inorganic compounds
Redetermination of dysprosium trinickel from single-crystal X-ray data
aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
*Correspondence e-mail: v.levyckyy@gmail.com
The 3, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire & Paccard (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9–16; Tsai et al. (1974). J. Appl. Phys. 45, 3582–3586], the present redetermination revealed refined coordinates and anisotropic displacement parameters for all atoms. The of DyNi3 adopts the PuNi3 structure type and can be derived from the CaCu5 structure type as an intergrowth structure. The contains two Dy sites (site symmetries 3m and -3) and three Ni sites (m, 3m and -3m). The two different coordination polyhedra of Dy are a Frank–Kasper polyhedron formed by four Dy and 12 Ni atoms and a pseudo-Frank–Kasper polyhedron formed by two Dy and 18 Ni atoms. The three different coordination polyhedra of Ni are Frank–Kasper icosahedra formed by five Dy and seven Ni atoms, three Dy and nine Ni atoms, and six Dy and six Ni atoms.
of the title compound, DyNiRelated literature
For the PuNi3 structure type, see: Cromer & Olsen (1959). For previous powder diffraction studies of the title compoud, see: Paccard & Pauthenet (1967); Lemaire & Paccard (1969); Virkar & Raman (1969); Buschow & van der Goot (1970); Yakinthos & Paccard (1972); Tsai et al. (1974). For related compounds, see: Virkar & Raman (1969); Buschow & van der Goot (1970); Levytskyy et al. (2012). For the CaCu5 structure type, see: Haucke (1940); Nowotny (1942). For the MgCu2 structure type, see: Friauf (1927); Ohba et al. (1984). For intergrowth structures, see: Parthé et al. (1985); Grin (1992).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812043747/wm2688sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043747/wm2688Isup2.hkl
The sample was prepared of the powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) piece (Aldrich). A mixture of the powders was compacted in stainless steel dies. The pellet was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remolten three times to improve Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 1070 K. Shiny grey irregular-shaped crystals were isolated mechanically with a help of microscope by crushing the sample.
The atomic positions found from the
structure solution were in good agreement with those from the PuNi3 structure type and were used as starting parameters for the structure The highest Fourier difference peak of 2.77 e Å-3 is at (0 0 0.1019) and 0.91 Å away from the Dy1 atom. The deepest hole of -1.33 e Å-3 is at (0.8263 0.9132 0.0194) and 0.88 Å away from the Dy2 atom.Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).DyNi3 | Dx = 9.723 Mg m−3 |
Mr = 338.63 | Mo Kα radiation, λ = 0.71069 Å |
Trigonal, R3m | Cell parameters from 1064 reflections |
Hall symbol: -R 3 2" | θ = 0.8–28.4° |
a = 4.966 (2) Å | µ = 55.52 mm−1 |
c = 24.37 (1) Å | T = 293 K |
V = 520.5 (4) Å3 | Irregular, grey |
Z = 9 | 0.13 × 0.08 × 0.06 mm |
F(000) = 1350 |
Stoe IPDS II diffractometer | 197 independent reflections |
Radiation source: fine-focus sealed tube | 163 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ω scans | θmax = 28.4°, θmin = 2.5° |
Absorption correction: multi-scan (PLATON, Spek, 2009) | h = −6→6 |
Tmin = 0.071, Tmax = 0.182 | k = −6→6 |
1516 measured reflections | l = −32→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.022 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.043 | w = 1/[σ2(Fo2) + (0.0207P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
197 reflections | Δρmax = 2.77 e Å−3 |
17 parameters | Δρmin = −1.33 e Å−3 |
DyNi3 | Z = 9 |
Mr = 338.63 | Mo Kα radiation |
Trigonal, R3m | µ = 55.52 mm−1 |
a = 4.966 (2) Å | T = 293 K |
c = 24.37 (1) Å | 0.13 × 0.08 × 0.06 mm |
V = 520.5 (4) Å3 |
Stoe IPDS II diffractometer | 197 independent reflections |
Absorption correction: multi-scan (PLATON, Spek, 2009) | 163 reflections with I > 2σ(I) |
Tmin = 0.071, Tmax = 0.182 | Rint = 0.058 |
1516 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 17 parameters |
wR(F2) = 0.043 | 0 restraints |
S = 1.01 | Δρmax = 2.77 e Å−3 |
197 reflections | Δρmin = −1.33 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.50038 (13) | 0.49962 (13) | 0.08188 (5) | 0.0116 (3) | |
Dy1 | 0.0000 | 0.0000 | 0.13920 (4) | 0.0135 (2) | |
Ni2 | 0.0000 | 0.0000 | 0.33306 (9) | 0.0143 (5) | |
Ni3 | 0.0000 | 0.0000 | 0.5000 | 0.0118 (7) | |
Dy2 | 0.0000 | 0.0000 | 0.0000 | 0.0128 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0112 (5) | 0.0112 (5) | 0.0141 (7) | 0.0069 (6) | 0.0003 (3) | −0.0003 (3) |
Dy1 | 0.0125 (3) | 0.0125 (3) | 0.0157 (5) | 0.00623 (15) | 0.000 | 0.000 |
Ni2 | 0.0153 (7) | 0.0153 (7) | 0.0123 (12) | 0.0077 (4) | 0.000 | 0.000 |
Ni3 | 0.0115 (10) | 0.0115 (10) | 0.0124 (17) | 0.0057 (5) | 0.000 | 0.000 |
Dy2 | 0.0117 (4) | 0.0117 (4) | 0.0151 (6) | 0.00584 (19) | 0.000 | 0.000 |
Ni1—Ni2i | 2.450 (2) | Ni2—Dy2xviii | 2.8671 (12) |
Ni1—Ni2ii | 2.464 (2) | Ni2—Dy2xv | 2.8671 (12) |
Ni1—Ni1iii | 2.477 (2) | Ni2—Ni2xix | 2.8671 (12) |
Ni1—Ni1iv | 2.477 (2) | Ni2—Ni2xx | 2.8671 (12) |
Ni1—Ni1v | 2.489 (2) | Ni2—Dy2xxi | 2.8672 (12) |
Ni1—Ni1vi | 2.489 (2) | Ni2—Ni2xxii | 2.8672 (12) |
Ni1—Ni3ii | 2.5166 (14) | Ni3—Ni1xx | 2.5166 (14) |
Ni1—Dy1vii | 2.8489 (11) | Ni3—Ni1xv | 2.5166 (14) |
Ni1—Dy1 | 2.8489 (11) | Ni3—Ni1xxiii | 2.5166 (14) |
Ni1—Dy1i | 3.0869 (18) | Ni3—Ni1xvii | 2.5166 (14) |
Ni1—Dy2 | 3.1855 (12) | Ni3—Ni1xxiv | 2.5166 (14) |
Ni1—Dy2vii | 3.1855 (12) | Ni3—Ni1xvi | 2.5166 (14) |
Dy1—Ni1viii | 2.8489 (11) | Ni3—Dy1xx | 2.9442 (11) |
Dy1—Ni1ix | 2.8489 (11) | Ni3—Dy1xv | 2.9442 (11) |
Dy1—Ni1x | 2.8489 (11) | Ni3—Dy1xix | 2.9442 (11) |
Dy1—Ni1vi | 2.8489 (11) | Ni3—Dy1xviii | 2.9442 (11) |
Dy1—Ni1iv | 2.8489 (11) | Ni3—Dy1xxii | 2.9442 (11) |
Dy1—Ni3ii | 2.9442 (11) | Ni3—Dy1xxi | 2.9442 (11) |
Dy1—Ni3xi | 2.9442 (11) | Dy2—Ni2i | 2.8671 (12) |
Dy1—Ni3xii | 2.9442 (11) | Dy2—Ni2xxv | 2.8671 (12) |
Dy1—Ni1i | 3.0869 (18) | Dy2—Ni2ii | 2.8671 (12) |
Dy1—Ni1xiii | 3.0869 (18) | Dy2—Ni2xi | 2.8671 (12) |
Dy1—Ni1xiv | 3.0869 (18) | Dy2—Ni2xxvi | 2.8672 (12) |
Ni2—Ni1i | 2.450 (2) | Dy2—Ni2xii | 2.8672 (12) |
Ni2—Ni1xiv | 2.450 (2) | Dy2—Ni1xxvii | 3.1855 (12) |
Ni2—Ni1xiii | 2.450 (2) | Dy2—Ni1vi | 3.1855 (12) |
Ni2—Ni1xv | 2.464 (2) | Dy2—Ni1iv | 3.1855 (12) |
Ni2—Ni1xvi | 2.464 (2) | Dy2—Ni1xxviii | 3.1855 (12) |
Ni2—Ni1xvii | 2.464 (2) | Dy2—Ni1viii | 3.1855 (12) |
Ni2i—Ni1—Ni2ii | 71.39 (4) | Ni1xvii—Ni2—Ni2xix | 54.07 (7) |
Ni2i—Ni1—Ni1iii | 59.63 (4) | Dy2xviii—Ni2—Ni2xix | 179.60 (14) |
Ni2ii—Ni1—Ni1iii | 120.32 (4) | Dy2xv—Ni2—Ni2xix | 60.0 |
Ni2i—Ni1—Ni1iv | 59.63 (4) | Ni1i—Ni2—Ni2xx | 107.20 (9) |
Ni2ii—Ni1—Ni1iv | 120.32 (4) | Ni1xiv—Ni2—Ni2xx | 107.20 (9) |
Ni1iii—Ni1—Ni1iv | 60.0 | Ni1xiii—Ni2—Ni2xx | 54.54 (7) |
Ni2i—Ni1—Ni1v | 120.37 (4) | Ni1xv—Ni2—Ni2xx | 106.72 (9) |
Ni2ii—Ni1—Ni1v | 59.68 (4) | Ni1xvi—Ni2—Ni2xx | 54.07 (7) |
Ni1iii—Ni1—Ni1v | 120.0 | Ni1xvii—Ni2—Ni2xx | 106.72 (9) |
Ni1iv—Ni1—Ni1v | 180.0 | Dy2xviii—Ni2—Ni2xx | 60.0 |
Ni2i—Ni1—Ni1vi | 120.37 (4) | Dy2xv—Ni2—Ni2xx | 179.60 (14) |
Ni2ii—Ni1—Ni1vi | 59.68 (4) | Ni2xix—Ni2—Ni2xx | 119.999 (2) |
Ni1iii—Ni1—Ni1vi | 180.00 (5) | Ni1i—Ni2—Dy2xxi | 125.86 (8) |
Ni1iv—Ni1—Ni1vi | 120.0 | Ni1xiv—Ni2—Dy2xxi | 73.14 (3) |
Ni1v—Ni1—Ni1vi | 60.0 | Ni1xiii—Ni2—Dy2xxi | 73.14 (3) |
Ni2i—Ni1—Ni3ii | 179.09 (6) | Ni1xv—Ni2—Dy2xxi | 125.53 (8) |
Ni2ii—Ni1—Ni3ii | 109.52 (6) | Ni1xvi—Ni2—Dy2xxi | 72.94 (3) |
Ni1iii—Ni1—Ni3ii | 119.63 (2) | Ni1xvii—Ni2—Dy2xxi | 72.94 (3) |
Ni1iv—Ni1—Ni3ii | 119.63 (2) | Dy2xviii—Ni2—Dy2xxi | 119.999 (1) |
Ni1v—Ni1—Ni3ii | 60.37 (2) | Dy2xv—Ni2—Dy2xxi | 119.999 (1) |
Ni1vi—Ni1—Ni3ii | 60.37 (2) | Ni2xix—Ni2—Dy2xxi | 60.0 |
Ni2i—Ni1—Dy1vii | 113.50 (3) | Ni2xx—Ni2—Dy2xxi | 60.0 |
Ni2ii—Ni1—Dy1vii | 113.43 (3) | Ni1i—Ni2—Ni2xxii | 54.54 (7) |
Ni1iii—Ni1—Dy1vii | 64.23 (2) | Ni1xiv—Ni2—Ni2xxii | 107.20 (9) |
Ni1iv—Ni1—Dy1vii | 115.90 (2) | Ni1xiii—Ni2—Ni2xxii | 107.20 (9) |
Ni1v—Ni1—Dy1vii | 64.10 (2) | Ni1xv—Ni2—Ni2xxii | 54.07 (7) |
Ni1vi—Ni1—Dy1vii | 115.77 (2) | Ni1xvi—Ni2—Ni2xxii | 106.72 (9) |
Ni3ii—Ni1—Dy1vii | 66.22 (3) | Ni1xvii—Ni2—Ni2xxii | 106.72 (9) |
Ni2i—Ni1—Dy1 | 113.50 (3) | Dy2xviii—Ni2—Ni2xxii | 60.0 |
Ni2ii—Ni1—Dy1 | 113.43 (3) | Dy2xv—Ni2—Ni2xxii | 60.0 |
Ni1iii—Ni1—Dy1 | 115.90 (2) | Ni2xix—Ni2—Ni2xxii | 119.997 (2) |
Ni1iv—Ni1—Dy1 | 64.23 (2) | Ni2xx—Ni2—Ni2xxii | 119.997 (2) |
Ni1v—Ni1—Dy1 | 115.77 (2) | Dy2xxi—Ni2—Ni2xxii | 179.60 (14) |
Ni1vi—Ni1—Dy1 | 64.10 (2) | Ni1xx—Ni3—Ni1xv | 180.00 (3) |
Ni3ii—Ni1—Dy1 | 66.22 (3) | Ni1xx—Ni3—Ni1xxiii | 59.27 (5) |
Dy1vii—Ni1—Dy1 | 121.28 (6) | Ni1xv—Ni3—Ni1xxiii | 120.73 (5) |
Ni2i—Ni1—Dy1i | 116.67 (6) | Ni1xx—Ni3—Ni1xvii | 120.73 (5) |
Ni2ii—Ni1—Dy1i | 171.94 (6) | Ni1xv—Ni3—Ni1xvii | 59.27 (5) |
Ni1iii—Ni1—Dy1i | 66.34 (2) | Ni1xxiii—Ni3—Ni1xvii | 180.0 |
Ni1iv—Ni1—Dy1i | 66.34 (2) | Ni1xx—Ni3—Ni1xxiv | 59.27 (5) |
Ni1v—Ni1—Dy1i | 113.66 (2) | Ni1xv—Ni3—Ni1xxiv | 120.73 (5) |
Ni1vi—Ni1—Dy1i | 113.66 (2) | Ni1xxiii—Ni3—Ni1xxiv | 59.27 (5) |
Ni3ii—Ni1—Dy1i | 62.42 (4) | Ni1xvii—Ni3—Ni1xxiv | 120.73 (5) |
Dy1vii—Ni1—Dy1i | 64.28 (3) | Ni1xx—Ni3—Ni1xvi | 120.73 (5) |
Dy1—Ni1—Dy1i | 64.28 (3) | Ni1xv—Ni3—Ni1xvi | 59.27 (5) |
Ni2i—Ni1—Dy2 | 59.47 (3) | Ni1xxiii—Ni3—Ni1xvi | 120.73 (5) |
Ni2ii—Ni1—Dy2 | 59.37 (3) | Ni1xvii—Ni3—Ni1xvi | 59.27 (5) |
Ni1iii—Ni1—Dy2 | 112.99 (2) | Ni1xxiv—Ni3—Ni1xvi | 180.0 |
Ni1iv—Ni1—Dy2 | 67.12 (2) | Ni1xx—Ni3—Dy1xx | 62.314 (16) |
Ni1v—Ni1—Dy2 | 112.88 (2) | Ni1xv—Ni3—Dy1xx | 117.686 (16) |
Ni1vi—Ni1—Dy2 | 67.01 (2) | Ni1xxiii—Ni3—Dy1xx | 62.314 (16) |
Ni3ii—Ni1—Dy2 | 120.91 (3) | Ni1xvii—Ni3—Dy1xx | 117.686 (16) |
Dy1vii—Ni1—Dy2 | 170.57 (4) | Ni1xxiv—Ni3—Dy1xx | 111.68 (4) |
Dy1—Ni1—Dy2 | 68.15 (3) | Ni1xvi—Ni3—Dy1xx | 68.32 (4) |
Dy1i—Ni1—Dy2 | 123.75 (3) | Ni1xx—Ni3—Dy1xv | 117.686 (16) |
Ni2i—Ni1—Dy2vii | 59.47 (3) | Ni1xv—Ni3—Dy1xv | 62.314 (16) |
Ni2ii—Ni1—Dy2vii | 59.37 (3) | Ni1xxiii—Ni3—Dy1xv | 117.686 (16) |
Ni1iii—Ni1—Dy2vii | 67.12 (2) | Ni1xvii—Ni3—Dy1xv | 62.314 (16) |
Ni1iv—Ni1—Dy2vii | 112.99 (2) | Ni1xxiv—Ni3—Dy1xv | 68.32 (4) |
Ni1v—Ni1—Dy2vii | 67.01 (2) | Ni1xvi—Ni3—Dy1xv | 111.68 (4) |
Ni1vi—Ni1—Dy2vii | 112.88 (2) | Dy1xx—Ni3—Dy1xv | 180.0 |
Ni3ii—Ni1—Dy2vii | 120.91 (3) | Ni1xx—Ni3—Dy1xix | 62.314 (16) |
Dy1vii—Ni1—Dy2vii | 68.15 (3) | Ni1xv—Ni3—Dy1xix | 117.686 (16) |
Dy1—Ni1—Dy2vii | 170.57 (4) | Ni1xxiii—Ni3—Dy1xix | 111.68 (4) |
Dy1i—Ni1—Dy2vii | 123.75 (3) | Ni1xvii—Ni3—Dy1xix | 68.32 (4) |
Dy2—Ni1—Dy2vii | 102.42 (5) | Ni1xxiv—Ni3—Dy1xix | 62.314 (16) |
Ni1viii—Dy1—Ni1ix | 51.80 (5) | Ni1xvi—Ni3—Dy1xix | 117.686 (16) |
Ni1viii—Dy1—Ni1x | 51.54 (5) | Dy1xx—Ni3—Dy1xix | 114.993 (13) |
Ni1ix—Dy1—Ni1x | 98.01 (4) | Dy1xv—Ni3—Dy1xix | 65.007 (13) |
Ni1viii—Dy1—Ni1 | 121.28 (6) | Ni1xx—Ni3—Dy1xviii | 117.686 (16) |
Ni1ix—Dy1—Ni1 | 98.01 (4) | Ni1xv—Ni3—Dy1xviii | 62.314 (16) |
Ni1x—Dy1—Ni1 | 98.01 (4) | Ni1xxiii—Ni3—Dy1xviii | 68.32 (4) |
Ni1viii—Dy1—Ni1vi | 98.01 (4) | Ni1xvii—Ni3—Dy1xviii | 111.68 (4) |
Ni1ix—Dy1—Ni1vi | 51.54 (5) | Ni1xxiv—Ni3—Dy1xviii | 117.686 (16) |
Ni1x—Dy1—Ni1vi | 121.28 (6) | Ni1xvi—Ni3—Dy1xviii | 62.314 (16) |
Ni1—Dy1—Ni1vi | 51.80 (5) | Dy1xx—Ni3—Dy1xviii | 65.007 (13) |
Ni1viii—Dy1—Ni1iv | 98.01 (4) | Dy1xv—Ni3—Dy1xviii | 114.993 (13) |
Ni1ix—Dy1—Ni1iv | 121.28 (6) | Dy1xix—Ni3—Dy1xviii | 180.00 (3) |
Ni1x—Dy1—Ni1iv | 51.80 (5) | Ni1xx—Ni3—Dy1xxii | 111.68 (4) |
Ni1—Dy1—Ni1iv | 51.54 (5) | Ni1xv—Ni3—Dy1xxii | 68.32 (4) |
Ni1vi—Dy1—Ni1iv | 98.01 (4) | Ni1xxiii—Ni3—Dy1xxii | 62.314 (16) |
Ni1viii—Dy1—Ni3ii | 147.89 (3) | Ni1xvii—Ni3—Dy1xxii | 117.686 (16) |
Ni1ix—Dy1—Ni3ii | 96.33 (2) | Ni1xxiv—Ni3—Dy1xxii | 62.314 (16) |
Ni1x—Dy1—Ni3ii | 147.89 (3) | Ni1xvi—Ni3—Dy1xxii | 117.686 (16) |
Ni1—Dy1—Ni3ii | 51.46 (3) | Dy1xx—Ni3—Dy1xxii | 114.992 (13) |
Ni1vi—Dy1—Ni3ii | 51.46 (3) | Dy1xv—Ni3—Dy1xxii | 65.008 (13) |
Ni1iv—Dy1—Ni3ii | 96.33 (2) | Dy1xix—Ni3—Dy1xxii | 114.992 (13) |
Ni1viii—Dy1—Ni3xi | 51.46 (3) | Dy1xviii—Ni3—Dy1xxii | 65.008 (13) |
Ni1ix—Dy1—Ni3xi | 51.46 (3) | Ni1xx—Ni3—Dy1xxi | 68.32 (4) |
Ni1x—Dy1—Ni3xi | 96.33 (2) | Ni1xv—Ni3—Dy1xxi | 111.68 (4) |
Ni1—Dy1—Ni3xi | 147.89 (3) | Ni1xxiii—Ni3—Dy1xxi | 117.686 (16) |
Ni1vi—Dy1—Ni3xi | 96.33 (2) | Ni1xvii—Ni3—Dy1xxi | 62.314 (16) |
Ni1iv—Dy1—Ni3xi | 147.89 (3) | Ni1xxiv—Ni3—Dy1xxi | 117.686 (16) |
Ni3ii—Dy1—Ni3xi | 114.993 (13) | Ni1xvi—Ni3—Dy1xxi | 62.314 (16) |
Ni1viii—Dy1—Ni3xii | 96.33 (2) | Dy1xx—Ni3—Dy1xxi | 65.008 (13) |
Ni1ix—Dy1—Ni3xii | 147.89 (3) | Dy1xv—Ni3—Dy1xxi | 114.992 (13) |
Ni1x—Dy1—Ni3xii | 51.46 (3) | Dy1xix—Ni3—Dy1xxi | 65.008 (13) |
Ni1—Dy1—Ni3xii | 96.33 (2) | Dy1xviii—Ni3—Dy1xxi | 114.992 (13) |
Ni1vi—Dy1—Ni3xii | 147.89 (3) | Dy1xxii—Ni3—Dy1xxi | 180.00 (3) |
Ni1iv—Dy1—Ni3xii | 51.46 (3) | Ni2i—Dy2—Ni2xxv | 120.0 |
Ni3ii—Dy1—Ni3xii | 114.992 (13) | Ni2i—Dy2—Ni2ii | 60.0 |
Ni3xi—Dy1—Ni3xii | 114.992 (13) | Ni2xxv—Dy2—Ni2ii | 180.0 |
Ni1viii—Dy1—Ni1i | 115.72 (3) | Ni2i—Dy2—Ni2xi | 180.0 |
Ni1ix—Dy1—Ni1i | 141.67 (2) | Ni2xxv—Dy2—Ni2xi | 60.0 |
Ni1x—Dy1—Ni1i | 94.88 (4) | Ni2ii—Dy2—Ni2xi | 120.0 |
Ni1—Dy1—Ni1i | 115.72 (3) | Ni2i—Dy2—Ni2xxvi | 120.0 |
Ni1vi—Dy1—Ni1i | 141.67 (2) | Ni2xxv—Dy2—Ni2xxvi | 120.0 |
Ni1iv—Dy1—Ni1i | 94.88 (4) | Ni2ii—Dy2—Ni2xxvi | 60.0 |
Ni3ii—Dy1—Ni1i | 91.38 (3) | Ni2xi—Dy2—Ni2xxvi | 60.0 |
Ni3xi—Dy1—Ni1i | 91.38 (3) | Ni2i—Dy2—Ni2xii | 60.0 |
Ni3xii—Dy1—Ni1i | 49.26 (2) | Ni2xxv—Dy2—Ni2xii | 60.0 |
Ni1viii—Dy1—Ni1xiii | 141.67 (2) | Ni2ii—Dy2—Ni2xii | 120.0 |
Ni1ix—Dy1—Ni1xiii | 115.72 (3) | Ni2xi—Dy2—Ni2xii | 120.0 |
Ni1x—Dy1—Ni1xiii | 141.67 (2) | Ni2xxvi—Dy2—Ni2xii | 180.0 |
Ni1—Dy1—Ni1xiii | 94.88 (4) | Ni2i—Dy2—Ni1 | 47.39 (4) |
Ni1vi—Dy1—Ni1xiii | 94.88 (4) | Ni2xxv—Dy2—Ni1 | 132.30 (4) |
Ni1iv—Dy1—Ni1xiii | 115.72 (3) | Ni2ii—Dy2—Ni1 | 47.70 (4) |
Ni3ii—Dy1—Ni1xiii | 49.26 (2) | Ni2xi—Dy2—Ni1 | 132.61 (4) |
Ni3xi—Dy1—Ni1xiii | 91.38 (3) | Ni2xxvi—Dy2—Ni1 | 89.97 (4) |
Ni3xii—Dy1—Ni1xiii | 91.39 (3) | Ni2xii—Dy2—Ni1 | 90.03 (4) |
Ni1i—Dy1—Ni1xiii | 47.32 (4) | Ni2i—Dy2—Ni1xxvii | 132.61 (4) |
Ni1viii—Dy1—Ni1xiv | 94.88 (4) | Ni2xxv—Dy2—Ni1xxvii | 47.70 (4) |
Ni1ix—Dy1—Ni1xiv | 94.88 (4) | Ni2ii—Dy2—Ni1xxvii | 132.30 (4) |
Ni1x—Dy1—Ni1xiv | 115.72 (3) | Ni2xi—Dy2—Ni1xxvii | 47.39 (4) |
Ni1—Dy1—Ni1xiv | 141.67 (2) | Ni2xxvi—Dy2—Ni1xxvii | 90.03 (4) |
Ni1vi—Dy1—Ni1xiv | 115.72 (3) | Ni2xii—Dy2—Ni1xxvii | 89.97 (4) |
Ni1iv—Dy1—Ni1xiv | 141.67 (2) | Ni1—Dy2—Ni1xxvii | 180.00 (3) |
Ni3ii—Dy1—Ni1xiv | 91.38 (3) | Ni2i—Dy2—Ni1vi | 89.97 (4) |
Ni3xi—Dy1—Ni1xiv | 49.26 (2) | Ni2xxv—Dy2—Ni1vi | 132.30 (4) |
Ni3xii—Dy1—Ni1xiv | 91.39 (3) | Ni2ii—Dy2—Ni1vi | 47.70 (4) |
Ni1i—Dy1—Ni1xiv | 47.32 (4) | Ni2xi—Dy2—Ni1vi | 90.03 (4) |
Ni1xiii—Dy1—Ni1xiv | 47.32 (4) | Ni2xxvi—Dy2—Ni1vi | 47.39 (4) |
Ni1i—Ni2—Ni1xiv | 60.75 (7) | Ni2xii—Dy2—Ni1vi | 132.61 (4) |
Ni1i—Ni2—Ni1xiii | 60.75 (7) | Ni1—Dy2—Ni1vi | 45.99 (4) |
Ni1xiv—Ni2—Ni1xiii | 60.75 (7) | Ni1xxvii—Dy2—Ni1vi | 134.01 (4) |
Ni1i—Ni2—Ni1xv | 108.61 (4) | Ni2i—Dy2—Ni1iv | 47.39 (4) |
Ni1xiv—Ni2—Ni1xv | 146.078 (19) | Ni2xxv—Dy2—Ni1iv | 89.97 (4) |
Ni1xiii—Ni2—Ni1xv | 146.078 (19) | Ni2ii—Dy2—Ni1iv | 90.03 (4) |
Ni1i—Ni2—Ni1xvi | 146.078 (19) | Ni2xi—Dy2—Ni1iv | 132.61 (4) |
Ni1xiv—Ni2—Ni1xvi | 146.077 (19) | Ni2xxvi—Dy2—Ni1iv | 132.30 (4) |
Ni1xiii—Ni2—Ni1xvi | 108.61 (4) | Ni2xii—Dy2—Ni1iv | 47.70 (4) |
Ni1xv—Ni2—Ni1xvi | 60.65 (7) | Ni1—Dy2—Ni1iv | 45.77 (4) |
Ni1i—Ni2—Ni1xvii | 146.078 (19) | Ni1xxvii—Dy2—Ni1iv | 134.23 (4) |
Ni1xiv—Ni2—Ni1xvii | 108.61 (4) | Ni1vi—Dy2—Ni1iv | 84.91 (3) |
Ni1xiii—Ni2—Ni1xvii | 146.077 (19) | Ni2i—Dy2—Ni1xxviii | 90.03 (4) |
Ni1xv—Ni2—Ni1xvii | 60.65 (7) | Ni2xxv—Dy2—Ni1xxviii | 47.70 (4) |
Ni1xvi—Ni2—Ni1xvii | 60.65 (7) | Ni2ii—Dy2—Ni1xxviii | 132.30 (4) |
Ni1i—Ni2—Dy2xviii | 73.14 (3) | Ni2xi—Dy2—Ni1xxviii | 89.97 (4) |
Ni1xiv—Ni2—Dy2xviii | 125.86 (8) | Ni2xxvi—Dy2—Ni1xxviii | 132.61 (4) |
Ni1xiii—Ni2—Dy2xviii | 73.14 (3) | Ni2xii—Dy2—Ni1xxviii | 47.39 (4) |
Ni1xv—Ni2—Dy2xviii | 72.94 (3) | Ni1—Dy2—Ni1xxviii | 134.01 (4) |
Ni1xvi—Ni2—Dy2xviii | 72.94 (3) | Ni1xxvii—Dy2—Ni1xxviii | 45.99 (4) |
Ni1xvii—Ni2—Dy2xviii | 125.53 (8) | Ni1vi—Dy2—Ni1xxviii | 180.00 (5) |
Ni1i—Ni2—Dy2xv | 73.14 (3) | Ni1iv—Dy2—Ni1xxviii | 95.09 (3) |
Ni1xiv—Ni2—Dy2xv | 73.14 (3) | Ni2i—Dy2—Ni1viii | 132.30 (4) |
Ni1xiii—Ni2—Dy2xv | 125.86 (8) | Ni2xxv—Dy2—Ni1viii | 47.39 (4) |
Ni1xv—Ni2—Dy2xv | 72.94 (3) | Ni2ii—Dy2—Ni1viii | 132.61 (4) |
Ni1xvi—Ni2—Dy2xv | 125.53 (8) | Ni2xi—Dy2—Ni1viii | 47.70 (4) |
Ni1xvii—Ni2—Dy2xv | 72.94 (3) | Ni2xxvi—Dy2—Ni1viii | 89.97 (4) |
Dy2xviii—Ni2—Dy2xv | 120.000 (1) | Ni2xii—Dy2—Ni1viii | 90.03 (4) |
Ni1i—Ni2—Ni2xix | 107.20 (9) | Ni1—Dy2—Ni1viii | 102.42 (5) |
Ni1xiv—Ni2—Ni2xix | 54.54 (7) | Ni1xxvii—Dy2—Ni1viii | 77.58 (5) |
Ni1xiii—Ni2—Ni2xix | 107.20 (9) | Ni1vi—Dy2—Ni1viii | 84.91 (3) |
Ni1xv—Ni2—Ni2xix | 106.72 (9) | Ni1iv—Dy2—Ni1viii | 84.91 (3) |
Ni1xvi—Ni2—Ni2xix | 106.72 (9) | Ni1xxviii—Dy2—Ni1viii | 95.09 (3) |
Symmetry codes: (i) −x+2/3, −y+1/3, −z+1/3; (ii) x+1/3, y+2/3, z−1/3; (iii) −x+y+1, −x+1, z; (iv) −y+1, x−y, z; (v) −y+1, x−y+1, z; (vi) −x+y, −x+1, z; (vii) x+1, y+1, z; (viii) x−1, y−1, z; (ix) −y, x−y, z; (x) −x+y, −x, z; (xi) x−2/3, y−1/3, z−1/3; (xii) x+1/3, y−1/3, z−1/3; (xiii) y−1/3, −x+y+1/3, −z+1/3; (xiv) x−y−1/3, x−2/3, −z+1/3; (xv) x−1/3, y−2/3, z+1/3; (xvi) −y+2/3, x−y+1/3, z+1/3; (xvii) −x+y−1/3, −x+1/3, z+1/3; (xviii) x+2/3, y+1/3, z+1/3; (xix) −x−2/3, −y−1/3, −z+2/3; (xx) −x+1/3, −y+2/3, −z+2/3; (xxi) x−1/3, y+1/3, z+1/3; (xxii) −x+1/3, −y−1/3, −z+2/3; (xxiii) x−y+1/3, x−1/3, −z+2/3; (xxiv) y−2/3, −x+y−1/3, −z+2/3; (xxv) −x−1/3, −y−2/3, −z+1/3; (xxvi) −x−1/3, −y+1/3, −z+1/3; (xxvii) −x, −y, −z; (xxviii) x−y, x−1, −z. |
Experimental details
Crystal data | |
Chemical formula | DyNi3 |
Mr | 338.63 |
Crystal system, space group | Trigonal, R3m |
Temperature (K) | 293 |
a, c (Å) | 4.966 (2), 24.37 (1) |
V (Å3) | 520.5 (4) |
Z | 9 |
Radiation type | Mo Kα |
µ (mm−1) | 55.52 |
Crystal size (mm) | 0.13 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Multi-scan (PLATON, Spek, 2009) |
Tmin, Tmax | 0.071, 0.182 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1516, 197, 163 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.043, 1.01 |
No. of reflections | 197 |
No. of parameters | 17 |
Δρmax, Δρmin (e Å−3) | 2.77, −1.33 |
Computer programs: X-AREA (Stoe & Cie, 2009), SIR2011 (Burla et al., 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419–428. CrossRef CAS Google Scholar
Cromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689–694. CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Friauf, J. B. (1927). J. Am. Chem. Soc. 49, 3107–3114. CrossRef CAS Google Scholar
Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77–95. Dordrecht: Kluwer Academic Publishers. Google Scholar
Haucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17–22. CrossRef CAS Google Scholar
Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9–16. CAS Google Scholar
Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20. CrossRef IUCr Journals Google Scholar
Nowotny, H. (1942). Z. Metallkd. 34, 247–253. CAS Google Scholar
Ohba, T., Kitano, Y. & Komura, Y. (1984). Acta Cryst. C40, 1–5. CrossRef CAS Web of Science IUCr Journals Google Scholar
Paccard, D. & Pauthenet, R. (1967). Compt. Rend. Sci. Ser. B. 264, 1056–1059. Google Scholar
Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164–174. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie. (2009). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582–3586. CrossRef CAS Web of Science Google Scholar
Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59–66. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yakinthos, J. & Paccard, D. (1972). Solid State Commun. 10, 989–993. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The existence of the intermetallic phase with composition DyNi3 has been long known before. The first structure report (Paccard & Pauthenet, 1967) of the title compound revealed isotypism with the PuNi3 structure type (Cromer & Olsen, 1959). Lattice parameters were determined from X-ray powder diffraction data without specifying atomic coordinates (Paccard & Pauthenet, 1967; Lemaire & Paccard, 1969; Virkar & Raman, 1969; Buschow & van der Goot, 1970; Tsai et al., 1974). Yakinthos & Paccard (1972) reported crystal structure data for RNi3 compounds (R = Pr, Nd, Tb, Dy, Tm) from powder neutron diffraction data.
The present work contains the results of the full single-crystal X-ray determination of DyNi3, including refinement of the atomic coordinates and the temperature factors for all atoms. These results confirm the belonging to the PuNi3 structure type in space group R3m. A view of the crystal structure of DyNi3 is shown in Fig. 1. As has been noted previously (Yakinthos & Paccard, 1972), the crystal structure of DyNi3 can be derived from the CaCu5 structure type (Haucke, 1940; Nowotny, 1942). It consists of stacks of RX5 blocks (CaCu5-type) and R2X4 blocks (MgCu2-type (Friauf, 1927; Ohba et al., 1984)). Both types have the same Kagome net of Ni atoms that allows a combination of both structural motifs along the 3-fold inversion axis. As a result, it can be considered as an intergrowth structure: R2X4 + RX5 = 3RX3 (Parthé et al., 1985; Grin, 1992).
In Fig. 2 the projection of the unit cell on the ab plane and the resulting coordination polyhedra for all atom types are shown. The coordination number for the Dy1 atom (Wyckoff site 6c, site symmetry 3m). The coordination polyhedron for this atom is a Frank-Kasper polyhedron formed by 4 Dy and 12 Ni atoms. The coordination number for the Dy2 atom (Wyckoff site 3a, site symmetry 3m) is 20. The coordination polyhedron of Dy2 is a pseudo-Frank-Kasper polyhedron formed by 2 Dy and 18 Ni atoms. Although the site symmetries for all Ni atoms are different, the coordination number for all Ni atoms is 12, with Frank-Kasper icosahedra as coordination polyhedra. The Ni1 atom (Wyckoff site 18h, site symmetry .m) is surrounded by 5 Dy atoms and 7 Ni atoms. The Ni2 atom (Wyckoff site 6c, site symmetry 3m) is surrounded by 3 Dy atoms and 9 Ni atoms. The Ni3 atom (Wyckoff site 3b, site symmetry 3m) is surrounded by 6 Dy atoms and 6 Ni atoms.
The interatomic distances in DyNi3 are similar than those in Di2Ni7 (Levytskyy et al., 2012).