O20.1396 (4)0.33138 (18)0.2505 (2)0.0702 (9)
H2A0.08510.36820.25920.105*
C140.2986 (5)0.2054 (2)0.4128 (2)0.0534 (10)
H140.35180.22910.45850.064*
C110.0707 (6)0.1604 (2)0.0337 (3)0.0619 (11)
H110.17470.16400.02850.074*
O10.4862 (5)0.48710 (18)0.3784 (2)0.0836 (11)
H10.44600.44880.39080.125*
C150.2517 (5)0.1328 (2)0.4166 (3)0.0560 (11)
H150.27160.10690.46550.067*
C70.1329 (5)0.1977 (2)0.0940 (3)0.0527 (10)
C160.1765 (5)0.0998 (2)0.3486 (3)0.0546 (10)
H160.14480.05100.35020.065*
C30.2871 (6)0.7074 (2)0.1233 (3)0.0618 (12)
H30.29660.75630.10800.074*
C40.1879 (5)0.6610 (2)0.0751 (3)0.0572 (10)
H40.13040.67760.02660.069*
C190.5751 (6)0.4495 (3)0.1537 (4)0.0872 (12)
H19A0.64440.43380.20210.105*
H19B0.57320.50290.15390.105*
C120.1848 (5)0.2464 (2)0.1537 (3)0.0571 (11)
H120.28780.24730.16130.068*
C80.2318 (6)0.1499 (3)0.0475 (3)0.0752 (14)
H80.33560.14740.05350.090*
C100.0215 (7)0.1106 (3)0.0154 (3)0.0793 (15)
H100.01970.08120.05240.095*
C200.6395 (7)0.4247 (3)0.0818 (4)0.0869 (17)
H20A0.62910.37220.07660.130*
H20B0.74710.43790.08790.130*
H20C0.58420.44790.03390.130*
C90.1751 (7)0.1058 (3)0.0078 (4)0.0886 (17)
H90.24010.07300.03990.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0441 (3)0.0344 (3)0.0410 (3)0.00033 (19)0.0033 (3)0.00025 (17)
O30.0526 (13)0.0361 (11)0.0379 (12)0.0020 (10)0.0012 (11)0.0034 (9)
Co20.0386 (3)0.0373 (3)0.0360 (3)0.00170 (18)0.0039 (3)0.00143 (17)
N10.0405 (16)0.0351 (13)0.0410 (17)0.0009 (12)0.0053 (14)0.0003 (12)
Cl30.0450 (5)0.0427 (5)0.0389 (5)0.0019 (4)0.0013 (4)0.0037 (3)
N50.0423 (16)0.0403 (14)0.0388 (17)0.0020 (12)0.0059 (14)0.0061 (12)
Cl40.0408 (5)0.0464 (5)0.0470 (6)0.0052 (4)0.0082 (4)0.0003 (4)
N20.060 (2)0.0443 (17)0.049 (2)0.0008 (15)0.0098 (17)0.0022 (14)
Cl50.0740 (7)0.0520 (5)0.0591 (7)0.0109 (5)0.0272 (6)0.0026 (4)
C130.050 (2)0.0398 (16)0.038 (2)0.0077 (16)0.0088 (18)0.0047 (14)
C50.046 (2)0.0465 (18)0.041 (2)0.0026 (16)0.0009 (18)0.0007 (15)
O50.0564 (16)0.0550 (15)0.124 (3)0.0128 (13)0.0415 (18)0.0243 (16)
N30.0502 (19)0.0450 (15)0.0437 (18)0.0074 (14)0.0024 (16)0.0040 (13)
C170.054 (2)0.0426 (19)0.053 (2)0.0017 (17)0.007 (2)0.0066 (16)
N40.0475 (19)0.0470 (16)0.061 (2)0.0025 (15)0.0181 (18)0.0093 (15)
C60.061 (2)0.0441 (19)0.052 (2)0.0105 (18)0.004 (2)0.0081 (17)
C10.044 (2)0.0435 (18)0.043 (2)0.0015 (15)0.0060 (17)0.0062 (15)
C20.063 (2)0.0456 (19)0.051 (2)0.0122 (18)0.007 (2)0.0038 (17)
C180.0573 (18)0.0397 (15)0.0412 (16)0.0055 (14)0.0031 (16)0.0011 (13)
O40.128 (3)0.0466 (15)0.0528 (19)0.0108 (18)0.029 (2)0.0031 (13)
O20.0638 (19)0.0657 (19)0.088 (2)0.0002 (15)0.0337 (19)0.0059 (16)
C140.067 (3)0.055 (2)0.039 (2)0.0097 (19)0.009 (2)0.0035 (16)
C110.071 (3)0.059 (2)0.055 (3)0.009 (2)0.008 (2)0.0079 (19)
O10.108 (3)0.0595 (19)0.066 (2)0.0138 (18)0.037 (2)0.0093 (15)
C150.070 (3)0.053 (2)0.049 (2)0.008 (2)0.020 (2)0.0179 (18)
C70.047 (2)0.053 (2)0.055 (3)0.0141 (18)0.002 (2)0.0151 (18)
C160.056 (2)0.049 (2)0.060 (3)0.0027 (18)0.016 (2)0.0178 (18)
C30.082 (3)0.0406 (19)0.062 (3)0.008 (2)0.009 (3)0.0075 (19)
C40.068 (3)0.048 (2)0.052 (2)0.001 (2)0.001 (2)0.0091 (17)
C190.062 (2)0.077 (2)0.130 (3)0.0157 (18)0.038 (2)0.028 (2)
C120.039 (2)0.060 (2)0.073 (3)0.0074 (19)0.011 (2)0.013 (2)
C80.064 (3)0.078 (3)0.078 (3)0.027 (3)0.007 (3)0.006 (3)
C100.104 (4)0.068 (3)0.063 (3)0.021 (3)0.005 (3)0.020 (2)
C200.082 (4)0.077 (3)0.112 (5)0.012 (3)0.048 (4)0.013 (3)
C90.099 (4)0.077 (3)0.079 (4)0.040 (3)0.018 (3)0.004 (3)
Geometric parameters (Å, º) top
Co1—O32.087 (2)C6—H60.9300
Co1—O52.110 (3)C1—C21.376 (5)
Co1—N12.111 (3)C2—C31.350 (6)
Co1—N22.118 (4)C2—H20.9300
Co1—Cl52.3648 (11)C18—O41.223 (5)
Co1—Cl32.4781 (12)O2—H2A0.8200
O3—C181.258 (4)C14—C151.384 (5)
O3—Co22.111 (3)C14—H140.9300
Co2—N32.118 (3)C11—C101.388 (7)
Co2—N52.117 (3)C11—H110.9300
Co2—N42.133 (3)O1—H10.8200
Co2—Cl42.3948 (10)C15—C161.354 (6)
Co2—Cl32.4603 (10)C15—H150.9300
N1—C51.319 (5)C7—C81.372 (6)
N1—C11.358 (5)C7—C121.455 (6)
N5—C171.337 (4)C16—H160.9300
N5—C131.333 (5)C3—C41.371 (6)
N2—C61.271 (5)C3—H30.9300
N2—O11.359 (5)C4—H40.9300
C13—C141.369 (5)C19—C201.473 (7)
C13—C181.512 (5)C19—H19A0.9700
C5—C41.391 (5)C19—H19B0.9700
C5—H50.9300C12—H120.9300
O5—C191.339 (5)C8—C91.371 (8)
O5—H5A0.8499C8—H80.9300
N3—C111.319 (5)C10—C91.371 (8)
N3—C71.347 (5)C10—H100.9300
C17—C161.370 (6)C20—H20A0.9600
C17—H170.9300C20—H20B0.9600
N4—C121.269 (6)C20—H20C0.9600
N4—O21.368 (4)C9—H90.9300
C6—C11.435 (6)
O3—Co1—O584.04 (11)O2—N4—Co2129.1 (3)
O3—Co1—N1173.45 (10)N2—C6—C1118.2 (4)
O5—Co1—N189.42 (12)N2—C6—H6120.9
O3—Co1—N2102.98 (11)C1—C6—H6120.9
O5—Co1—N289.32 (14)N1—C1—C2121.4 (4)
N1—Co1—N276.69 (12)N1—C1—C6115.5 (3)
O3—Co1—Cl588.74 (7)C2—C1—C6123.1 (4)
O5—Co1—Cl5172.77 (9)C3—C2—C1119.5 (4)
N1—Co1—Cl597.81 (8)C3—C2—H2120.2
N2—Co1—Cl592.09 (10)C1—C2—H2120.2
O3—Co1—Cl381.72 (7)O4—C18—O3126.8 (3)
O5—Co1—Cl383.16 (10)O4—C18—C13118.4 (3)
N1—Co1—Cl397.71 (9)O3—C18—C13114.8 (3)
N2—Co1—Cl3170.71 (10)N4—O2—H2A109.5
Cl5—Co1—Cl396.05 (4)C13—C14—C15118.0 (4)
C18—O3—Co1132.1 (2)C13—C14—H14121.0
C18—O3—Co2118.5 (2)C15—C14—H14121.0
Co1—O3—Co2108.89 (11)N3—C11—C10123.3 (4)
O3—Co2—N3173.23 (10)N3—C11—H11118.3
O3—Co2—N576.08 (11)C10—C11—H11118.3
N3—Co2—N598.43 (12)N2—O1—H1109.5
O3—Co2—N499.41 (12)C16—C15—C14119.3 (4)
N3—Co2—N476.05 (13)C16—C15—H15120.3
N5—Co2—N486.20 (12)C14—C15—H15120.3
O3—Co2—Cl489.33 (7)N3—C7—C8122.5 (4)
N3—Co2—Cl495.19 (9)N3—C7—C12115.4 (4)
N5—Co2—Cl495.35 (8)C8—C7—C12122.1 (4)
N4—Co2—Cl4171.24 (10)C15—C16—C17119.3 (4)
O3—Co2—Cl381.68 (7)C15—C16—H16120.3
N3—Co2—Cl3102.62 (9)C17—C16—H16120.3
N5—Co2—Cl3153.82 (8)C2—C3—C4119.9 (4)
N4—Co2—Cl383.95 (9)C2—C3—H3120.0
Cl4—Co2—Cl398.06 (3)C4—C3—H3120.0
C5—N1—C1118.5 (3)C3—C4—C5118.2 (4)
C5—N1—Co1127.6 (2)C3—C4—H4120.9
C1—N1—Co1113.9 (2)C5—C4—H4120.9
Co2—Cl3—Co187.51 (4)O5—C19—C20115.5 (5)
C17—N5—C13117.7 (3)O5—C19—H19A108.4
C17—N5—Co2126.9 (3)C20—C19—H19A108.4
C13—N5—Co2115.3 (2)O5—C19—H19B108.4
C6—N2—O1115.6 (4)C20—C19—H19B108.4
C6—N2—Co1115.6 (3)H19A—C19—H19B107.5
O1—N2—Co1128.9 (2)N4—C12—C7117.4 (4)
N5—C13—C14123.2 (3)N4—C12—H12121.3
N5—C13—C18115.0 (3)C7—C12—H12121.3
C14—C13—C18121.9 (4)C9—C8—C7119.0 (5)
N1—C5—C4122.5 (4)C9—C8—H8120.5
N1—C5—H5118.8C7—C8—H8120.5
C4—C5—H5118.8C9—C10—C11118.1 (5)
C19—O5—Co1136.9 (3)C9—C10—H10120.9
C19—O5—H5A111.5C11—C10—H10120.9
Co1—O5—H5A110.5C19—C20—H20A109.5
C11—N3—C7117.7 (4)C19—C20—H20B109.5
C11—N3—Co2127.4 (3)H20A—C20—H20B109.5
C7—N3—Co2114.8 (3)C19—C20—H20C109.5
N5—C17—C16122.4 (4)H20A—C20—H20C109.5
N5—C17—H17118.8H20B—C20—H20C109.5
C16—C17—H17118.8C10—C9—C8119.3 (5)
C12—N4—O2114.6 (3)C10—C9—H9120.3
C12—N4—Co2116.3 (3)C8—C9—H9120.3
O5—Co1—O3—C18107.7 (3)N5—Co2—N3—C1195.8 (4)
N2—Co1—O3—C1819.8 (3)N4—Co2—N3—C11179.7 (4)
Cl5—Co1—O3—C1872.1 (3)Cl4—Co2—N3—C110.4 (3)
Cl3—Co1—O3—C18168.4 (3)Cl3—Co2—N3—C1199.9 (3)
O5—Co1—O3—Co280.18 (14)N5—Co2—N3—C782.3 (3)
N2—Co1—O3—Co2168.10 (12)N4—Co2—N3—C71.6 (3)
Cl5—Co1—O3—Co2100.04 (10)Cl4—Co2—N3—C7178.5 (3)
Cl3—Co1—O3—Co23.74 (8)Cl3—Co2—N3—C782.0 (3)
C18—O3—Co2—N53.5 (3)C13—N5—C17—C160.8 (5)
Co1—O3—Co2—N5169.85 (13)Co2—N5—C17—C16177.4 (3)
C18—O3—Co2—N487.2 (3)O3—Co2—N4—C12174.2 (3)
Co1—O3—Co2—N486.18 (13)N3—Co2—N4—C120.7 (3)
C18—O3—Co2—Cl492.2 (3)N5—Co2—N4—C1299.0 (3)
Co1—O3—Co2—Cl494.47 (9)Cl3—Co2—N4—C12105.3 (3)
C18—O3—Co2—Cl3169.6 (3)O3—Co2—N4—O25.2 (3)
Co1—O3—Co2—Cl33.77 (8)N3—Co2—N4—O2179.9 (3)
O5—Co1—N1—C592.3 (3)N5—Co2—N4—O280.4 (3)
N2—Co1—N1—C5178.2 (3)Cl3—Co2—N4—O275.3 (3)
Cl5—Co1—N1—C587.9 (3)O1—N2—C6—C1178.9 (3)
Cl3—Co1—N1—C59.3 (3)Co1—N2—C6—C11.8 (5)
O5—Co1—N1—C188.9 (2)C5—N1—C1—C20.3 (5)
N2—Co1—N1—C10.5 (2)Co1—N1—C1—C2179.1 (3)
Cl5—Co1—N1—C190.8 (2)C5—N1—C1—C6179.0 (3)
Cl3—Co1—N1—C1171.9 (2)Co1—N1—C1—C60.2 (4)
O3—Co2—Cl3—Co13.01 (7)N2—C6—C1—N11.3 (5)
N3—Co2—Cl3—Co1177.68 (9)N2—C6—C1—C2178.0 (4)
N5—Co2—Cl3—Co135.0 (2)N1—C1—C2—C31.0 (6)
N4—Co2—Cl3—Co1103.47 (11)C6—C1—C2—C3178.3 (4)
Cl4—Co2—Cl3—Co185.12 (4)Co1—O3—C18—O412.9 (6)
O3—Co1—Cl3—Co23.04 (7)Co2—O3—C18—O4175.5 (4)
O5—Co1—Cl3—Co281.89 (10)Co1—O3—C18—C13166.0 (2)
N1—Co1—Cl3—Co2170.37 (8)Co2—O3—C18—C135.5 (4)
Cl5—Co1—Cl3—Co290.87 (4)N5—C13—C18—O4176.1 (4)
O3—Co2—N5—C17177.6 (3)C14—C13—C18—O43.9 (6)
N3—Co2—N5—C171.7 (3)N5—C13—C18—O34.9 (5)
N4—Co2—N5—C1776.9 (3)C14—C13—C18—O3175.2 (3)
Cl4—Co2—N5—C1794.4 (3)N5—C13—C14—C150.7 (6)
Cl3—Co2—N5—C17145.0 (2)C18—C13—C14—C15179.4 (3)
O3—Co2—N5—C130.5 (2)C7—N3—C11—C100.4 (7)
N3—Co2—N5—C13176.5 (2)Co2—N3—C11—C10177.7 (4)
N4—Co2—N5—C13101.2 (3)C13—C14—C15—C160.9 (6)
Cl4—Co2—N5—C1387.4 (2)C11—N3—C7—C80.2 (6)
Cl3—Co2—N5—C1333.2 (4)Co2—N3—C7—C8178.1 (3)
O3—Co1—N2—C6172.0 (3)C11—N3—C7—C12179.5 (4)
O5—Co1—N2—C688.3 (3)Co2—N3—C7—C122.2 (4)
N1—Co1—N2—C61.2 (3)C14—C15—C16—C170.4 (6)
Cl5—Co1—N2—C698.8 (3)N5—C17—C16—C150.5 (6)
O3—Co1—N2—O17.2 (4)C1—C2—C3—C41.3 (6)
O5—Co1—N2—O190.9 (4)C2—C3—C4—C50.9 (6)
N1—Co1—N2—O1179.5 (4)N1—C5—C4—C30.2 (6)
Cl5—Co1—N2—O182.0 (4)Co1—O5—C19—C20158.8 (4)
C17—N5—C13—C140.2 (5)O2—N4—C12—C7179.2 (3)
Co2—N5—C13—C14178.2 (3)Co2—N4—C12—C70.3 (5)
C17—N5—C13—C18179.8 (3)N3—C7—C12—N41.7 (6)
Co2—N5—C13—C181.9 (4)C8—C7—C12—N4178.7 (4)
C1—N1—C5—C40.1 (5)N3—C7—C8—C90.0 (7)
Co1—N1—C5—C4178.6 (3)C12—C7—C8—C9179.6 (5)
O3—Co1—O5—C19126.6 (6)N3—C11—C10—C90.4 (8)
N1—Co1—O5—C1953.2 (6)C11—C10—C9—C80.2 (8)
N2—Co1—O5—C1923.5 (6)C7—C8—C9—C100.0 (8)
Cl3—Co1—O5—C19151.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl50.822.293.103 (3)172
O1—H1···O40.821.832.615 (4)160
O5—H5A···Cl40.852.323.147 (3)164
C12—H12···Cl4i0.932.803.684 (4)160
C10—H10···Cl5ii0.932.823.684 (5)156
C14—H14···Cl4iii0.932.743.556 (4)147
C2—H2···Cl4iv0.932.813.654 (5)152
C17—H17···Cl5v0.932.803.491 (4)132
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H6O)]
Mr636.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7443 (17), 18.144 (4), 16.643 (3)
β (°) 99.23 (3)
V3)2606.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.30 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.642, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
17261, 4520, 3778
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.165, 1.18
No. of reflections4520
No. of parameters319
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 1.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O32.087 (2)O3—Co22.111 (3)
Co1—O52.110 (3)Co2—N32.118 (3)
Co1—N12.111 (3)Co2—N52.117 (3)
Co1—N22.118 (4)Co2—N42.133 (3)
Co1—Cl52.3648 (11)Co2—Cl42.3948 (10)
Co1—Cl32.4781 (12)Co2—Cl32.4603 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl50.822.293.103 (3)172.4
O1—H1···O40.821.832.615 (4)159.9
O5—H5A···Cl40.852.323.147 (3)164.4
C12—H12···Cl4i0.932.803.684 (4)159.6
C10—H10···Cl5ii0.932.823.684 (5)155.6
C14—H14···Cl4iii0.932.743.556 (4)146.5
C2—H2···Cl4iv0.932.813.654 (5)152.1
C17—H17···Cl5v0.932.803.491 (4)131.6
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
 

Acknowledgements

The Ministry of Education, Humanities and Social Sciences (project No. 10YJC790024) and the Shandong Province Natural Science Foundation (project No. ZR2011GL013) are acknowledged for support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRoss, S., Weyhermuller, T., Bill, E., Wieghardt, K. & Chaudhuri, P. (2001). Inorg. Chem. 40, 6656–6665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Bell, A., Cooper, P., Terzis, A., Raptopoulou, C. P., Heath, S. L., Winpenny, R. E. P. & Perlepes, S. P. (2005a). Inorg. Chem. Commun. 8, 533–538.  Web of Science CrossRef CAS Google Scholar
First citationStamatatos, T. C., Dionyssopoulou, S., Efthymiou, G., Kyritsis, P., Raptop­oulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005b). Inorg. Chem. 44, 3374–3376.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStamatatos, T. C., Katsoulakou, E., Terzis, A., Raptopoulou, C. P., Winpenny, R. E. P. & Perlepes, S. P. (2009). Polyhedron, 28, 1638–1645.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, L.-N., Hu, B., Chen, W.-Q., Chen, Y.-M., Lei, T. & Li, Y.-H. (2011). Chin. J. Inorg. Chem. 27, 2162–2166.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1365-m1366
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds