organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Phen­­oxy­phen­yl)pyrazine-2-carboxamide

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
*Correspondence e-mail: mehri.noroozi@gmail.com

(Received 28 September 2012; accepted 30 September 2012; online 20 October 2012)

In the title compound, C17H13N3O2, the pyrazine ring is oriented at 1.65 (11) and 88.33 (17)° with respect to the benzene rings. The benzene rings are nearly perpendicular to each other [dihedral angle 87.14 (17)°]. In the crystal, a weak C—H⋯N hydrogen bond occurs.

Related literature

For related structures, see: Wardell et al. (2008[Wardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84-100.]); de Lima Ferreira et al. (2010[Lima Ferreira, M. de, Souza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2722-o2723.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3O2

  • Mr = 291.30

  • Triclinic, [P \overline 1]

  • a = 5.0913 (10) Å

  • b = 11.769 (2) Å

  • c = 12.268 (3) Å

  • α = 91.058 (16)°

  • β = 94.541 (16)°

  • γ = 101.648 (15)°

  • V = 717.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • 5966 measured reflections

  • 2811 independent reflections

  • 1923 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.132

  • S = 1.07

  • 2811 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.93 2.62 3.439 (3) 147
Symmetry code: (i) -x+3, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The carboxamide [C(O)NH] group, ubiquitous throughout the nature in the primary structure of proteins, is an important ligand construction unit for coordination chemists. Pyrazine carboxamides are available from condensation reactions between pyrazine acid and amines, promoted by coupling agents such as triphenylphosphite (Wardell et al. (2008); de Lima Ferreira et al. (2010)). As part of our ongoing studies in this area, we report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the pyrazine ring is oriented with respect to the two benzene rings at 1.65 (11) and 88.33 (17)°, respectively, and the two benzenerings are nearly perpendicular to each other [dihedral angle 87.14 (17)°]. In the crystal structure, intermolecular C—H···N non-classical hydrogen bonds (Table 1, Fig. 2) may stabilize the structure.

Related literature top

For related structures, see: Wardell et al. (2008); de Lima Ferreira et al. (2010).

Experimental top

2-Pyridinedicarboxylic acid (0.124 g, 1 mmol) was suspended in pyridine (10 ml). 8-aminoquinoline (0.182 g, 1 mmol) was added to the mixture, and the mixture was stirred at 313–318 K, for 10 min. Triphenylphosphite (2 mmol, 0..53 ml) was added dropwise to the resulting solution. The temperature of the reaction mixture was increased to 363–373 K, and the mixture was magnetically stirred for 4 h. After cooling to room temperature, the reaction mixture was left in the hood for 24 h. The white precipitate was filtered off. Recrystallization was achieved by diethyl ether diffusion into a chloroform solution of the compound at room temperature (yield; 78%, m.p. 550 K).

Refinement top

H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule in a-direction. Hydrogen bonds and C—H···pi interactions are shown as dashed lines.
N-(2-Phenoxyphenyl)pyrazine-2-carboxamide top
Crystal data top
C17H13N3O2Z = 2
Mr = 291.30F(000) = 304
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0913 (10) ÅCell parameters from 5966 reflections
b = 11.769 (2) Åθ = 2.4–26.0°
c = 12.268 (3) ŵ = 0.09 mm1
α = 91.058 (16)°T = 298 K
β = 94.541 (16)°Block, yellow
γ = 101.648 (15)°0.40 × 0.20 × 0.15 mm
V = 717.3 (3) Å3
Data collection top
Stoe IPDS II
diffractometer
1923 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
rotation method scansh = 66
5966 measured reflectionsk = 1413
2811 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2101P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H13N3O2γ = 101.648 (15)°
Mr = 291.30V = 717.3 (3) Å3
Triclinic, P1Z = 2
a = 5.0913 (10) ÅMo Kα radiation
b = 11.769 (2) ŵ = 0.09 mm1
c = 12.268 (3) ÅT = 298 K
α = 91.058 (16)°0.40 × 0.20 × 0.15 mm
β = 94.541 (16)°
Data collection top
Stoe IPDS II
diffractometer
1923 reflections with I > 2σ(I)
5966 measured reflectionsRint = 0.055
2811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.13 e Å3
2811 reflectionsΔρmin = 0.16 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1804 (5)0.6963 (2)0.4406 (2)0.0618 (7)
H11.24400.76170.48610.074*
C21.2999 (5)0.6018 (2)0.4538 (2)0.0593 (6)
H21.44100.60530.50760.071*
C31.0170 (5)0.50713 (19)0.3160 (2)0.0567 (6)
H30.95520.44190.27000.068*
C40.8953 (4)0.60172 (17)0.30288 (18)0.0462 (5)
C50.6677 (5)0.59753 (18)0.21628 (18)0.0487 (5)
C60.3816 (4)0.72817 (18)0.13538 (17)0.0460 (5)
C70.3225 (5)0.83750 (18)0.15148 (19)0.0494 (5)
C80.1218 (5)0.8733 (2)0.0871 (2)0.0603 (6)
H80.08410.94630.09900.072*
C90.0227 (5)0.7994 (2)0.0046 (2)0.0630 (7)
H90.15910.82260.03890.076*
C100.0351 (5)0.6921 (2)0.0129 (2)0.0661 (7)
H100.06270.64300.06860.079*
C110.2372 (5)0.6556 (2)0.05113 (19)0.0578 (6)
H110.27590.58290.03780.069*
C120.4185 (5)1.01105 (19)0.2637 (2)0.0546 (6)
C130.5372 (6)1.1083 (2)0.2146 (3)0.0775 (8)
H130.65701.10420.16200.093*
C140.4776 (9)1.2133 (3)0.2440 (4)0.1099 (15)
H140.55631.28050.21050.132*
C150.3048 (11)1.2189 (4)0.3215 (4)0.130 (2)
H150.26531.28970.34160.156*
C160.1901 (10)1.1207 (4)0.3694 (4)0.1308 (17)
H160.07241.12480.42290.157*
C170.2438 (7)1.0151 (3)0.3406 (3)0.0896 (10)
H170.16220.94780.37320.108*
N10.9782 (4)0.69785 (16)0.36570 (16)0.0559 (5)
N21.2183 (4)0.50575 (17)0.39150 (18)0.0621 (6)
N30.5854 (4)0.69918 (15)0.20727 (15)0.0500 (5)
H3B0.66960.75420.25190.060*
O10.5723 (4)0.50845 (13)0.16236 (15)0.0687 (5)
O20.4781 (4)0.90428 (14)0.23700 (15)0.0714 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0680 (16)0.0505 (14)0.0679 (16)0.0208 (12)0.0077 (14)0.0076 (12)
C20.0609 (15)0.0574 (15)0.0646 (16)0.0240 (12)0.0036 (13)0.0053 (12)
C30.0668 (15)0.0416 (12)0.0660 (16)0.0218 (11)0.0043 (13)0.0005 (11)
C40.0525 (13)0.0382 (11)0.0518 (13)0.0152 (9)0.0123 (10)0.0034 (9)
C50.0589 (14)0.0368 (11)0.0532 (13)0.0147 (10)0.0100 (11)0.0004 (10)
C60.0503 (12)0.0410 (11)0.0474 (12)0.0116 (9)0.0024 (10)0.0021 (9)
C70.0518 (13)0.0415 (12)0.0539 (13)0.0097 (10)0.0021 (11)0.0021 (10)
C80.0623 (15)0.0496 (13)0.0693 (16)0.0186 (12)0.0103 (13)0.0005 (12)
C90.0600 (15)0.0663 (16)0.0606 (16)0.0147 (12)0.0130 (13)0.0036 (13)
C100.0739 (17)0.0612 (16)0.0579 (15)0.0090 (13)0.0118 (13)0.0076 (12)
C110.0726 (16)0.0435 (12)0.0562 (14)0.0118 (11)0.0003 (13)0.0039 (10)
C120.0604 (14)0.0384 (11)0.0650 (15)0.0196 (10)0.0166 (12)0.0082 (10)
C130.0769 (19)0.0607 (17)0.089 (2)0.0049 (14)0.0105 (16)0.0104 (15)
C140.128 (3)0.0379 (16)0.143 (4)0.0001 (18)0.072 (3)0.0060 (19)
C150.176 (5)0.072 (2)0.146 (4)0.079 (3)0.094 (4)0.056 (3)
C160.169 (4)0.132 (4)0.119 (3)0.100 (3)0.009 (3)0.029 (3)
C170.105 (2)0.075 (2)0.100 (2)0.0375 (18)0.029 (2)0.0095 (17)
N10.0652 (13)0.0419 (10)0.0638 (12)0.0212 (9)0.0005 (11)0.0027 (9)
N20.0707 (14)0.0496 (11)0.0725 (14)0.0292 (10)0.0020 (12)0.0035 (10)
N30.0595 (12)0.0378 (10)0.0541 (11)0.0168 (8)0.0027 (9)0.0043 (8)
O10.0871 (13)0.0430 (9)0.0761 (12)0.0212 (9)0.0087 (10)0.0118 (8)
O20.0782 (12)0.0495 (10)0.0877 (13)0.0331 (9)0.0328 (10)0.0241 (9)
Geometric parameters (Å, º) top
C1—N11.328 (3)C9—C101.371 (3)
C1—C21.378 (3)C9—H90.9300
C1—H10.9300C10—C111.387 (3)
C2—N21.327 (3)C10—H100.9300
C2—H20.9300C11—H110.9300
C3—N21.329 (3)C12—C171.353 (4)
C3—C41.385 (3)C12—C131.357 (4)
C3—H30.9300C12—O21.391 (3)
C4—N11.333 (3)C13—C141.379 (5)
C4—C51.501 (3)C13—H130.9300
C5—O11.221 (3)C14—C151.355 (6)
C5—N31.349 (3)C14—H140.9300
C6—C111.390 (3)C15—C161.352 (7)
C6—C71.393 (3)C15—H150.9300
C6—N31.407 (3)C16—C171.371 (5)
C7—C81.380 (3)C16—H160.9300
C7—O21.390 (3)C17—H170.9300
C8—C91.382 (3)N3—H3B0.8600
C8—H80.9300
N1—C1—C2122.8 (2)C11—C10—H10119.5
N1—C1—H1118.6C10—C11—C6119.7 (2)
C2—C1—H1118.6C10—C11—H11120.2
N2—C2—C1121.5 (2)C6—C11—H11120.2
N2—C2—H2119.2C17—C12—C13121.5 (3)
C1—C2—H2119.2C17—C12—O2118.3 (2)
N2—C3—C4122.7 (2)C13—C12—O2120.3 (3)
N2—C3—H3118.6C12—C13—C14119.0 (3)
C4—C3—H3118.6C12—C13—H13120.5
N1—C4—C3121.0 (2)C14—C13—H13120.5
N1—C4—C5118.89 (18)C15—C14—C13120.2 (4)
C3—C4—C5120.1 (2)C15—C14—H14119.9
O1—C5—N3125.8 (2)C13—C14—H14119.9
O1—C5—C4121.02 (19)C16—C15—C14119.5 (3)
N3—C5—C4113.19 (18)C16—C15—H15120.2
C11—C6—C7118.6 (2)C14—C15—H15120.2
C11—C6—N3124.6 (2)C15—C16—C17121.3 (4)
C7—C6—N3116.74 (19)C15—C16—H16119.3
C8—C7—O2124.1 (2)C17—C16—H16119.3
C8—C7—C6121.3 (2)C12—C17—C16118.4 (4)
O2—C7—C6114.61 (19)C12—C17—H17120.8
C7—C8—C9119.4 (2)C16—C17—H17120.8
C7—C8—H8120.3C1—N1—C4116.03 (19)
C9—C8—H8120.3C2—N2—C3115.9 (2)
C10—C9—C8120.0 (2)C5—N3—C6129.29 (19)
C10—C9—H9120.0C5—N3—H3B115.4
C8—C9—H9120.0C6—N3—H3B115.4
C9—C10—C11121.0 (2)C7—O2—C12118.20 (17)
C9—C10—H10119.5
N1—C1—C2—N20.0 (4)C13—C14—C15—C160.3 (6)
N2—C3—C4—N10.8 (4)C14—C15—C16—C170.4 (6)
N2—C3—C4—C5179.7 (2)C13—C12—C17—C160.7 (5)
N1—C4—C5—O1174.6 (2)O2—C12—C17—C16178.2 (3)
C3—C4—C5—O16.0 (3)C15—C16—C17—C120.9 (6)
N1—C4—C5—N34.8 (3)C2—C1—N1—C40.1 (4)
C3—C4—C5—N3174.7 (2)C3—C4—N1—C10.4 (3)
C11—C6—C7—C81.2 (4)C5—C4—N1—C1179.9 (2)
N3—C6—C7—C8178.5 (2)C1—C2—N2—C30.4 (4)
C11—C6—C7—O2179.6 (2)C4—C3—N2—C20.8 (4)
N3—C6—C7—O20.7 (3)O1—C5—N3—C61.3 (4)
O2—C7—C8—C9179.4 (2)C4—C5—N3—C6179.3 (2)
C6—C7—C8—C90.3 (4)C11—C6—N3—C55.7 (4)
C7—C8—C9—C100.4 (4)C7—C6—N3—C5174.0 (2)
C8—C9—C10—C110.1 (4)C8—C7—O2—C123.9 (4)
C9—C10—C11—C60.8 (4)C6—C7—O2—C12175.3 (2)
O2—C12—C13—C14179.0 (2)C17—C12—O2—C791.4 (3)
C12—C13—C14—C150.6 (5)C13—C12—O2—C789.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.932.623.439 (3)147
Symmetry code: (i) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H13N3O2
Mr291.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.0913 (10), 11.769 (2), 12.268 (3)
α, β, γ (°)91.058 (16), 94.541 (16), 101.648 (15)
V3)717.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5966, 2811, 1923
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.132, 1.07
No. of reflections2811
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.932.623.439 (3)147
Symmetry code: (i) x+3, y+1, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLima Ferreira, M. de, Souza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2722–o2723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84–100.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds