metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1398-m1399

trans-Bis[4-amino-N-(pyrimidin-2-yl-κN)benzene­sulfonamidato-κN]bis­(N,N-di­methyl­formamide-κO)cobalt(II)

aCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

(Received 14 October 2012; accepted 18 October 2012; online 24 October 2012)

The title complex, [Co(C10H9N4O2S)2(C3H7NO)2], lies across an inversion center. The CoII atom is coordinated in a slightly distorted octa­hedral geometry by four N atoms from two bidentate 4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidate (sulfadiazine) anions and two O atoms from two dimethyl­formamide (DMF) ligands. The dihedral angle between the benzene and pyrimidine rings is 82.37 (13)°. A three-dimensional network is generated by N—H⋯O hydrogen bonds between the amino groups and of the sulfonamidate O atoms of neighbouring mol­ecules. The DMF ligand is disordered over two sets of sites in a 0.559 (4):0.441 (4) ratio.

Related literature

For background to sulfonamides, see: Connor (1998[Connor, E. E. (1998). Prim. Care Update Ob Gyns, 5, 32-35.]). For background to metal complexes of sulfadiazine, see: Wang et al. (2009[Wang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.], 2010[Wang, Y.-F., Zou, H.-L., Luo, X.-J., Chen, Z.-F. & Liang, H. (2010). Acta Cryst. E66, m548.]); Ajibade et al. (2006[Ajibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111-3116.]); Hossain et al. (2011[Hossain, G. M. G. (2011). Acta Cryst. E67, m805-m806.]); Tommasino et al. (2011[Tommasino, J. B., Renaud, F. N. R., Luneau, D. & Pilet, G. (2011). Polyhedron, 30, 1663-1670.]); Ghosh et al. (2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H9N4O2S)2(C3H7NO)2]

  • Mr = 703.67

  • Monoclinic, P 21 /c

  • a = 8.9008 (6) Å

  • b = 11.2078 (6) Å

  • c = 16.5565 (9) Å

  • β = 102.147 (6)°

  • V = 1614.67 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 298 K

  • 0.28 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.869

  • 13220 measured reflections

  • 3495 independent reflections

  • 2989 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 0.99

  • 3495 reflections

  • 222 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.065 (19)
Co1—N1 2.121 (2)
Co1—N2 2.1460 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O3i 0.86 2.31 3.112 (3) 155
N4—H4C⋯O3ii 0.86 2.27 2.951 (3) 136
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sulfonamides are among the most widely used antibacterial agents (Connor, 1998), because of their low cost, low toxicity, and excellent activity against bacterial diseases. Sulfadiazine, or 4-amino-N-pyrimidin-2-yl-benzenesulfonamide, is a sulfanilamide antibiotic and its metal complexes have been studied previously (Wang et al. 2009, 2010; Ajibade et al., 2006; Hossain et al., 2011; Tommasino et al., 2011; Ghosh et al., 2011). The crystal structure of the title compound, [Co(C10H9N4O2S)2(C3H7NO)2], a cobalt sulfadiazine complex with additional dimethylformamide ligands, (I), is presented herein.

The molecular structure of (I) is shown in Fig. 1. The CoII ion lies on a centre of inversion and is coordinated by four N atoms from two symmetry-related 4-amino-N-pyrimidin-2-yl-benzenesulfonamidate anions and two O atoms from two dimethylformamide ligands, forming a slightly distorted octahedral N4O2 geometry (Table 1). The dihedral angle between the phenyl and pyrimidine rings is 82.37 (13) °. A three-dimensional hydrogen-bonded network is generated by N—H···O interactions (Table 2; Fig.2).

Related literature top

For background to sulfonamides, see: Connor (1998). For background to metal complexes of sulfadiazine, see: Wang et al. (2009, 2010); Ajibade et al. (2006); Hossain et al. (2011); Tommasino et al. (2011); Ghosh et al. (2011).

Experimental top

Complex (I) was prepared from a mixture of sulfadiazine (1 mmol, 0.250 g), Co(NO3)2.6H2O (0.5 mmol, 0.145 g), triethylamine (0.5 ml) and N,N-dimethylformamid (8 ml) sealed in a 15 ml teflon-lined stainless steel bomb, and kept at 373 K for 96 h under autogenous pressure. After the reaction was slowly cooled to room temperature, red block-like crystals were obtained (yield: 72% based on cobalt). Anal./calc. for C26H32N10CoO6S2(%): C 44.38; H 4.58; N 19.90. Found(%): C 44.34; H 4.61; N 19.95.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with distances 0.86 Å (N—H), 0.96 Å (CH3) or 0.93 Å (aromatic ring), and with Uiso(H) = 1.2 Ueq(aromatic ring, N—H) or Uiso(H) = 1.5 Ueq(CH3). The DMF ligand is positionally disordered over two sets of sites in a 0.559 (4):0.441 (4) ratio.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. [Symmetry code (a); -x, 1 - y, -z.] Both parts of the disordered DMF ligand are shown.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down [010]. Dashed lines denote N—H···O hydrogen bonds.
trans-Bis[4-amino-N-(pyrimidin-2-yl- κN)benzenesulfonamidato-κN]bis(N,N- dimethylformamide-κO)cobalt(II) top
Crystal data top
[Co(C10H9N4O2S)2(C3H7NO)2]F(000) = 730
Mr = 703.67Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4388 reflections
a = 8.9008 (6) Åθ = 3.0–28.7°
b = 11.2078 (6) ŵ = 0.72 mm1
c = 16.5565 (9) ÅT = 298 K
β = 102.147 (6)°Block, red
V = 1614.67 (16) Å30.28 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3495 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 3.0°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1413
Tmin = 0.815, Tmax = 0.869l = 2119
13220 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0311P)2 + 1.5416P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3495 reflectionsΔρmax = 0.33 e Å3
222 parametersΔρmin = 0.35 e Å3
36 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (1)
Crystal data top
[Co(C10H9N4O2S)2(C3H7NO)2]V = 1614.67 (16) Å3
Mr = 703.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9008 (6) ŵ = 0.72 mm1
b = 11.2078 (6) ÅT = 298 K
c = 16.5565 (9) Å0.28 × 0.25 × 0.20 mm
β = 102.147 (6)°
Data collection top
Bruker SMART CCD
diffractometer
3495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2989 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.869Rint = 0.028
13220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04036 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.99Δρmax = 0.33 e Å3
3495 reflectionsΔρmin = 0.35 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4095 (3)0.9002 (2)0.13724 (16)0.0476 (6)
H1A0.44470.93440.09350.057*
C20.3251 (2)0.7957 (2)0.12498 (14)0.0363 (5)
C30.2761 (3)0.7454 (3)0.19139 (15)0.0507 (6)
H3A0.22120.67420.18430.061*
C40.3079 (3)0.7994 (3)0.26800 (16)0.0572 (7)
H4A0.27440.76400.31190.069*
C50.3892 (3)0.9061 (3)0.28047 (16)0.0508 (7)
C60.4421 (3)0.9543 (3)0.21390 (17)0.0568 (7)
H6A0.50021.02400.22130.068*
C70.0153 (2)0.73277 (19)0.00525 (13)0.0319 (5)
C80.1683 (3)0.8945 (2)0.00174 (16)0.0438 (6)
H8A0.18080.97670.00050.053*
C90.2982 (3)0.8242 (2)0.01745 (18)0.0513 (7)
H9A0.39610.85730.02600.062*
C100.2766 (3)0.7031 (2)0.01992 (17)0.0497 (6)
H10A0.36160.65280.02930.060*
Co10.00000.50000.00000.03466 (14)
N10.1368 (2)0.65637 (17)0.00916 (13)0.0402 (5)
N20.1174 (2)0.66834 (16)0.01562 (12)0.0350 (4)
N30.0252 (2)0.85105 (17)0.01044 (12)0.0372 (4)
N40.4124 (3)0.9634 (3)0.35511 (15)0.0724 (8)
H4B0.37650.93350.39500.087*
H4C0.46291.02940.36210.087*
O20.29575 (19)0.81638 (15)0.03312 (10)0.0437 (4)
O30.38724 (19)0.62601 (16)0.02969 (12)0.0519 (5)
S10.28414 (6)0.72636 (5)0.02742 (3)0.03470 (15)
O10.0274 (19)0.4809 (16)0.1263 (12)0.053 (2)0.559 (4)
C110.0332 (9)0.5365 (7)0.1739 (6)0.0563 (17)0.559 (4)
H11A0.12250.56300.13880.084*0.559 (4)
C130.1386 (10)0.6711 (8)0.2810 (5)0.107 (2)0.559 (4)
H13A0.11340.67640.34020.160*0.559 (4)
H13B0.12180.74710.25770.160*0.559 (4)
H13C0.24460.64890.26320.160*0.559 (4)
C120.0603 (12)0.5055 (8)0.3034 (5)0.098 (2)0.559 (4)
H12A0.12860.43970.32040.147*0.559 (4)
H12B0.10080.57580.33340.147*0.559 (4)
H12C0.03880.48760.31450.147*0.559 (4)
N50.0499 (7)0.5829 (5)0.2463 (3)0.0665 (13)0.559 (4)
O1'0.009 (3)0.501 (2)0.1318 (16)0.053 (2)0.441 (4)
C11'0.0812 (12)0.5748 (10)0.1647 (7)0.0563 (17)0.441 (4)
H11B0.17480.61280.13750.084*0.441 (4)
C13'0.1448 (14)0.4546 (11)0.2886 (6)0.107 (2)0.441 (4)
H13D0.17830.40350.24930.160*0.441 (4)
H13E0.22740.50650.31340.160*0.441 (4)
H13F0.11460.40680.33060.160*0.441 (4)
C12'0.0588 (13)0.5888 (10)0.3139 (5)0.098 (2)0.441 (4)
H12D0.03790.59330.37310.147*0.441 (4)
H12E0.03820.66480.29160.147*0.441 (4)
H12F0.16470.56810.29370.147*0.441 (4)
N5'0.0174 (10)0.5244 (7)0.2573 (5)0.0665 (13)0.441 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0493 (14)0.0501 (15)0.0422 (13)0.0135 (12)0.0066 (11)0.0020 (12)
C20.0331 (11)0.0383 (12)0.0342 (11)0.0024 (9)0.0004 (9)0.0011 (10)
C30.0565 (15)0.0515 (16)0.0409 (13)0.0211 (13)0.0031 (11)0.0010 (12)
C40.0653 (17)0.0698 (19)0.0340 (13)0.0220 (15)0.0047 (12)0.0016 (13)
C50.0473 (14)0.0605 (17)0.0386 (13)0.0069 (12)0.0049 (11)0.0041 (12)
C60.0605 (17)0.0523 (16)0.0527 (16)0.0222 (14)0.0006 (13)0.0068 (13)
C70.0351 (11)0.0280 (11)0.0313 (11)0.0031 (9)0.0038 (9)0.0032 (9)
C80.0448 (13)0.0333 (12)0.0533 (15)0.0049 (10)0.0103 (11)0.0007 (11)
C90.0366 (12)0.0485 (15)0.0697 (18)0.0047 (11)0.0130 (12)0.0027 (13)
C100.0359 (13)0.0469 (15)0.0657 (17)0.0097 (11)0.0095 (12)0.0025 (13)
Co10.0448 (3)0.0246 (2)0.0328 (2)0.00372 (17)0.00405 (18)0.00398 (17)
N10.0384 (10)0.0322 (10)0.0489 (12)0.0077 (8)0.0066 (9)0.0043 (9)
N20.0353 (9)0.0254 (9)0.0416 (10)0.0006 (7)0.0021 (8)0.0041 (8)
N30.0375 (10)0.0269 (9)0.0457 (11)0.0010 (8)0.0056 (8)0.0031 (8)
N40.0836 (18)0.0854 (19)0.0428 (13)0.0255 (16)0.0012 (13)0.0148 (13)
O20.0474 (9)0.0473 (10)0.0369 (9)0.0027 (8)0.0099 (7)0.0049 (8)
O30.0441 (9)0.0492 (11)0.0617 (11)0.0162 (8)0.0092 (8)0.0004 (9)
S10.0324 (3)0.0339 (3)0.0365 (3)0.0030 (2)0.0044 (2)0.0001 (2)
O10.078 (7)0.052 (5)0.033 (2)0.005 (4)0.020 (4)0.008 (3)
C110.062 (4)0.067 (4)0.041 (2)0.019 (3)0.014 (3)0.008 (3)
C130.140 (5)0.126 (5)0.068 (3)0.001 (4)0.051 (3)0.000 (3)
C120.128 (5)0.118 (5)0.049 (3)0.017 (4)0.020 (3)0.012 (3)
N50.089 (3)0.070 (3)0.0436 (18)0.019 (2)0.021 (2)0.007 (2)
O1'0.078 (7)0.052 (5)0.033 (2)0.005 (4)0.020 (4)0.008 (3)
C11'0.062 (4)0.067 (4)0.041 (2)0.019 (3)0.014 (3)0.008 (3)
C13'0.140 (5)0.126 (5)0.068 (3)0.001 (4)0.051 (3)0.000 (3)
C12'0.128 (5)0.118 (5)0.049 (3)0.017 (4)0.020 (3)0.012 (3)
N5'0.089 (3)0.070 (3)0.0436 (18)0.019 (2)0.021 (2)0.007 (2)
Geometric parameters (Å, º) top
C1—C61.381 (4)Co1—O1'2.20 (2)
C1—C21.383 (3)N2—S11.5941 (18)
C1—H1A0.9300N4—H4B0.8600
C2—C31.385 (3)N4—H4C0.8600
C2—S11.760 (2)O2—S11.4412 (17)
C3—C41.380 (4)O3—S11.4470 (17)
C3—H3A0.9300O1—C111.216 (13)
C4—C51.390 (4)C11—N51.342 (10)
C4—H4A0.9300C11—H11A0.9300
C5—N41.370 (3)C13—N51.457 (9)
C5—C61.396 (4)C13—H13A0.9602
C6—H6A0.9300C13—H13B0.9597
C7—N31.333 (3)C13—H13C0.9600
C7—N11.360 (3)C13—H12E0.8765
C7—N21.364 (3)C12—N51.489 (11)
C8—N31.339 (3)C12—H12A0.9599
C8—C91.378 (3)C12—H12B0.9600
C8—H8A0.9300C12—H12C0.9601
C9—C101.373 (4)O1'—C11'1.244 (17)
C9—H9A0.9300C11'—N5'1.694 (14)
C10—N11.327 (3)C11'—H11B0.9593
C10—H10A0.9300C13'—N5'1.386 (13)
Co1—O1i2.065 (19)C13'—H13D0.9600
Co1—O12.065 (19)C13'—H13E0.9600
Co1—N12.121 (2)C13'—H13F0.9600
Co1—N1i2.121 (2)C12'—N5'1.458 (13)
Co1—N22.1460 (18)C12'—H12D0.9597
Co1—N2i2.1460 (18)C12'—H12E0.9601
Co1—O1'i2.20 (2)C12'—H12F0.9601
C6—C1—C2120.6 (2)N5—C13—H13B107.4
C6—C1—H1A119.7H13A—C13—H13B109.5
C2—C1—H1A119.7N5—C13—H13C106.4
C1—C2—C3118.7 (2)H13A—C13—H13C109.4
C1—C2—S1120.66 (19)H13B—C13—H13C109.5
C3—C2—S1120.62 (18)N5—C13—H12E53.8
C4—C3—C2120.9 (2)H13A—C13—H12E77.9
C4—C3—H3A119.6H13B—C13—H12E85.1
C2—C3—H3A119.6H13C—C13—H12E159.2
C3—C4—C5120.9 (3)N5—C13—H12F63.8
C3—C4—H4A119.6H13A—C13—H12F83.9
C5—C4—H4A119.6H13B—C13—H12F166.5
N4—C5—C4120.8 (3)H13C—C13—H12F65.9
N4—C5—C6121.2 (3)H12E—C13—H12F96.5
C4—C5—C6117.9 (2)N5—C12—H12A157.8
C1—C6—C5121.0 (2)N5—C12—H12B88.6
C1—C6—H6A119.5H12A—C12—H12B109.5
C5—C6—H6A119.5N5—C12—H12C74.6
N3—C7—N1125.2 (2)H12A—C12—H12C109.5
N3—C7—N2125.86 (19)H12B—C12—H12C109.5
N1—C7—N2108.91 (19)N5—C12—H13E125.9
N3—C8—C9123.7 (2)H12A—C12—H13E53.6
N3—C8—H8A118.2H12B—C12—H13E70.9
C9—C8—H8A118.2H12C—C12—H13E159.1
C10—C9—C8117.0 (2)N5—C12—H13F153.6
C10—C9—H9A121.5H12B—C12—H13F117.7
C8—C9—H9A121.5H12C—C12—H13F92.7
N1—C10—C9121.3 (2)H13E—C12—H13F70.1
N1—C10—H10A119.3C11—N5—C13141.8 (7)
C9—C10—H10A119.3C11—N5—C1299.2 (6)
O1i—Co1—O1180.0 (10)C13—N5—C12119.0 (6)
O1i—Co1—N184.2 (3)C11—N5—H12E149.4
O1—Co1—N195.8 (3)C12—N5—H12E95.2
O1i—Co1—N1i95.8 (3)C11—N5—H12F132.3
O1—Co1—N1i84.2 (3)C13—N5—H12F49.4
N1—Co1—N1i180.00 (11)C12—N5—H12F92.0
O1i—Co1—N289.0 (6)H12E—N5—H12F73.5
O1—Co1—N291.0 (6)C11'—O1'—Co1124.5 (17)
N1—Co1—N262.59 (7)O1'—C11'—N5'87.5 (14)
N1i—Co1—N2117.41 (7)O1'—C11'—H11B124.6
O1i—Co1—N2i91.0 (6)N5'—C11'—H11B143.7
O1—Co1—N2i89.0 (6)N5'—C13'—H12A99.0
N1—Co1—N2i117.41 (7)N5'—C13'—H13D115.4
N1i—Co1—N2i62.59 (7)H12A—C13'—H13D126.7
N2—Co1—N2i180.0N5'—C13'—H13E108.1
O1i—Co1—O1'i10.6 (8)H12A—C13'—H13E95.5
O1—Co1—O1'i169.4 (8)H13D—C13'—H13E109.5
N1—Co1—O1'i94.1 (5)N5'—C13'—H13F104.7
N1i—Co1—O1'i85.9 (5)H13D—C13'—H13F109.5
N2—Co1—O1'i90.2 (7)H13E—C13'—H13F109.5
N2i—Co1—O1'i89.8 (7)N5'—C12'—H13A154.8
O1i—Co1—O1'169.4 (8)N5'—C12'—H12B60.6
O1—Co1—O1'10.6 (8)H13A—C12'—H12B117.7
N1—Co1—O1'85.9 (5)N5'—C12'—H12C54.9
N1i—Co1—O1'94.1 (5)H13A—C12'—H12C150.1
N2—Co1—O1'89.8 (7)H12B—C12'—H12C75.3
N2i—Co1—O1'90.2 (7)N5'—C12'—H12D131.7
O1'i—Co1—O1'180.000 (3)H13A—C12'—H12D66.3
C10—N1—C7117.6 (2)H12B—C12'—H12D78.5
C10—N1—Co1147.50 (17)H12C—C12'—H12D92.6
C7—N1—Co194.85 (14)N5'—C12'—H12E92.3
C7—N2—S1123.96 (15)H13A—C12'—H12E62.9
C7—N2—Co193.64 (13)H12B—C12'—H12E85.1
S1—N2—Co1142.24 (11)H12C—C12'—H12E146.9
C7—N3—C8115.21 (19)H12D—C12'—H12E109.5
C5—N4—H4B120.0N5'—C12'—H12F102.2
C5—N4—H4C120.0H13A—C12'—H12F83.3
H4B—N4—H4C120.0H12B—C12'—H12F158.7
O2—S1—O3115.11 (11)H12C—C12'—H12F84.4
O2—S1—N2113.67 (10)H12D—C12'—H12F109.5
O3—S1—N2104.78 (10)H12E—C12'—H12F109.5
O2—S1—C2107.31 (11)C13'—N5'—C12'119.6 (8)
O3—S1—C2108.17 (11)C13'—N5'—C11'138.9 (8)
N2—S1—C2107.48 (10)C12'—N5'—C11'101.2 (8)
C11—O1—Co1129.0 (12)C13'—N5'—H12B70.6
O1—C11—N5157.5 (12)C12'—N5'—H12B57.6
O1—C11—H11A101.2C11'—N5'—H12B137.0
N5—C11—H11A101.2C13'—N5'—H12C87.5
O1—C11—H11B118.0C12'—N5'—H12C49.6
N5—C11—H11B84.2C11'—N5'—H12C126.1
N5—C13—H13A114.5H12B—N5'—H12C71.3
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O3ii0.862.313.112 (3)155
N4—H4C···O3iii0.862.272.951 (3)136
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H9N4O2S)2(C3H7NO)2]
Mr703.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.9008 (6), 11.2078 (6), 16.5565 (9)
β (°) 102.147 (6)
V3)1614.67 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.815, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
13220, 3495, 2989
Rint0.028
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.095, 0.99
No. of reflections3495
No. of parameters222
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.065 (19)Co1—N22.1460 (18)
Co1—N12.121 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O3i0.862.313.112 (3)155.1
N4—H4C···O3ii0.862.272.951 (3)136.0
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 21161006), the Innovation Project of Guangxi Graduate Education (2010105960817M03) and by the doctoral start-up research fund of Guilin University of Technology (to SHZ).

References

First citationAjibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111–3116.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnor, E. E. (1998). Prim. Care Update Ob Gyns, 5, 32–35.  CrossRef Google Scholar
First citationGhosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.  Web of Science CSD CrossRef CAS Google Scholar
First citationHossain, G. M. G. (2011). Acta Cryst. E67, m805–m806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTommasino, J. B., Renaud, F. N. R., Luneau, D. & Pilet, G. (2011). Polyhedron, 30, 1663–1670.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-F., Zou, H.-L., Luo, X.-J., Chen, Z.-F. & Liang, H. (2010). Acta Cryst. E66, m548.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1398-m1399
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds