inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of dysprosium trinickel from single-crystal X-ray data

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
*Correspondence e-mail: v.levyckyy@gmail.com

(Received 28 September 2012; accepted 22 October 2012; online 27 October 2012)

The crystal structure of the title compound, DyNi3, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire & Paccard (1969[Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9-16.]). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9–16; Tsai et al. (1974[Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582-3586.]). J. Appl. Phys. 45, 3582–3586], the present redetermination revealed refined coordinates and anisotropic displacement parameters for all atoms. The crystal structure of DyNi3 adopts the PuNi3 structure type and can be derived from the CaCu5 structure type as an inter­growth structure. The asymmetric unit contains two Dy sites (site symmetries 3m and -3) and three Ni sites (m, 3m and -3m). The two different coordination polyhedra of Dy are a Frank–Kasper polyhedron formed by four Dy and 12 Ni atoms and a pseudo-Frank–Kasper polyhedron formed by two Dy and 18 Ni atoms. The three different coordination polyhedra of Ni are Frank–Kasper icosa­hedra formed by five Dy and seven Ni atoms, three Dy and nine Ni atoms, and six Dy and six Ni atoms.

Related literature

For the PuNi3 structure type, see: Cromer & Olsen (1959[Cromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689-694.]). For previous powder diffraction studies of the title compoud, see: Paccard & Pauthenet (1967[Paccard, D. & Pauthenet, R. (1967). Compt. Rend. Sci. Ser. B. 264, 1056-1059.]); Lemaire & Paccard (1969[Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9-16.]); Virkar & Raman (1969[Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59-66.]); Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419-428.]); Yakinthos & Paccard (1972[Yakinthos, J. & Paccard, D. (1972). Solid State Commun. 10, 989-993.]); Tsai et al. (1974[Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582-3586.]). For related compounds, see: Virkar & Raman (1969[Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59-66.]); Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419-428.]); Levytskyy et al. (2012[Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20.]). For the CaCu5 structure type, see: Haucke (1940[Haucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17-22.]); Nowotny (1942[Nowotny, H. (1942). Z. Metallkd. 34, 247-253.]). For the MgCu2 structure type, see: Friauf (1927[Friauf, J. B. (1927). J. Am. Chem. Soc. 49, 3107-3114.]); Ohba et al. (1984[Ohba, T., Kitano, Y. & Komura, Y. (1984). Acta Cryst. C40, 1-5.]). For inter­growth structures, see: Parthé et al. (1985[Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164-174.]); Grin (1992[Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77-95. Dordrecht: Kluwer Academic Publishers.]).

Experimental

Crystal data
  • DyNi3

  • Mr = 338.63

  • Trigonal, [R \overline 3m ]

  • a = 4.966 (2) Å

  • c = 24.37 (1) Å

  • V = 520.5 (4) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 55.52 mm−1

  • T = 293 K

  • 0.13 × 0.08 × 0.06 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (PLATON, Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.071, Tmax = 0.182

  • 1516 measured reflections

  • 197 independent reflections

  • 163 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.043

  • S = 1.01

  • 197 reflections

  • 17 parameters

  • Δρmax = 2.77 e Å−3

  • Δρmin = −1.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The existence of the intermetallic phase with composition DyNi3 has been long known before. The first structure report (Paccard & Pauthenet, 1967) of the title compound revealed isotypism with the PuNi3 structure type (Cromer & Olsen, 1959). Lattice parameters were determined from X-ray powder diffraction data without specifying atomic coordinates (Paccard & Pauthenet, 1967; Lemaire & Paccard, 1969; Virkar & Raman, 1969; Buschow & van der Goot, 1970; Tsai et al., 1974). Yakinthos & Paccard (1972) reported crystal structure data for RNi3 compounds (R = Pr, Nd, Tb, Dy, Tm) from powder neutron diffraction data.

The present work contains the results of the full single-crystal X-ray determination of DyNi3, including refinement of the atomic coordinates and the temperature factors for all atoms. These results confirm the belonging to the PuNi3 structure type in space group R3m. A view of the crystal structure of DyNi3 is shown in Fig. 1. As has been noted previously (Yakinthos & Paccard, 1972), the crystal structure of DyNi3 can be derived from the CaCu5 structure type (Haucke, 1940; Nowotny, 1942). It consists of stacks of RX5 blocks (CaCu5-type) and R2X4 blocks (MgCu2-type (Friauf, 1927; Ohba et al., 1984)). Both types have the same Kagome net of Ni atoms that allows a combination of both structural motifs along the 3-fold inversion axis. As a result, it can be considered as an intergrowth structure: R2X4 + RX5 = 3RX3 (Parthé et al., 1985; Grin, 1992).

In Fig. 2 the projection of the unit cell on the ab plane and the resulting coordination polyhedra for all atom types are shown. The coordination number for the Dy1 atom (Wyckoff site 6c, site symmetry 3m). The coordination polyhedron for this atom is a Frank-Kasper polyhedron formed by 4 Dy and 12 Ni atoms. The coordination number for the Dy2 atom (Wyckoff site 3a, site symmetry 3m) is 20. The coordination polyhedron of Dy2 is a pseudo-Frank-Kasper polyhedron formed by 2 Dy and 18 Ni atoms. Although the site symmetries for all Ni atoms are different, the coordination number for all Ni atoms is 12, with Frank-Kasper icosahedra as coordination polyhedra. The Ni1 atom (Wyckoff site 18h, site symmetry .m) is surrounded by 5 Dy atoms and 7 Ni atoms. The Ni2 atom (Wyckoff site 6c, site symmetry 3m) is surrounded by 3 Dy atoms and 9 Ni atoms. The Ni3 atom (Wyckoff site 3b, site symmetry 3m) is surrounded by 6 Dy atoms and 6 Ni atoms.

The interatomic distances in DyNi3 are similar than those in Di2Ni7 (Levytskyy et al., 2012).

Related literature top

For the PuNi3 structure type, see: Cromer & Olsen (1959). For previous powder diffraction studies of the title compoud, see: Paccard & Pauthenet (1967); Lemaire & Paccard (1969); Virkar & Raman (1969); Buschow & van der Goot (1970); Yakinthos & Paccard (1972); Tsai et al. (1974). For related compounds, see: Virkar & Raman (1969); Buschow & van der Goot (1970); Levytskyy et al. (2012). For the CaCu5 structure type, see: Haucke (1940); Nowotny (1942). For the MgCu2 structure type, see: Friauf (1927); Ohba et al. (1984). For intergrowth structures, see: Parthé et al. (1985); Grin (1992).

Experimental top

The sample was prepared of the powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) piece (Aldrich). A mixture of the powders was compacted in stainless steel dies. The pellet was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remolten three times to improve homogeneity. Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 1070 K. Shiny grey irregular-shaped crystals were isolated mechanically with a help of microscope by crushing the sample.

Refinement top

The atomic positions found from the direct methods structure solution were in good agreement with those from the PuNi3 structure type and were used as starting parameters for the structure refinement. The highest Fourier difference peak of 2.77 e Å-3 is at (0 0 0.1019) and 0.91 Å away from the Dy1 atom. The deepest hole of -1.33 e Å-3 is at (0.8263 0.9132 0.0194) and 0.88 Å away from the Dy2 atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the crystal structure of DyNi3. The unit cell and the blocks of RX5 and R2X4 are emphasized. Atoms are represented by their anisotropic displacement ellipsoids at the 99.9% probability level
[Figure 2] Fig. 2. The ab projection of the unit cell and coordination polyhedra for all types of atoms in the DyNi3 structure
Disprosium trinickel top
Crystal data top
DyNi3Dx = 9.723 Mg m3
Mr = 338.63Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3mCell parameters from 1064 reflections
Hall symbol: -R 3 2"θ = 0.8–28.4°
a = 4.966 (2) ŵ = 55.52 mm1
c = 24.37 (1) ÅT = 293 K
V = 520.5 (4) Å3Irregular, grey
Z = 90.13 × 0.08 × 0.06 mm
F(000) = 1350
Data collection top
Stoe IPDS II
diffractometer
197 independent reflections
Radiation source: fine-focus sealed tube163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(PLATON, Spek, 2009)
h = 66
Tmin = 0.071, Tmax = 0.182k = 66
1516 measured reflectionsl = 3230
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.022Secondary atom site location: difference Fourier map
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
197 reflectionsΔρmax = 2.77 e Å3
17 parametersΔρmin = 1.33 e Å3
Crystal data top
DyNi3Z = 9
Mr = 338.63Mo Kα radiation
Trigonal, R3mµ = 55.52 mm1
a = 4.966 (2) ÅT = 293 K
c = 24.37 (1) Å0.13 × 0.08 × 0.06 mm
V = 520.5 (4) Å3
Data collection top
Stoe IPDS II
diffractometer
197 independent reflections
Absorption correction: multi-scan
(PLATON, Spek, 2009)
163 reflections with I > 2σ(I)
Tmin = 0.071, Tmax = 0.182Rint = 0.058
1516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02217 parameters
wR(F2) = 0.0430 restraints
S = 1.01Δρmax = 2.77 e Å3
197 reflectionsΔρmin = 1.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50038 (13)0.49962 (13)0.08188 (5)0.0116 (3)
Dy10.00000.00000.13920 (4)0.0135 (2)
Ni20.00000.00000.33306 (9)0.0143 (5)
Ni30.00000.00000.50000.0118 (7)
Dy20.00000.00000.00000.0128 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0112 (5)0.0112 (5)0.0141 (7)0.0069 (6)0.0003 (3)0.0003 (3)
Dy10.0125 (3)0.0125 (3)0.0157 (5)0.00623 (15)0.0000.000
Ni20.0153 (7)0.0153 (7)0.0123 (12)0.0077 (4)0.0000.000
Ni30.0115 (10)0.0115 (10)0.0124 (17)0.0057 (5)0.0000.000
Dy20.0117 (4)0.0117 (4)0.0151 (6)0.00584 (19)0.0000.000
Geometric parameters (Å, º) top
Ni1—Ni2i2.450 (2)Ni2—Dy2xviii2.8671 (12)
Ni1—Ni2ii2.464 (2)Ni2—Dy2xv2.8671 (12)
Ni1—Ni1iii2.477 (2)Ni2—Ni2xix2.8671 (12)
Ni1—Ni1iv2.477 (2)Ni2—Ni2xx2.8671 (12)
Ni1—Ni1v2.489 (2)Ni2—Dy2xxi2.8672 (12)
Ni1—Ni1vi2.489 (2)Ni2—Ni2xxii2.8672 (12)
Ni1—Ni3ii2.5166 (14)Ni3—Ni1xx2.5166 (14)
Ni1—Dy1vii2.8489 (11)Ni3—Ni1xv2.5166 (14)
Ni1—Dy12.8489 (11)Ni3—Ni1xxiii2.5166 (14)
Ni1—Dy1i3.0869 (18)Ni3—Ni1xvii2.5166 (14)
Ni1—Dy23.1855 (12)Ni3—Ni1xxiv2.5166 (14)
Ni1—Dy2vii3.1855 (12)Ni3—Ni1xvi2.5166 (14)
Dy1—Ni1viii2.8489 (11)Ni3—Dy1xx2.9442 (11)
Dy1—Ni1ix2.8489 (11)Ni3—Dy1xv2.9442 (11)
Dy1—Ni1x2.8489 (11)Ni3—Dy1xix2.9442 (11)
Dy1—Ni1vi2.8489 (11)Ni3—Dy1xviii2.9442 (11)
Dy1—Ni1iv2.8489 (11)Ni3—Dy1xxii2.9442 (11)
Dy1—Ni3ii2.9442 (11)Ni3—Dy1xxi2.9442 (11)
Dy1—Ni3xi2.9442 (11)Dy2—Ni2i2.8671 (12)
Dy1—Ni3xii2.9442 (11)Dy2—Ni2xxv2.8671 (12)
Dy1—Ni1i3.0869 (18)Dy2—Ni2ii2.8671 (12)
Dy1—Ni1xiii3.0869 (18)Dy2—Ni2xi2.8671 (12)
Dy1—Ni1xiv3.0869 (18)Dy2—Ni2xxvi2.8672 (12)
Ni2—Ni1i2.450 (2)Dy2—Ni2xii2.8672 (12)
Ni2—Ni1xiv2.450 (2)Dy2—Ni1xxvii3.1855 (12)
Ni2—Ni1xiii2.450 (2)Dy2—Ni1vi3.1855 (12)
Ni2—Ni1xv2.464 (2)Dy2—Ni1iv3.1855 (12)
Ni2—Ni1xvi2.464 (2)Dy2—Ni1xxviii3.1855 (12)
Ni2—Ni1xvii2.464 (2)Dy2—Ni1viii3.1855 (12)
Ni2i—Ni1—Ni2ii71.39 (4)Ni1xvii—Ni2—Ni2xix54.07 (7)
Ni2i—Ni1—Ni1iii59.63 (4)Dy2xviii—Ni2—Ni2xix179.60 (14)
Ni2ii—Ni1—Ni1iii120.32 (4)Dy2xv—Ni2—Ni2xix60.0
Ni2i—Ni1—Ni1iv59.63 (4)Ni1i—Ni2—Ni2xx107.20 (9)
Ni2ii—Ni1—Ni1iv120.32 (4)Ni1xiv—Ni2—Ni2xx107.20 (9)
Ni1iii—Ni1—Ni1iv60.0Ni1xiii—Ni2—Ni2xx54.54 (7)
Ni2i—Ni1—Ni1v120.37 (4)Ni1xv—Ni2—Ni2xx106.72 (9)
Ni2ii—Ni1—Ni1v59.68 (4)Ni1xvi—Ni2—Ni2xx54.07 (7)
Ni1iii—Ni1—Ni1v120.0Ni1xvii—Ni2—Ni2xx106.72 (9)
Ni1iv—Ni1—Ni1v180.0Dy2xviii—Ni2—Ni2xx60.0
Ni2i—Ni1—Ni1vi120.37 (4)Dy2xv—Ni2—Ni2xx179.60 (14)
Ni2ii—Ni1—Ni1vi59.68 (4)Ni2xix—Ni2—Ni2xx119.999 (2)
Ni1iii—Ni1—Ni1vi180.00 (5)Ni1i—Ni2—Dy2xxi125.86 (8)
Ni1iv—Ni1—Ni1vi120.0Ni1xiv—Ni2—Dy2xxi73.14 (3)
Ni1v—Ni1—Ni1vi60.0Ni1xiii—Ni2—Dy2xxi73.14 (3)
Ni2i—Ni1—Ni3ii179.09 (6)Ni1xv—Ni2—Dy2xxi125.53 (8)
Ni2ii—Ni1—Ni3ii109.52 (6)Ni1xvi—Ni2—Dy2xxi72.94 (3)
Ni1iii—Ni1—Ni3ii119.63 (2)Ni1xvii—Ni2—Dy2xxi72.94 (3)
Ni1iv—Ni1—Ni3ii119.63 (2)Dy2xviii—Ni2—Dy2xxi119.999 (1)
Ni1v—Ni1—Ni3ii60.37 (2)Dy2xv—Ni2—Dy2xxi119.999 (1)
Ni1vi—Ni1—Ni3ii60.37 (2)Ni2xix—Ni2—Dy2xxi60.0
Ni2i—Ni1—Dy1vii113.50 (3)Ni2xx—Ni2—Dy2xxi60.0
Ni2ii—Ni1—Dy1vii113.43 (3)Ni1i—Ni2—Ni2xxii54.54 (7)
Ni1iii—Ni1—Dy1vii64.23 (2)Ni1xiv—Ni2—Ni2xxii107.20 (9)
Ni1iv—Ni1—Dy1vii115.90 (2)Ni1xiii—Ni2—Ni2xxii107.20 (9)
Ni1v—Ni1—Dy1vii64.10 (2)Ni1xv—Ni2—Ni2xxii54.07 (7)
Ni1vi—Ni1—Dy1vii115.77 (2)Ni1xvi—Ni2—Ni2xxii106.72 (9)
Ni3ii—Ni1—Dy1vii66.22 (3)Ni1xvii—Ni2—Ni2xxii106.72 (9)
Ni2i—Ni1—Dy1113.50 (3)Dy2xviii—Ni2—Ni2xxii60.0
Ni2ii—Ni1—Dy1113.43 (3)Dy2xv—Ni2—Ni2xxii60.0
Ni1iii—Ni1—Dy1115.90 (2)Ni2xix—Ni2—Ni2xxii119.997 (2)
Ni1iv—Ni1—Dy164.23 (2)Ni2xx—Ni2—Ni2xxii119.997 (2)
Ni1v—Ni1—Dy1115.77 (2)Dy2xxi—Ni2—Ni2xxii179.60 (14)
Ni1vi—Ni1—Dy164.10 (2)Ni1xx—Ni3—Ni1xv180.00 (3)
Ni3ii—Ni1—Dy166.22 (3)Ni1xx—Ni3—Ni1xxiii59.27 (5)
Dy1vii—Ni1—Dy1121.28 (6)Ni1xv—Ni3—Ni1xxiii120.73 (5)
Ni2i—Ni1—Dy1i116.67 (6)Ni1xx—Ni3—Ni1xvii120.73 (5)
Ni2ii—Ni1—Dy1i171.94 (6)Ni1xv—Ni3—Ni1xvii59.27 (5)
Ni1iii—Ni1—Dy1i66.34 (2)Ni1xxiii—Ni3—Ni1xvii180.0
Ni1iv—Ni1—Dy1i66.34 (2)Ni1xx—Ni3—Ni1xxiv59.27 (5)
Ni1v—Ni1—Dy1i113.66 (2)Ni1xv—Ni3—Ni1xxiv120.73 (5)
Ni1vi—Ni1—Dy1i113.66 (2)Ni1xxiii—Ni3—Ni1xxiv59.27 (5)
Ni3ii—Ni1—Dy1i62.42 (4)Ni1xvii—Ni3—Ni1xxiv120.73 (5)
Dy1vii—Ni1—Dy1i64.28 (3)Ni1xx—Ni3—Ni1xvi120.73 (5)
Dy1—Ni1—Dy1i64.28 (3)Ni1xv—Ni3—Ni1xvi59.27 (5)
Ni2i—Ni1—Dy259.47 (3)Ni1xxiii—Ni3—Ni1xvi120.73 (5)
Ni2ii—Ni1—Dy259.37 (3)Ni1xvii—Ni3—Ni1xvi59.27 (5)
Ni1iii—Ni1—Dy2112.99 (2)Ni1xxiv—Ni3—Ni1xvi180.0
Ni1iv—Ni1—Dy267.12 (2)Ni1xx—Ni3—Dy1xx62.314 (16)
Ni1v—Ni1—Dy2112.88 (2)Ni1xv—Ni3—Dy1xx117.686 (16)
Ni1vi—Ni1—Dy267.01 (2)Ni1xxiii—Ni3—Dy1xx62.314 (16)
Ni3ii—Ni1—Dy2120.91 (3)Ni1xvii—Ni3—Dy1xx117.686 (16)
Dy1vii—Ni1—Dy2170.57 (4)Ni1xxiv—Ni3—Dy1xx111.68 (4)
Dy1—Ni1—Dy268.15 (3)Ni1xvi—Ni3—Dy1xx68.32 (4)
Dy1i—Ni1—Dy2123.75 (3)Ni1xx—Ni3—Dy1xv117.686 (16)
Ni2i—Ni1—Dy2vii59.47 (3)Ni1xv—Ni3—Dy1xv62.314 (16)
Ni2ii—Ni1—Dy2vii59.37 (3)Ni1xxiii—Ni3—Dy1xv117.686 (16)
Ni1iii—Ni1—Dy2vii67.12 (2)Ni1xvii—Ni3—Dy1xv62.314 (16)
Ni1iv—Ni1—Dy2vii112.99 (2)Ni1xxiv—Ni3—Dy1xv68.32 (4)
Ni1v—Ni1—Dy2vii67.01 (2)Ni1xvi—Ni3—Dy1xv111.68 (4)
Ni1vi—Ni1—Dy2vii112.88 (2)Dy1xx—Ni3—Dy1xv180.0
Ni3ii—Ni1—Dy2vii120.91 (3)Ni1xx—Ni3—Dy1xix62.314 (16)
Dy1vii—Ni1—Dy2vii68.15 (3)Ni1xv—Ni3—Dy1xix117.686 (16)
Dy1—Ni1—Dy2vii170.57 (4)Ni1xxiii—Ni3—Dy1xix111.68 (4)
Dy1i—Ni1—Dy2vii123.75 (3)Ni1xvii—Ni3—Dy1xix68.32 (4)
Dy2—Ni1—Dy2vii102.42 (5)Ni1xxiv—Ni3—Dy1xix62.314 (16)
Ni1viii—Dy1—Ni1ix51.80 (5)Ni1xvi—Ni3—Dy1xix117.686 (16)
Ni1viii—Dy1—Ni1x51.54 (5)Dy1xx—Ni3—Dy1xix114.993 (13)
Ni1ix—Dy1—Ni1x98.01 (4)Dy1xv—Ni3—Dy1xix65.007 (13)
Ni1viii—Dy1—Ni1121.28 (6)Ni1xx—Ni3—Dy1xviii117.686 (16)
Ni1ix—Dy1—Ni198.01 (4)Ni1xv—Ni3—Dy1xviii62.314 (16)
Ni1x—Dy1—Ni198.01 (4)Ni1xxiii—Ni3—Dy1xviii68.32 (4)
Ni1viii—Dy1—Ni1vi98.01 (4)Ni1xvii—Ni3—Dy1xviii111.68 (4)
Ni1ix—Dy1—Ni1vi51.54 (5)Ni1xxiv—Ni3—Dy1xviii117.686 (16)
Ni1x—Dy1—Ni1vi121.28 (6)Ni1xvi—Ni3—Dy1xviii62.314 (16)
Ni1—Dy1—Ni1vi51.80 (5)Dy1xx—Ni3—Dy1xviii65.007 (13)
Ni1viii—Dy1—Ni1iv98.01 (4)Dy1xv—Ni3—Dy1xviii114.993 (13)
Ni1ix—Dy1—Ni1iv121.28 (6)Dy1xix—Ni3—Dy1xviii180.00 (3)
Ni1x—Dy1—Ni1iv51.80 (5)Ni1xx—Ni3—Dy1xxii111.68 (4)
Ni1—Dy1—Ni1iv51.54 (5)Ni1xv—Ni3—Dy1xxii68.32 (4)
Ni1vi—Dy1—Ni1iv98.01 (4)Ni1xxiii—Ni3—Dy1xxii62.314 (16)
Ni1viii—Dy1—Ni3ii147.89 (3)Ni1xvii—Ni3—Dy1xxii117.686 (16)
Ni1ix—Dy1—Ni3ii96.33 (2)Ni1xxiv—Ni3—Dy1xxii62.314 (16)
Ni1x—Dy1—Ni3ii147.89 (3)Ni1xvi—Ni3—Dy1xxii117.686 (16)
Ni1—Dy1—Ni3ii51.46 (3)Dy1xx—Ni3—Dy1xxii114.992 (13)
Ni1vi—Dy1—Ni3ii51.46 (3)Dy1xv—Ni3—Dy1xxii65.008 (13)
Ni1iv—Dy1—Ni3ii96.33 (2)Dy1xix—Ni3—Dy1xxii114.992 (13)
Ni1viii—Dy1—Ni3xi51.46 (3)Dy1xviii—Ni3—Dy1xxii65.008 (13)
Ni1ix—Dy1—Ni3xi51.46 (3)Ni1xx—Ni3—Dy1xxi68.32 (4)
Ni1x—Dy1—Ni3xi96.33 (2)Ni1xv—Ni3—Dy1xxi111.68 (4)
Ni1—Dy1—Ni3xi147.89 (3)Ni1xxiii—Ni3—Dy1xxi117.686 (16)
Ni1vi—Dy1—Ni3xi96.33 (2)Ni1xvii—Ni3—Dy1xxi62.314 (16)
Ni1iv—Dy1—Ni3xi147.89 (3)Ni1xxiv—Ni3—Dy1xxi117.686 (16)
Ni3ii—Dy1—Ni3xi114.993 (13)Ni1xvi—Ni3—Dy1xxi62.314 (16)
Ni1viii—Dy1—Ni3xii96.33 (2)Dy1xx—Ni3—Dy1xxi65.008 (13)
Ni1ix—Dy1—Ni3xii147.89 (3)Dy1xv—Ni3—Dy1xxi114.992 (13)
Ni1x—Dy1—Ni3xii51.46 (3)Dy1xix—Ni3—Dy1xxi65.008 (13)
Ni1—Dy1—Ni3xii96.33 (2)Dy1xviii—Ni3—Dy1xxi114.992 (13)
Ni1vi—Dy1—Ni3xii147.89 (3)Dy1xxii—Ni3—Dy1xxi180.00 (3)
Ni1iv—Dy1—Ni3xii51.46 (3)Ni2i—Dy2—Ni2xxv120.0
Ni3ii—Dy1—Ni3xii114.992 (13)Ni2i—Dy2—Ni2ii60.0
Ni3xi—Dy1—Ni3xii114.992 (13)Ni2xxv—Dy2—Ni2ii180.0
Ni1viii—Dy1—Ni1i115.72 (3)Ni2i—Dy2—Ni2xi180.0
Ni1ix—Dy1—Ni1i141.67 (2)Ni2xxv—Dy2—Ni2xi60.0
Ni1x—Dy1—Ni1i94.88 (4)Ni2ii—Dy2—Ni2xi120.0
Ni1—Dy1—Ni1i115.72 (3)Ni2i—Dy2—Ni2xxvi120.0
Ni1vi—Dy1—Ni1i141.67 (2)Ni2xxv—Dy2—Ni2xxvi120.0
Ni1iv—Dy1—Ni1i94.88 (4)Ni2ii—Dy2—Ni2xxvi60.0
Ni3ii—Dy1—Ni1i91.38 (3)Ni2xi—Dy2—Ni2xxvi60.0
Ni3xi—Dy1—Ni1i91.38 (3)Ni2i—Dy2—Ni2xii60.0
Ni3xii—Dy1—Ni1i49.26 (2)Ni2xxv—Dy2—Ni2xii60.0
Ni1viii—Dy1—Ni1xiii141.67 (2)Ni2ii—Dy2—Ni2xii120.0
Ni1ix—Dy1—Ni1xiii115.72 (3)Ni2xi—Dy2—Ni2xii120.0
Ni1x—Dy1—Ni1xiii141.67 (2)Ni2xxvi—Dy2—Ni2xii180.0
Ni1—Dy1—Ni1xiii94.88 (4)Ni2i—Dy2—Ni147.39 (4)
Ni1vi—Dy1—Ni1xiii94.88 (4)Ni2xxv—Dy2—Ni1132.30 (4)
Ni1iv—Dy1—Ni1xiii115.72 (3)Ni2ii—Dy2—Ni147.70 (4)
Ni3ii—Dy1—Ni1xiii49.26 (2)Ni2xi—Dy2—Ni1132.61 (4)
Ni3xi—Dy1—Ni1xiii91.38 (3)Ni2xxvi—Dy2—Ni189.97 (4)
Ni3xii—Dy1—Ni1xiii91.39 (3)Ni2xii—Dy2—Ni190.03 (4)
Ni1i—Dy1—Ni1xiii47.32 (4)Ni2i—Dy2—Ni1xxvii132.61 (4)
Ni1viii—Dy1—Ni1xiv94.88 (4)Ni2xxv—Dy2—Ni1xxvii47.70 (4)
Ni1ix—Dy1—Ni1xiv94.88 (4)Ni2ii—Dy2—Ni1xxvii132.30 (4)
Ni1x—Dy1—Ni1xiv115.72 (3)Ni2xi—Dy2—Ni1xxvii47.39 (4)
Ni1—Dy1—Ni1xiv141.67 (2)Ni2xxvi—Dy2—Ni1xxvii90.03 (4)
Ni1vi—Dy1—Ni1xiv115.72 (3)Ni2xii—Dy2—Ni1xxvii89.97 (4)
Ni1iv—Dy1—Ni1xiv141.67 (2)Ni1—Dy2—Ni1xxvii180.00 (3)
Ni3ii—Dy1—Ni1xiv91.38 (3)Ni2i—Dy2—Ni1vi89.97 (4)
Ni3xi—Dy1—Ni1xiv49.26 (2)Ni2xxv—Dy2—Ni1vi132.30 (4)
Ni3xii—Dy1—Ni1xiv91.39 (3)Ni2ii—Dy2—Ni1vi47.70 (4)
Ni1i—Dy1—Ni1xiv47.32 (4)Ni2xi—Dy2—Ni1vi90.03 (4)
Ni1xiii—Dy1—Ni1xiv47.32 (4)Ni2xxvi—Dy2—Ni1vi47.39 (4)
Ni1i—Ni2—Ni1xiv60.75 (7)Ni2xii—Dy2—Ni1vi132.61 (4)
Ni1i—Ni2—Ni1xiii60.75 (7)Ni1—Dy2—Ni1vi45.99 (4)
Ni1xiv—Ni2—Ni1xiii60.75 (7)Ni1xxvii—Dy2—Ni1vi134.01 (4)
Ni1i—Ni2—Ni1xv108.61 (4)Ni2i—Dy2—Ni1iv47.39 (4)
Ni1xiv—Ni2—Ni1xv146.078 (19)Ni2xxv—Dy2—Ni1iv89.97 (4)
Ni1xiii—Ni2—Ni1xv146.078 (19)Ni2ii—Dy2—Ni1iv90.03 (4)
Ni1i—Ni2—Ni1xvi146.078 (19)Ni2xi—Dy2—Ni1iv132.61 (4)
Ni1xiv—Ni2—Ni1xvi146.077 (19)Ni2xxvi—Dy2—Ni1iv132.30 (4)
Ni1xiii—Ni2—Ni1xvi108.61 (4)Ni2xii—Dy2—Ni1iv47.70 (4)
Ni1xv—Ni2—Ni1xvi60.65 (7)Ni1—Dy2—Ni1iv45.77 (4)
Ni1i—Ni2—Ni1xvii146.078 (19)Ni1xxvii—Dy2—Ni1iv134.23 (4)
Ni1xiv—Ni2—Ni1xvii108.61 (4)Ni1vi—Dy2—Ni1iv84.91 (3)
Ni1xiii—Ni2—Ni1xvii146.077 (19)Ni2i—Dy2—Ni1xxviii90.03 (4)
Ni1xv—Ni2—Ni1xvii60.65 (7)Ni2xxv—Dy2—Ni1xxviii47.70 (4)
Ni1xvi—Ni2—Ni1xvii60.65 (7)Ni2ii—Dy2—Ni1xxviii132.30 (4)
Ni1i—Ni2—Dy2xviii73.14 (3)Ni2xi—Dy2—Ni1xxviii89.97 (4)
Ni1xiv—Ni2—Dy2xviii125.86 (8)Ni2xxvi—Dy2—Ni1xxviii132.61 (4)
Ni1xiii—Ni2—Dy2xviii73.14 (3)Ni2xii—Dy2—Ni1xxviii47.39 (4)
Ni1xv—Ni2—Dy2xviii72.94 (3)Ni1—Dy2—Ni1xxviii134.01 (4)
Ni1xvi—Ni2—Dy2xviii72.94 (3)Ni1xxvii—Dy2—Ni1xxviii45.99 (4)
Ni1xvii—Ni2—Dy2xviii125.53 (8)Ni1vi—Dy2—Ni1xxviii180.00 (5)
Ni1i—Ni2—Dy2xv73.14 (3)Ni1iv—Dy2—Ni1xxviii95.09 (3)
Ni1xiv—Ni2—Dy2xv73.14 (3)Ni2i—Dy2—Ni1viii132.30 (4)
Ni1xiii—Ni2—Dy2xv125.86 (8)Ni2xxv—Dy2—Ni1viii47.39 (4)
Ni1xv—Ni2—Dy2xv72.94 (3)Ni2ii—Dy2—Ni1viii132.61 (4)
Ni1xvi—Ni2—Dy2xv125.53 (8)Ni2xi—Dy2—Ni1viii47.70 (4)
Ni1xvii—Ni2—Dy2xv72.94 (3)Ni2xxvi—Dy2—Ni1viii89.97 (4)
Dy2xviii—Ni2—Dy2xv120.000 (1)Ni2xii—Dy2—Ni1viii90.03 (4)
Ni1i—Ni2—Ni2xix107.20 (9)Ni1—Dy2—Ni1viii102.42 (5)
Ni1xiv—Ni2—Ni2xix54.54 (7)Ni1xxvii—Dy2—Ni1viii77.58 (5)
Ni1xiii—Ni2—Ni2xix107.20 (9)Ni1vi—Dy2—Ni1viii84.91 (3)
Ni1xv—Ni2—Ni2xix106.72 (9)Ni1iv—Dy2—Ni1viii84.91 (3)
Ni1xvi—Ni2—Ni2xix106.72 (9)Ni1xxviii—Dy2—Ni1viii95.09 (3)
Symmetry codes: (i) x+2/3, y+1/3, z+1/3; (ii) x+1/3, y+2/3, z1/3; (iii) x+y+1, x+1, z; (iv) y+1, xy, z; (v) y+1, xy+1, z; (vi) x+y, x+1, z; (vii) x+1, y+1, z; (viii) x1, y1, z; (ix) y, xy, z; (x) x+y, x, z; (xi) x2/3, y1/3, z1/3; (xii) x+1/3, y1/3, z1/3; (xiii) y1/3, x+y+1/3, z+1/3; (xiv) xy1/3, x2/3, z+1/3; (xv) x1/3, y2/3, z+1/3; (xvi) y+2/3, xy+1/3, z+1/3; (xvii) x+y1/3, x+1/3, z+1/3; (xviii) x+2/3, y+1/3, z+1/3; (xix) x2/3, y1/3, z+2/3; (xx) x+1/3, y+2/3, z+2/3; (xxi) x1/3, y+1/3, z+1/3; (xxii) x+1/3, y1/3, z+2/3; (xxiii) xy+1/3, x1/3, z+2/3; (xxiv) y2/3, x+y1/3, z+2/3; (xxv) x1/3, y2/3, z+1/3; (xxvi) x1/3, y+1/3, z+1/3; (xxvii) x, y, z; (xxviii) xy, x1, z.

Experimental details

Crystal data
Chemical formulaDyNi3
Mr338.63
Crystal system, space groupTrigonal, R3m
Temperature (K)293
a, c (Å)4.966 (2), 24.37 (1)
V3)520.5 (4)
Z9
Radiation typeMo Kα
µ (mm1)55.52
Crystal size (mm)0.13 × 0.08 × 0.06
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionMulti-scan
(PLATON, Spek, 2009)
Tmin, Tmax0.071, 0.182
No. of measured, independent and
observed [I > 2σ(I)] reflections
1516, 197, 163
Rint0.058
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.043, 1.01
No. of reflections197
No. of parameters17
Δρmax, Δρmin (e Å3)2.77, 1.33

Computer programs: X-AREA (Stoe & Cie, 2009), SIR2011 (Burla et al., 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBuschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419–428.  CrossRef CAS Google Scholar
First citationCromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689–694.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriauf, J. B. (1927). J. Am. Chem. Soc. 49, 3107–3114.  CrossRef CAS Google Scholar
First citationGrin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77–95. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationHaucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17–22.  CrossRef CAS Google Scholar
First citationLemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9–16.  CAS Google Scholar
First citationLevytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20.  CrossRef IUCr Journals Google Scholar
First citationNowotny, H. (1942). Z. Metallkd. 34, 247–253.  CAS Google Scholar
First citationOhba, T., Kitano, Y. & Komura, Y. (1984). Acta Cryst. C40, 1–5.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPaccard, D. & Pauthenet, R. (1967). Compt. Rend. Sci. Ser. B. 264, 1056–1059.  Google Scholar
First citationParthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164–174.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582–3586.  CrossRef CAS Web of Science Google Scholar
First citationVirkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59–66.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakinthos, J. & Paccard, D. (1972). Solid State Commun. 10, 989–993.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds