organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A co-crystal of 3-(3,5-di­nitro­benzo­yl)-1,1-di­methyl­thio­urea and N,N-di­methyl-3,5-di­nitro­benzamide

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bChemistry Department, Howard University, Washington, DC 20059, USA, cChemistry Department, Howard University, Washington, DC 20059, USA, and, Department of Physics, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey, and dNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan
*Correspondence e-mail: sohail262001@yahoo.com

(Received 2 October 2012; accepted 6 October 2012; online 13 October 2012)

In the title compound, C10H10N4O5S·C9H9N3O5, the amide groups of 3-(3,5-dinitro-benzo­yl)-1,1-dimethyl-thio­urea and N,N-dimethyl-3,5-dinitro-benzamide mol­ecules are oriented at dihedral angles of 39.13 (8) and 55.97 (11)°, respectively, to the attached benzene rings. In the crystal, the two mol­ecules are linked by an N—H⋯O hydrogen bond. Weak C—H⋯O link the mol­ecules into a sheet parallel to the bc plane. C—H⋯S inter­actions also occur.

Related literature

For related structures, see: Saeed et al. (2010a[Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550-558.],b[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323-1331.], 2011[Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74-84.], 2012[Saeed, S., Rashid, N., Butcher, R. J., Öztürk Yildirim, S. & Hussain, R. (2012). Acta Cryst. E68, o2762.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4O5S·C9H9N3O5

  • Mr = 537.47

  • Triclinic, [P \overline 1]

  • a = 9.8457 (5) Å

  • b = 10.0057 (5) Å

  • c = 12.5185 (6) Å

  • α = 72.413 (5)°

  • β = 78.428 (4)°

  • γ = 89.129 (4)°

  • V = 1150.35 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 123 K

  • 0.44 × 0.38 × 0.27 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.488, Tmax = 0.628

  • 7591 measured reflections

  • 4597 independent reflections

  • 4099 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.07

  • 4597 reflections

  • 342 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H1NA⋯O5B 0.84 (2) 2.07 (2) 2.888 (2) 163 (2)
C2B—H2BA⋯O1Ai 0.95 2.51 3.390 (2) 155
C4B—H4BA⋯O3Aii 0.95 2.35 3.163 (2) 143
C6B—H6BA⋯S1A 0.95 2.76 3.6856 (16) 166
C9A—H9AB⋯O5Biii 0.98 2.48 3.368 (2) 150
C9B—H9BB⋯O4Biv 0.98 2.46 3.439 (2) 175
C10A—H10B⋯O2Av 0.98 2.51 3.334 (2) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+2, -z; (v) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the 1:1 adduct of 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea and N,N-dimethyl-3,5-dinitro-benzamide is reported. It is related to our previous studies on the structural chemistry of heterocyclic compounds containing an N-substituted thiourea (Saeed et al., 2010a, 2010b, 2011) and amide (Saeed et al., 2012). Herein, as a continuation of these studies, the structure of the title compound, (I), is described.

In the crystal structure of the title compound (Fig. 1), C10H10N4O5S, C9H9N3O5, there are independent different molecules 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea(A) and N, N-dimethyl-3,5-dinitro-benzamide(B) in the asymmetric unit. Both of the molecule the dinitro-benzene ring systems are planar, with a maximum deviation of 0.295 (1) Å for the O1A atom and 0.286 (2) Å for the O4B atom. In the molecular conformation of 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea's the C7A=O5A and C8A=S1A bonds are anti to each other. The dihedral angle between the dinitro-benzene unit (C1A—C6A/N1A/N2A/O1A—O4A atoms) and thiourea group (N3A/C8A/N4A/S1A atoms) is 88.2 (1)°. In N-dimethyl-3,5-dinitro-benzamide, the dimethyl amide group is rotated by 59.8 (0.1)° out of the plane of the benzene ring.

The 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea and N,N-dimethyl-3,5-dinitro-benzamide molecular structure is stabilized by intra- and inter molecular N—H···O and C—H···O hydrogen bonds (Fig. 1 and Table 1). The intermolecular C—H···O hydrogen bonds link the molecules into a sheet parallel to the bc plane (Fig. 2).

Related literature top

For related structures, see: Saeed et al. (2010a,b, 2011, 2012).

Experimental top

To a 250 ml round flask fitted with a condenser was added dimethyl amine (0.01 mol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 3,5-Dinitrobenzoyl chloride (0.01 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 1.5 h. The product precipitated as a colorless powder, which was washed three times with water and dichloromethane. Recrystallization from ethanol produced the crystals of the title compound.

Refinement top

The H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.95–0.98 Å, and with Uiso = 1.2–1.5Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely [refined distances = 0.84 (2) Å].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intramolecular N—H···O hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. Part of the packing diagram of the title compound, showing a molecular sheet formed by intermolecular N—H···O and C—H···O hydrogen bonds (dashed lines).
3-(3,5-Dinitrobenzoyl)-1,1-dimethylthiourea–N,N-dimethyl- 3,5-dinitrobenzamide (1/1) top
Crystal data top
C10H10N4O5S·C9H9N3O5Z = 2
Mr = 537.47F(000) = 556
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.8457 (5) ÅCell parameters from 4858 reflections
b = 10.0057 (5) Åθ = 3.7–75.6°
c = 12.5185 (6) ŵ = 1.90 mm1
α = 72.413 (5)°T = 123 K
β = 78.428 (4)°Prism, colorless
γ = 89.129 (4)°0.44 × 0.38 × 0.27 mm
V = 1150.35 (10) Å3
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4597 independent reflections
Radiation source: Enhance (Cu) X-ray Source4099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 3.8°
ω scansh = 812
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
k = 1112
Tmin = 0.488, Tmax = 0.628l = 1515
7591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2475P]
where P = (Fo2 + 2Fc2)/3
4597 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H10N4O5S·C9H9N3O5γ = 89.129 (4)°
Mr = 537.47V = 1150.35 (10) Å3
Triclinic, P1Z = 2
a = 9.8457 (5) ÅCu Kα radiation
b = 10.0057 (5) ŵ = 1.90 mm1
c = 12.5185 (6) ÅT = 123 K
α = 72.413 (5)°0.44 × 0.38 × 0.27 mm
β = 78.428 (4)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4597 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
4099 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.628Rint = 0.025
7591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
4597 reflectionsΔρmin = 0.33 e Å3
342 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.76619 (4)0.42766 (5)0.57712 (3)0.02502 (12)
O1A0.78961 (16)0.65356 (16)0.12724 (12)0.0403 (4)
O2A0.86851 (15)0.87002 (14)0.18650 (11)0.0335 (3)
O3A1.22867 (15)0.99829 (15)0.02521 (12)0.0390 (3)
O4A1.27475 (14)0.85999 (14)0.13226 (11)0.0310 (3)
O5A0.88749 (13)0.33920 (12)0.25463 (10)0.0266 (3)
O1B0.53210 (19)0.27963 (15)0.46302 (12)0.0459 (4)
O2B0.40878 (15)0.24042 (13)0.35063 (12)0.0352 (3)
O3B0.37221 (15)0.60717 (15)0.00223 (11)0.0357 (3)
O4B0.5129 (2)0.78858 (17)0.05161 (12)0.0497 (4)
O5B0.81001 (13)0.76125 (13)0.32225 (12)0.0290 (3)
N1A0.85641 (16)0.75121 (16)0.12002 (12)0.0260 (3)
N2A1.20846 (15)0.89025 (15)0.05610 (12)0.0253 (3)
N3A0.91130 (14)0.48145 (14)0.36539 (11)0.0199 (3)
N4A0.94610 (15)0.26566 (14)0.49228 (12)0.0234 (3)
N1B0.48356 (16)0.31620 (15)0.37681 (12)0.0254 (3)
N2B0.45895 (16)0.68028 (16)0.01822 (12)0.0260 (3)
N3B0.63630 (15)0.91321 (14)0.30300 (12)0.0228 (3)
C1A0.92940 (17)0.72182 (17)0.02373 (13)0.0212 (3)
C2A1.03083 (17)0.81896 (17)0.02984 (13)0.0217 (3)
H2AA1.05430.90100.09370.026*
C3A1.09632 (16)0.79080 (17)0.06156 (14)0.0205 (3)
C4A1.06124 (16)0.67505 (16)0.15829 (13)0.0195 (3)
H4AA1.10670.66070.22070.023*
C5A0.95709 (16)0.58035 (16)0.16093 (13)0.0189 (3)
C6A0.89257 (16)0.60135 (17)0.06793 (13)0.0204 (3)
H6AA0.82510.53460.06760.024*
C7A0.91461 (16)0.45272 (16)0.26354 (13)0.0198 (3)
C8A0.87935 (17)0.38376 (17)0.47537 (13)0.0202 (3)
C9A0.9057 (2)0.14979 (18)0.59838 (15)0.0289 (4)
H9AA0.81410.16530.63950.043*
H9AB0.97400.14500.64650.043*
H9AC0.90200.06140.58030.043*
C10A1.0716 (2)0.24386 (19)0.41521 (15)0.0301 (4)
H10A1.11320.33490.36410.045*
H10B1.04740.18710.36960.045*
H10C1.13820.19500.46040.045*
C1B0.51644 (17)0.46087 (16)0.29998 (13)0.0197 (3)
C2B0.47036 (16)0.49825 (17)0.19815 (13)0.0196 (3)
H2BA0.41930.43400.17700.024*
C3B0.50307 (17)0.63468 (17)0.12917 (13)0.0206 (3)
C4B0.57312 (17)0.73238 (17)0.15966 (14)0.0210 (3)
H4BA0.59260.82570.11000.025*
C5B0.61429 (16)0.69075 (17)0.26466 (14)0.0196 (3)
C6B0.58805 (16)0.55288 (17)0.33527 (13)0.0193 (3)
H6BA0.61830.52240.40580.023*
C7B0.69378 (17)0.79193 (17)0.30051 (13)0.0209 (3)
C8B0.7131 (2)1.01915 (19)0.32817 (18)0.0333 (4)
H8BA0.81211.00040.31590.050*
H8BB0.67951.01620.40810.050*
H8BC0.69961.11220.27750.050*
C9B0.49061 (19)0.94183 (18)0.29843 (15)0.0278 (4)
H9BA0.44100.85580.30220.042*
H9BB0.48591.01470.22670.042*
H9BC0.44760.97410.36340.042*
H1NA0.889 (2)0.563 (2)0.3648 (17)0.021 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0265 (2)0.0292 (2)0.0174 (2)0.00437 (16)0.00275 (15)0.00549 (16)
O1A0.0447 (8)0.0425 (8)0.0328 (7)0.0136 (6)0.0189 (6)0.0022 (6)
O2A0.0478 (8)0.0284 (7)0.0226 (6)0.0057 (6)0.0134 (6)0.0014 (5)
O3A0.0428 (8)0.0286 (7)0.0343 (7)0.0168 (6)0.0083 (6)0.0080 (6)
O4A0.0298 (7)0.0310 (7)0.0315 (7)0.0068 (5)0.0105 (5)0.0053 (5)
O5A0.0364 (7)0.0172 (6)0.0253 (6)0.0046 (5)0.0065 (5)0.0044 (5)
O1B0.0758 (11)0.0262 (7)0.0330 (8)0.0100 (7)0.0259 (7)0.0051 (6)
O2B0.0455 (8)0.0176 (6)0.0421 (8)0.0077 (5)0.0112 (6)0.0067 (6)
O3B0.0376 (8)0.0423 (8)0.0311 (7)0.0024 (6)0.0168 (6)0.0105 (6)
O4B0.0754 (12)0.0413 (9)0.0241 (7)0.0166 (8)0.0160 (7)0.0066 (6)
O5B0.0251 (6)0.0239 (6)0.0426 (7)0.0021 (5)0.0121 (5)0.0138 (5)
N1A0.0293 (8)0.0276 (8)0.0197 (7)0.0010 (6)0.0062 (6)0.0043 (6)
N2A0.0241 (7)0.0215 (7)0.0262 (7)0.0050 (6)0.0010 (6)0.0037 (6)
N3A0.0250 (7)0.0141 (6)0.0175 (6)0.0002 (5)0.0013 (5)0.0023 (5)
N4A0.0270 (7)0.0185 (7)0.0213 (7)0.0010 (5)0.0025 (5)0.0028 (6)
N1B0.0330 (8)0.0166 (7)0.0243 (7)0.0006 (6)0.0030 (6)0.0049 (6)
N2B0.0307 (8)0.0267 (8)0.0196 (7)0.0030 (6)0.0050 (6)0.0061 (6)
N3B0.0260 (7)0.0169 (6)0.0249 (7)0.0019 (5)0.0044 (5)0.0059 (5)
C1A0.0234 (8)0.0225 (8)0.0173 (7)0.0031 (6)0.0045 (6)0.0054 (6)
C2A0.0242 (8)0.0180 (8)0.0178 (7)0.0015 (6)0.0002 (6)0.0009 (6)
C3A0.0195 (8)0.0177 (7)0.0220 (8)0.0024 (6)0.0008 (6)0.0049 (6)
C4A0.0212 (8)0.0181 (7)0.0177 (7)0.0013 (6)0.0031 (6)0.0036 (6)
C5A0.0214 (8)0.0156 (7)0.0172 (7)0.0015 (6)0.0006 (6)0.0037 (6)
C6A0.0201 (8)0.0196 (8)0.0208 (8)0.0004 (6)0.0025 (6)0.0064 (6)
C7A0.0202 (8)0.0162 (7)0.0201 (8)0.0005 (6)0.0023 (6)0.0025 (6)
C8A0.0217 (8)0.0191 (8)0.0184 (7)0.0021 (6)0.0043 (6)0.0034 (6)
C9A0.0355 (10)0.0188 (8)0.0264 (9)0.0012 (7)0.0054 (7)0.0012 (7)
C10A0.0352 (10)0.0261 (9)0.0259 (9)0.0083 (7)0.0038 (7)0.0054 (7)
C1B0.0214 (8)0.0151 (7)0.0209 (8)0.0005 (6)0.0012 (6)0.0052 (6)
C2B0.0199 (7)0.0184 (7)0.0213 (8)0.0014 (6)0.0017 (6)0.0086 (6)
C3B0.0215 (8)0.0224 (8)0.0174 (7)0.0004 (6)0.0027 (6)0.0061 (6)
C4B0.0217 (8)0.0166 (7)0.0212 (8)0.0015 (6)0.0009 (6)0.0027 (6)
C5B0.0170 (7)0.0191 (8)0.0224 (8)0.0004 (6)0.0010 (6)0.0080 (6)
C6B0.0195 (7)0.0192 (8)0.0195 (7)0.0017 (6)0.0032 (6)0.0067 (6)
C7B0.0232 (8)0.0179 (7)0.0205 (7)0.0030 (6)0.0027 (6)0.0052 (6)
C8B0.0383 (10)0.0214 (9)0.0427 (11)0.0042 (7)0.0063 (8)0.0144 (8)
C9B0.0321 (9)0.0213 (8)0.0295 (9)0.0072 (7)0.0088 (7)0.0058 (7)
Geometric parameters (Å, º) top
S1A—C8A1.6764 (16)C3A—C4A1.387 (2)
O1A—N1A1.221 (2)C4A—C5A1.396 (2)
O2A—N1A1.219 (2)C4A—H4AA0.9500
O3A—N2A1.227 (2)C5A—C6A1.396 (2)
O4A—N2A1.2230 (19)C5A—C7A1.505 (2)
O5A—C7A1.213 (2)C6A—H6AA0.9500
O1B—N1B1.221 (2)C9A—H9AA0.9800
O2B—N1B1.220 (2)C9A—H9AB0.9800
O3B—N2B1.217 (2)C9A—H9AC0.9800
O4B—N2B1.216 (2)C10A—H10A0.9800
O5B—C7B1.242 (2)C10A—H10B0.9800
N1A—C1A1.477 (2)C10A—H10C0.9800
N2A—C3A1.475 (2)C1B—C2B1.382 (2)
N3A—C7A1.383 (2)C1B—C6B1.389 (2)
N3A—C8A1.404 (2)C2B—C3B1.379 (2)
N3A—H1NA0.84 (2)C2B—H2BA0.9500
N4A—C8A1.324 (2)C3B—C4B1.389 (2)
N4A—C9A1.462 (2)C4B—C5B1.394 (2)
N4A—C10A1.465 (2)C4B—H4BA0.9500
N1B—C1B1.474 (2)C5B—C6B1.391 (2)
N2B—C3B1.476 (2)C5B—C7B1.509 (2)
N3B—C7B1.337 (2)C6B—H6BA0.9500
N3B—C8B1.455 (2)C8B—H8BA0.9800
N3B—C9B1.468 (2)C8B—H8BB0.9800
C1A—C2A1.379 (2)C8B—H8BC0.9800
C1A—C6A1.383 (2)C9B—H9BA0.9800
C2A—C3A1.378 (2)C9B—H9BB0.9800
C2A—H2AA0.9500C9B—H9BC0.9800
O2A—N1A—O1A125.14 (15)N4A—C9A—H9AA109.5
O2A—N1A—C1A117.76 (14)N4A—C9A—H9AB109.5
O1A—N1A—C1A117.09 (14)H9AA—C9A—H9AB109.5
O4A—N2A—O3A124.45 (15)N4A—C9A—H9AC109.5
O4A—N2A—C3A118.26 (14)H9AA—C9A—H9AC109.5
O3A—N2A—C3A117.29 (14)H9AB—C9A—H9AC109.5
C7A—N3A—C8A125.83 (14)N4A—C10A—H10A109.5
C7A—N3A—H1NA114.8 (13)N4A—C10A—H10B109.5
C8A—N3A—H1NA112.8 (13)H10A—C10A—H10B109.5
C8A—N4A—C9A120.93 (14)N4A—C10A—H10C109.5
C8A—N4A—C10A124.44 (14)H10A—C10A—H10C109.5
C9A—N4A—C10A114.36 (14)H10B—C10A—H10C109.5
O2B—N1B—O1B123.94 (15)C2B—C1B—C6B123.74 (15)
O2B—N1B—C1B117.94 (14)C2B—C1B—N1B117.83 (14)
O1B—N1B—C1B118.12 (15)C6B—C1B—N1B118.40 (14)
O4B—N2B—O3B124.34 (15)C3B—C2B—C1B115.83 (15)
O4B—N2B—C3B117.45 (15)C3B—C2B—H2BA122.1
O3B—N2B—C3B118.21 (14)C1B—C2B—H2BA122.1
C7B—N3B—C8B119.81 (15)C2B—C3B—C4B123.37 (15)
C7B—N3B—C9B124.36 (14)C2B—C3B—N2B118.42 (14)
C8B—N3B—C9B115.22 (14)C4B—C3B—N2B118.19 (14)
C2A—C1A—C6A123.23 (15)C3B—C4B—C5B118.68 (15)
C2A—C1A—N1A117.38 (14)C3B—C4B—H4BA120.7
C6A—C1A—N1A119.38 (15)C5B—C4B—H4BA120.7
C3A—C2A—C1A116.55 (15)C6B—C5B—C4B120.01 (15)
C3A—C2A—H2AA121.7C6B—C5B—C7B119.19 (14)
C1A—C2A—H2AA121.7C4B—C5B—C7B120.73 (14)
C2A—C3A—C4A123.43 (15)C1B—C6B—C5B118.31 (15)
C2A—C3A—N2A117.94 (14)C1B—C6B—H6BA120.8
C4A—C3A—N2A118.63 (14)C5B—C6B—H6BA120.8
C3A—C4A—C5A117.88 (15)O5B—C7B—N3B123.42 (15)
C3A—C4A—H4AA121.1O5B—C7B—C5B118.99 (14)
C5A—C4A—H4AA121.1N3B—C7B—C5B117.54 (14)
C4A—C5A—C6A120.56 (14)N3B—C8B—H8BA109.5
C4A—C5A—C7A120.30 (14)N3B—C8B—H8BB109.5
C6A—C5A—C7A119.12 (14)H8BA—C8B—H8BB109.5
C1A—C6A—C5A118.24 (15)N3B—C8B—H8BC109.5
C1A—C6A—H6AA120.9H8BA—C8B—H8BC109.5
C5A—C6A—H6AA120.9H8BB—C8B—H8BC109.5
O5A—C7A—N3A125.54 (15)N3B—C9B—H9BA109.5
O5A—C7A—C5A122.24 (14)N3B—C9B—H9BB109.5
N3A—C7A—C5A112.22 (13)H9BA—C9B—H9BB109.5
N4A—C8A—N3A117.18 (14)N3B—C9B—H9BC109.5
N4A—C8A—S1A124.68 (12)H9BA—C9B—H9BC109.5
N3A—C8A—S1A118.07 (12)H9BB—C9B—H9BC109.5
O2A—N1A—C1A—C2A14.8 (2)C7A—N3A—C8A—N4A50.1 (2)
O1A—N1A—C1A—C2A164.50 (16)C7A—N3A—C8A—S1A132.89 (15)
O2A—N1A—C1A—C6A164.30 (15)O2B—N1B—C1B—C2B5.4 (2)
O1A—N1A—C1A—C6A16.4 (2)O1B—N1B—C1B—C2B175.00 (16)
C6A—C1A—C2A—C3A0.0 (2)O2B—N1B—C1B—C6B172.73 (15)
N1A—C1A—C2A—C3A179.05 (14)O1B—N1B—C1B—C6B6.9 (2)
C1A—C2A—C3A—C4A2.6 (2)C6B—C1B—C2B—C3B1.8 (2)
C1A—C2A—C3A—N2A178.07 (14)N1B—C1B—C2B—C3B179.79 (13)
O4A—N2A—C3A—C2A173.97 (15)C1B—C2B—C3B—C4B2.4 (2)
O3A—N2A—C3A—C2A6.0 (2)C1B—C2B—C3B—N2B178.90 (14)
O4A—N2A—C3A—C4A6.7 (2)O4B—N2B—C3B—C2B164.52 (17)
O3A—N2A—C3A—C4A173.32 (16)O3B—N2B—C3B—C2B15.0 (2)
C2A—C3A—C4A—C5A2.1 (2)O4B—N2B—C3B—C4B16.7 (2)
N2A—C3A—C4A—C5A178.57 (13)O3B—N2B—C3B—C4B163.76 (16)
C3A—C4A—C5A—C6A1.0 (2)C2B—C3B—C4B—C5B0.8 (2)
C3A—C4A—C5A—C7A179.95 (14)N2B—C3B—C4B—C5B179.49 (14)
C2A—C1A—C6A—C5A2.9 (2)C3B—C4B—C5B—C6B1.6 (2)
N1A—C1A—C6A—C5A176.12 (14)C3B—C4B—C5B—C7B178.49 (14)
C4A—C5A—C6A—C1A3.4 (2)C2B—C1B—C6B—C5B0.4 (2)
C7A—C5A—C6A—C1A177.66 (14)N1B—C1B—C6B—C5B177.57 (14)
C8A—N3A—C7A—O5A1.6 (3)C4B—C5B—C6B—C1B2.1 (2)
C8A—N3A—C7A—C5A178.18 (14)C7B—C5B—C6B—C1B179.10 (14)
C4A—C5A—C7A—O5A140.51 (17)C8B—N3B—C7B—O5B2.3 (3)
C6A—C5A—C7A—O5A38.5 (2)C9B—N3B—C7B—O5B168.35 (16)
C4A—C5A—C7A—N3A39.3 (2)C8B—N3B—C7B—C5B175.18 (15)
C6A—C5A—C7A—N3A141.73 (15)C9B—N3B—C7B—C5B14.2 (2)
C9A—N4A—C8A—N3A171.11 (15)C6B—C5B—C7B—O5B55.5 (2)
C10A—N4A—C8A—N3A15.3 (2)C4B—C5B—C7B—O5B121.47 (17)
C9A—N4A—C8A—S1A12.1 (2)C6B—C5B—C7B—N3B126.92 (16)
C10A—N4A—C8A—S1A161.53 (14)C4B—C5B—C7B—N3B56.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H1NA···O5B0.84 (2)2.07 (2)2.888 (2)163 (2)
C2B—H2BA···O1Ai0.952.513.390 (2)155
C4B—H4BA···O3Aii0.952.353.163 (2)143
C6B—H6BA···S1A0.952.763.6856 (16)166
C9A—H9AB···O5Biii0.982.483.368 (2)150
C9B—H9BB···O4Biv0.982.463.439 (2)175
C10A—H10B···O2Av0.982.513.334 (2)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10N4O5S·C9H9N3O5
Mr537.47
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)9.8457 (5), 10.0057 (5), 12.5185 (6)
α, β, γ (°)72.413 (5), 78.428 (4), 89.129 (4)
V3)1150.35 (10)
Z2
Radiation typeCu Kα
µ (mm1)1.90
Crystal size (mm)0.44 × 0.38 × 0.27
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Agilent, 2011)
Tmin, Tmax0.488, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
7591, 4597, 4099
Rint0.025
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.07
No. of reflections4597
No. of parameters342
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.33

Computer programs: CrysAlis PRO (Agilent, 2011), CrysAlis RED (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H1NA···O5B0.84 (2)2.07 (2)2.888 (2)163 (2)
C2B—H2BA···O1Ai0.952.513.390 (2)155
C4B—H4BA···O3Aii0.952.353.163 (2)143
C6B—H6BA···S1A0.952.763.6856 (16)166
C9A—H9AB···O5Biii0.982.483.368 (2)150
C9B—H9BB···O4Biv0.982.463.439 (2)175
C10A—H10B···O2Av0.982.513.334 (2)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z; (v) x+2, y+1, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationSaeed, S., Rashid, N., Butcher, R. J., Öztürk Yildirim, S. & Hussain, R. (2012). Acta Cryst. E68, o2762.  CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550–558.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds