organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy­indan-1-one

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 2 October 2012; accepted 5 October 2012; online 10 October 2012)

The mol­ecule of the title compound, C9H8O2, is essentially planar except for the methyl­ene H atoms [maximum deviation = 0.028 (1) Å]. In the crystal, the mol­ecules are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into chains along [110] and [1-10].

Related literature

For the preparation of the title compound, see: Gerasov et al. (2011[Gerasov, A. O., Zyabrev, K. V., Shandura, M. P. & Kovtun, Y. P. (2011). Dyes Pigm. 89, 76-85.]). For applications of indanone derivatives, see: Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]); Borbone et al. (2011[Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290-295.]); Borge et al. (2010[Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209-217.]); Cai et al. (2005[Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479-482.]); Cui et al. (2009[Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53-57.]); Fu & Wang (2008[Fu, T.-L. & Wang, I.-J. (2008). Dyes Pigm. 76, 590-595.]); Li et al. (2009[Li, X., Kim, S. H. & Son, Y. A. (2009). Dyes Pigm. 82, 293-298.]); Sousa et al. (2011[Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537-541.]); Yu et al. (2011[Yu, S.-B., Liu, H.-M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264-267.]). For related structures, see: Ali et al. (2010[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2864.]); Chen et al. (2011a[Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.],b[Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O2

  • Mr = 148.15

  • Monoclinic, C 2/c

  • a = 13.5890 (6) Å

  • b = 8.6160 (3) Å

  • c = 13.9435 (6) Å

  • β = 116.738 (6)°

  • V = 1457.98 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.63 × 0.60 × 0.38 mm

Data collection
  • Bruker SMART CCD detector diffractometer

  • 6305 measured reflections

  • 1794 independent reflections

  • 1289 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.06

  • 1794 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.94 (2) 1.75 (2) 2.6918 (18) 175 (2)
C2—H2A⋯O2i 0.93 2.59 3.255 (2) 129
Symmetry code: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indanone derivatives are some of the most widely used organic compounds (Tang et al., 2011). Indanone derivatives are used as dyes and pigments (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Borbone et al., 2011; Borge et al., 2010; Fu & Wang, 2008; Yu et al., 2011), and exhibit a wide variety of biological activities (Sousa et al., 2011). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).

The molecular structure of the title compound is shown in Figure 1. The molecule is essentially planar (the maximum deviation = 0.028 (1) Å), which is consistent with previous studies (Ali et al., 2010; Chen et al., 2011a,b). In the crystal (Fig. 2), molecules are linked by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) to form an infinite one-dimensional chain along and [1 1 0 and ][1 -1 0], generating two different kinds of C(7) motifs (Bernstein et al., 1995).

Related literature top

For the preparation of the title compound, see: Gerasov et al. (2011). For applications of indanone derivatives, see: Tang et al. (2011); Borbone et al. (2011); Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Yu et al. (2011). For related structures, see: Ali et al. (2010); Chen et al. (2011a,b). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by the hydrolation of 4-benzoyloxy-1-indanone with sodium hydroxide (Gerasov et al., 2011). Colorless parallelepiped -shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a ethyl acetate solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the c axis. Green and blue dashed lines denote the intermolecular O1—H1A···O2 and C2—H2A···O2 hydrogen bonds, respectively. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.
4-Hydroxyindan-1-one top
Crystal data top
C9H8O2F(000) = 624
Mr = 148.15Dx = 1.350 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3232 reflections
a = 13.5890 (6) Åθ = 2.8–29.2°
b = 8.6160 (3) ŵ = 0.10 mm1
c = 13.9435 (6) ÅT = 297 K
β = 116.738 (6)°Parallelepiped, colorless
V = 1457.98 (13) Å30.63 × 0.60 × 0.38 mm
Z = 8
Data collection top
Bruker SMART CCD detector
diffractometer
1289 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 29.2°, θmin = 2.9°
ω scansh = 1818
6305 measured reflectionsk = 1111
1794 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
1794 reflections(Δ/σ)max = 0.001
104 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C9H8O2V = 1457.98 (13) Å3
Mr = 148.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.5890 (6) ŵ = 0.10 mm1
b = 8.6160 (3) ÅT = 297 K
c = 13.9435 (6) Å0.63 × 0.60 × 0.38 mm
β = 116.738 (6)°
Data collection top
Bruker SMART CCD detector
diffractometer
1289 reflections with I > 2σ(I)
6305 measured reflectionsRint = 0.018
1794 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
1794 reflectionsΔρmin = 0.15 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21183 (9)0.05958 (13)0.03489 (8)0.0607 (3)
H1A0.1454 (17)0.116 (3)0.0012 (17)0.101 (6)*
O20.51759 (9)0.29276 (13)0.06930 (10)0.0714 (4)
C10.24288 (9)0.01208 (14)0.04004 (9)0.0373 (3)
C20.18722 (10)0.05169 (14)0.14805 (10)0.0405 (3)
H2A0.12520.11470.17160.049*
C30.22258 (10)0.00108 (14)0.22117 (9)0.0414 (3)
H3A0.18390.02730.29300.050*
C40.31337 (10)0.09427 (14)0.18965 (10)0.0404 (3)
H4A0.33720.13000.23860.049*
C50.36864 (9)0.13348 (13)0.08148 (9)0.0350 (3)
C60.33542 (9)0.08162 (13)0.00686 (9)0.0341 (3)
C70.40960 (11)0.13665 (16)0.10481 (10)0.0470 (3)
H7A0.36860.19520.13430.056*
H7B0.44570.04990.15190.056*
C80.49369 (11)0.24025 (16)0.09019 (12)0.0499 (4)
H8A0.56810.20360.13460.060*
H8B0.48790.34650.11000.060*
C90.46657 (10)0.23041 (14)0.02658 (11)0.0445 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0637 (7)0.0832 (8)0.0452 (6)0.0363 (6)0.0333 (5)0.0071 (5)
O20.0529 (6)0.0864 (8)0.0794 (8)0.0316 (6)0.0337 (6)0.0066 (6)
C10.0363 (6)0.0424 (6)0.0357 (6)0.0098 (5)0.0186 (5)0.0002 (5)
C20.0350 (6)0.0421 (7)0.0416 (7)0.0121 (5)0.0149 (5)0.0066 (5)
C30.0460 (7)0.0437 (7)0.0305 (6)0.0028 (5)0.0135 (5)0.0024 (5)
C40.0442 (7)0.0446 (7)0.0373 (6)0.0016 (5)0.0226 (6)0.0067 (5)
C50.0305 (6)0.0354 (6)0.0398 (6)0.0029 (5)0.0162 (5)0.0040 (4)
C60.0315 (6)0.0365 (6)0.0327 (6)0.0047 (5)0.0130 (5)0.0003 (4)
C70.0428 (7)0.0557 (8)0.0357 (7)0.0110 (6)0.0118 (6)0.0040 (5)
C80.0353 (7)0.0491 (7)0.0532 (8)0.0116 (6)0.0091 (6)0.0054 (6)
C90.0329 (6)0.0425 (7)0.0559 (8)0.0069 (5)0.0181 (6)0.0051 (6)
Geometric parameters (Å, º) top
O1—C11.3542 (13)C4—H4A0.9300
O1—H1A0.94 (2)C5—C61.3814 (15)
O2—C91.2229 (14)C5—C91.4622 (16)
C1—C61.3869 (15)C6—C71.5011 (16)
C1—C21.3899 (17)C7—C81.5341 (18)
C2—C31.3848 (16)C7—H7A0.9700
C2—H2A0.9300C7—H7B0.9700
C3—C41.3683 (16)C8—C91.501 (2)
C3—H3A0.9300C8—H8A0.9700
C4—C51.3906 (16)C8—H8B0.9700
C1—O1—H1A109.4 (12)C1—C6—C7127.94 (10)
O1—C1—C6117.97 (10)C5—C6—C7112.62 (10)
O1—C1—C2123.73 (11)C6—C7—C8103.81 (10)
C6—C1—C2118.30 (10)C6—C7—H7A111.0
C1—C2—C3121.15 (11)C8—C7—H7A111.0
C1—C2—H2A119.4C6—C7—H7B111.0
C3—C2—H2A119.4C8—C7—H7B111.0
C4—C3—C2121.17 (11)H7A—C7—H7B109.0
C4—C3—H3A119.4C9—C8—C7106.09 (10)
C2—C3—H3A119.4C9—C8—H8A110.5
C3—C4—C5117.38 (10)C7—C8—H8A110.5
C3—C4—H4A121.3C9—C8—H8B110.5
C5—C4—H4A121.3C7—C8—H8B110.5
C4—C5—C6122.57 (10)H8A—C8—H8B108.7
C4—C5—C9128.81 (10)O2—C9—C5125.30 (13)
C6—C5—C9108.63 (10)O2—C9—C8125.95 (12)
C1—C6—C5119.44 (10)C5—C9—C8108.75 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.94 (2)1.75 (2)2.6918 (18)175 (2)
C2—H2A···O2i0.932.593.255 (2)129
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC9H8O2
Mr148.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)13.5890 (6), 8.6160 (3), 13.9435 (6)
β (°) 116.738 (6)
V3)1457.98 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.63 × 0.60 × 0.38
Data collection
DiffractometerBruker SMART CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6305, 1794, 1289
Rint0.018
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.06
No. of reflections1794
No. of parameters104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.94 (2)1.75 (2)2.6918 (18)175 (2)
C2—H2A···O2i0.932.593.255 (2)129
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 101–2113-M-035–001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University in providing fabrication and measurement facilities.

References

First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295.  Web of Science CSD CrossRef CAS Google Scholar
First citationBorge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, T.-L. & Wang, I.-J. (2008). Dyes Pigm. 76, 590–595.  Web of Science CrossRef CAS Google Scholar
First citationGerasov, A. O., Zyabrev, K. V., Shandura, M. P. & Kovtun, Y. P. (2011). Dyes Pigm. 89, 76–85.  Web of Science CrossRef CAS Google Scholar
First citationLi, X., Kim, S. H. & Son, Y. A. (2009). Dyes Pigm. 82, 293–298.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541.  Web of Science CrossRef Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, S.-B., Liu, H.-M., Luo, Y. & Lu, W. (2011). Chin. Chem. Lett. 22, 264–267.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds