organic compounds
4-Hydroxyindan-1-one
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
The molecule of the title compound, C9H8O2, is essentially planar except for the methylene H atoms [maximum deviation = 0.028 (1) Å]. In the crystal, the molecules are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O interactions into chains along [110] and [1-10].
Related literature
For the preparation of the title compound, see: Gerasov et al. (2011). For applications of indanone derivatives, see: Tang et al. (2011); Borbone et al. (2011); Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Yu et al. (2011). For related structures, see: Ali et al. (2010); Chen et al. (2011a,b). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536812041669/xu5628sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812041669/xu5628Isup2.hkl
The title compound was synthesized by the hydrolation of 4-benzoyloxy-1-indanone with sodium hydroxide (Gerasov et al., 2011). Colorless parallelepiped -shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a ethyl acetate solution.
H atoms bonded to O and C atoms were located in a difference
The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].Data collection: SMART (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C9H8O2 | F(000) = 624 |
Mr = 148.15 | Dx = 1.350 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3232 reflections |
a = 13.5890 (6) Å | θ = 2.8–29.2° |
b = 8.6160 (3) Å | µ = 0.10 mm−1 |
c = 13.9435 (6) Å | T = 297 K |
β = 116.738 (6)° | Parallelepiped, colorless |
V = 1457.98 (13) Å3 | 0.63 × 0.60 × 0.38 mm |
Z = 8 |
Bruker SMART CCD detector diffractometer | 1289 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 29.2°, θmin = 2.9° |
ω scans | h = −18→18 |
6305 measured reflections | k = −11→11 |
1794 independent reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0704P)2] where P = (Fo2 + 2Fc2)/3 |
1794 reflections | (Δ/σ)max = 0.001 |
104 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C9H8O2 | V = 1457.98 (13) Å3 |
Mr = 148.15 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.5890 (6) Å | µ = 0.10 mm−1 |
b = 8.6160 (3) Å | T = 297 K |
c = 13.9435 (6) Å | 0.63 × 0.60 × 0.38 mm |
β = 116.738 (6)° |
Bruker SMART CCD detector diffractometer | 1289 reflections with I > 2σ(I) |
6305 measured reflections | Rint = 0.018 |
1794 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.21 e Å−3 |
1794 reflections | Δρmin = −0.15 e Å−3 |
104 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.21183 (9) | 0.05958 (13) | 0.03489 (8) | 0.0607 (3) | |
H1A | 0.1454 (17) | 0.116 (3) | 0.0012 (17) | 0.101 (6)* | |
O2 | 0.51759 (9) | −0.29276 (13) | −0.06930 (10) | 0.0714 (4) | |
C1 | 0.24288 (9) | 0.01208 (14) | −0.04004 (9) | 0.0373 (3) | |
C2 | 0.18722 (10) | 0.05169 (14) | −0.14805 (10) | 0.0405 (3) | |
H2A | 0.1252 | 0.1147 | −0.1716 | 0.049* | |
C3 | 0.22258 (10) | −0.00108 (14) | −0.22117 (9) | 0.0414 (3) | |
H3A | 0.1839 | 0.0273 | −0.2930 | 0.050* | |
C4 | 0.31337 (10) | −0.09427 (14) | −0.18965 (10) | 0.0404 (3) | |
H4A | 0.3372 | −0.1300 | −0.2386 | 0.049* | |
C5 | 0.36864 (9) | −0.13348 (13) | −0.08148 (9) | 0.0350 (3) | |
C6 | 0.33542 (9) | −0.08162 (13) | −0.00686 (9) | 0.0341 (3) | |
C7 | 0.40960 (11) | −0.13665 (16) | 0.10481 (10) | 0.0470 (3) | |
H7A | 0.3686 | −0.1952 | 0.1343 | 0.056* | |
H7B | 0.4457 | −0.0499 | 0.1519 | 0.056* | |
C8 | 0.49369 (11) | −0.24025 (16) | 0.09019 (12) | 0.0499 (4) | |
H8A | 0.5681 | −0.2036 | 0.1346 | 0.060* | |
H8B | 0.4879 | −0.3465 | 0.1100 | 0.060* | |
C9 | 0.46657 (10) | −0.23041 (14) | −0.02658 (11) | 0.0445 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0637 (7) | 0.0832 (8) | 0.0452 (6) | 0.0363 (6) | 0.0333 (5) | 0.0071 (5) |
O2 | 0.0529 (6) | 0.0864 (8) | 0.0794 (8) | 0.0316 (6) | 0.0337 (6) | −0.0066 (6) |
C1 | 0.0363 (6) | 0.0424 (6) | 0.0357 (6) | 0.0098 (5) | 0.0186 (5) | 0.0002 (5) |
C2 | 0.0350 (6) | 0.0421 (7) | 0.0416 (7) | 0.0121 (5) | 0.0149 (5) | 0.0066 (5) |
C3 | 0.0460 (7) | 0.0437 (7) | 0.0305 (6) | 0.0028 (5) | 0.0135 (5) | 0.0024 (5) |
C4 | 0.0442 (7) | 0.0446 (7) | 0.0373 (6) | 0.0016 (5) | 0.0226 (6) | −0.0067 (5) |
C5 | 0.0305 (6) | 0.0354 (6) | 0.0398 (6) | 0.0029 (5) | 0.0162 (5) | −0.0040 (4) |
C6 | 0.0315 (6) | 0.0365 (6) | 0.0327 (6) | 0.0047 (5) | 0.0130 (5) | −0.0003 (4) |
C7 | 0.0428 (7) | 0.0557 (8) | 0.0357 (7) | 0.0110 (6) | 0.0118 (6) | 0.0040 (5) |
C8 | 0.0353 (7) | 0.0491 (7) | 0.0532 (8) | 0.0116 (6) | 0.0091 (6) | 0.0054 (6) |
C9 | 0.0329 (6) | 0.0425 (7) | 0.0559 (8) | 0.0069 (5) | 0.0181 (6) | −0.0051 (6) |
O1—C1 | 1.3542 (13) | C4—H4A | 0.9300 |
O1—H1A | 0.94 (2) | C5—C6 | 1.3814 (15) |
O2—C9 | 1.2229 (14) | C5—C9 | 1.4622 (16) |
C1—C6 | 1.3869 (15) | C6—C7 | 1.5011 (16) |
C1—C2 | 1.3899 (17) | C7—C8 | 1.5341 (18) |
C2—C3 | 1.3848 (16) | C7—H7A | 0.9700 |
C2—H2A | 0.9300 | C7—H7B | 0.9700 |
C3—C4 | 1.3683 (16) | C8—C9 | 1.501 (2) |
C3—H3A | 0.9300 | C8—H8A | 0.9700 |
C4—C5 | 1.3906 (16) | C8—H8B | 0.9700 |
C1—O1—H1A | 109.4 (12) | C1—C6—C7 | 127.94 (10) |
O1—C1—C6 | 117.97 (10) | C5—C6—C7 | 112.62 (10) |
O1—C1—C2 | 123.73 (11) | C6—C7—C8 | 103.81 (10) |
C6—C1—C2 | 118.30 (10) | C6—C7—H7A | 111.0 |
C1—C2—C3 | 121.15 (11) | C8—C7—H7A | 111.0 |
C1—C2—H2A | 119.4 | C6—C7—H7B | 111.0 |
C3—C2—H2A | 119.4 | C8—C7—H7B | 111.0 |
C4—C3—C2 | 121.17 (11) | H7A—C7—H7B | 109.0 |
C4—C3—H3A | 119.4 | C9—C8—C7 | 106.09 (10) |
C2—C3—H3A | 119.4 | C9—C8—H8A | 110.5 |
C3—C4—C5 | 117.38 (10) | C7—C8—H8A | 110.5 |
C3—C4—H4A | 121.3 | C9—C8—H8B | 110.5 |
C5—C4—H4A | 121.3 | C7—C8—H8B | 110.5 |
C4—C5—C6 | 122.57 (10) | H8A—C8—H8B | 108.7 |
C4—C5—C9 | 128.81 (10) | O2—C9—C5 | 125.30 (13) |
C6—C5—C9 | 108.63 (10) | O2—C9—C8 | 125.95 (12) |
C1—C6—C5 | 119.44 (10) | C5—C9—C8 | 108.75 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.94 (2) | 1.75 (2) | 2.6918 (18) | 175 (2) |
C2—H2A···O2i | 0.93 | 2.59 | 3.255 (2) | 129 |
Symmetry code: (i) x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C9H8O2 |
Mr | 148.15 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 13.5890 (6), 8.6160 (3), 13.9435 (6) |
β (°) | 116.738 (6) |
V (Å3) | 1457.98 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.63 × 0.60 × 0.38 |
Data collection | |
Diffractometer | Bruker SMART CCD detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6305, 1794, 1289 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.115, 1.06 |
No. of reflections | 1794 |
No. of parameters | 104 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.15 |
Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.94 (2) | 1.75 (2) | 2.6918 (18) | 175 (2) |
C2—H2A···O2i | 0.93 | 2.59 | 3.255 (2) | 129 |
Symmetry code: (i) x−1/2, y+1/2, z. |
Acknowledgements
This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University in providing fabrication and measurement facilities.
References
Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295. Web of Science CSD CrossRef CAS Google Scholar
Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fu, T.-L. & Wang, I.-J. (2008). Dyes Pigm. 76, 590–595. Web of Science CrossRef CAS Google Scholar
Gerasov, A. O., Zyabrev, K. V., Shandura, M. P. & Kovtun, Y. P. (2011). Dyes Pigm. 89, 76–85. Web of Science CrossRef CAS Google Scholar
Li, X., Kim, S. H. & Son, Y. A. (2009). Dyes Pigm. 82, 293–298. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541. Web of Science CrossRef Google Scholar
Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yu, S.-B., Liu, H.-M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264–267. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indanone derivatives are some of the most widely used organic compounds (Tang et al., 2011). Indanone derivatives are used as dyes and pigments (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Borbone et al., 2011; Borge et al., 2010; Fu & Wang, 2008; Yu et al., 2011), and exhibit a wide variety of biological activities (Sousa et al., 2011). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).
The molecular structure of the title compound is shown in Figure 1. The molecule is essentially planar (the maximum deviation = 0.028 (1) Å), which is consistent with previous studies (Ali et al., 2010; Chen et al., 2011a,b). In the crystal (Fig. 2), molecules are linked by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) to form an infinite one-dimensional chain along and [1 1 0 and ][1 -1 0], generating two different kinds of C(7) motifs (Bernstein et al., 1995).