metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1417-m1418

Iodido[1-(propan-2-yl­­idene)thio­semi­carbazide-κS]bis­­(tri­phenyl­phosphane-κP)copper(I)

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand, and bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 14 June 2012; accepted 24 October 2012; online 31 October 2012)

In the mononuclear title complex, [CuI(C4H9N3S)(C18H15P)2], the CuI ion displays a distorted tetra­hedral coordination geometry involving two P atoms of two triphenyl­phosphane mol­ecules, one S atom of a 1-(propan-2-yl­idene)thio­semicarbazide mol­ecule and one iodide ion. In the crystal, C—H⋯π inter­actions [C—H⋯centroid distances = 3.443 (3) and 3.788 (3) Å] and N—H⋯S hydrogen bonds form layers parallel to (100). An intra­molecular N—H⋯I hydrogen bond is also observed.

Related literature

For the potential applications of related complexes, see: Matesanz et al. (1999[Matesanz, A. I., Pérez, J. M., Navarro, P., Moreno, J. M., Colacio, E. & Souza, P. (1999). J. Inorg. Biochem. 76, 29-37.]); Konstanti­nović et al. (2008[Konstantinović, S. S., Radovanović, B. C., Sovilj, S. P. & Stanojević, S. (2008). J. Serb. Chem. Soc. 73, 7-13.]); Zhang et al. (2008[Zhang, H., Thomas, R., Oupicky, D. & Peng, F. (2008). J. Biol. Inorg. Chem. 13, 47-55.]). For relevant examples of related discrete complexes, see: Cox et al. (2000[Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615-1620.]); Nimthong et al. (2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]); Pakawatchai et al. (2012[Pakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773-m774.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C4H9N3S)(C18H15P)2]

  • Mr = 846.18

  • Triclinic, [P \overline 1]

  • a = 10.8832 (6) Å

  • b = 12.5712 (7) Å

  • c = 16.0206 (8) Å

  • α = 98.867 (1)°

  • β = 100.517 (1)°

  • γ = 114.056 (1)°

  • V = 1903.04 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.940

  • 26251 measured reflections

  • 9206 independent reflections

  • 7690 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.084

  • S = 1.02

  • 9206 reflections

  • 444 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S1i 0.85 (3) 2.62 (3) 3.447 (3) 166 (3)
N1—H1⋯I1 0.80 (3) 2.93 (3) 3.723 (2) 173 (3)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazones and thiosemicarbazone derivatives as well as their complexes have been receiving more attention, because of their potentially beneficial biochemical properties, such as antimicrobial activity (Konstantinović et al., 2008), anticancer activity on cisplatin-resistant neuroblastoma cells (Zhang et al., 2008), important antitumor properties and DNA binding (Matesanz et al., 1999).

The molecular structure of the title compound displays the distorted tetrahedral coordination of the CuI center. (Fig. 1) The arrangement is considerably distorted since the phosphorous angle at metal site, P2—Cu1—P1 with a value of 120.68 (2)°, is much larger than the tetrahedral value 109.5°, This higher angle is counterbalanced by the bond angles of P1—Cu1—I1, P2—Cu1—I1, P1—Cu1—S1 and P2—Cu1—S1 whose values are 104.358 (19)°, 106.92 (2)°, 109.32 (3)° and 104.67 (2)°, respectively. The tetrahedral distortion is due to steric imposition of the bulky of phosphane ligands and was observed previously in analogous complex. For instance, the P—Cu—P angles of 118.63 (5)° in [CuI(C7H8N2S)(C18H15P)2]. (Nimthong et al., 2008). The two Cu1—P1 and Cu1—P2 bond distances of 2.2910 (7) Å and 2.2814 (6) Å are comparable to these in CuI(C6H8N2S)(C18H15P)2 (2.2897 (5)–2.3047 (5) Å) (Pakawatchai et al., 2012). The Cu1—S1 bond distance of 2.3866 (7) Å, which is larger than the value observed in tetrahedrally coordinated copper(I) halide complexes with S donors such as [CuBr(dppe)(py2SH)]2 with Cu—S bond distance of 2.3456 (13) Å (Cox et al., 2000). The non-bonding distance in the molecule, N1—H1···I1, can be accepted as an intramolecular hydrogen bond with the geometry N1···I1 = 3.723 (2) Å. In the crystal packing, the C5(sp2)—H5···π interactions [H5···Cg1 = 2.948 (3) Å, C5(sp2)—H5···Cg1 = 3.788 (3) Å and C5(sp2)—H5···Cg1 = 134.62 (8)°, Cg1 = C19—C20—C21—C22—C23—C24 ring] and N3—H3A···S1 hydrogen bonds can be linked each molecule forming one dimensional chain. In addition, chains are connected through C3(sp2)—H3···π interactions [H3···Cg2 = 2.870 (3) Å, C3(sp2)—H3···Cg2 = 3.443 (3) Å and C3(sp2)—H3···Cg2 = 138.54 (7)°, Cg2 = C7—C8—C9—C10—C11—C12 ring] forming the two-dimensional layer networks (see Table 1 and Fig. 2).

Related literature top

For the potential applications of related? complexes, see: Matesanz et al., (1999); Konstantinović et al., (2008); Zhang et al., (2008). For relevant examples of related? discrete complexes, see: Cox et al., (2000); Nimthong et al. (2008); Pakawatchai et al., (2012).

Experimental top

Triphenylphosphane (0.28 g, 1.07 mmol) was dissolved in 30 cm3 of acetone at 338 K and then CuI (0.10 g, 0.53 mmol) was added. The mixture was stirred for 2 h and then thiosemicarbazide (0.05 g, 0.55 mmol) was added and the new reaction mixture was heated under reflux for 5 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline complex, which was deposited upon standing for several days, was filtered off and dried in vacuo.

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 with Uiso(H) = 1.2 Ueq(C) and 0.96 Å with Uiso(H) = 1.5 Ueq(C) for for H atoms on C(sp2) and C(sp3), respectively. All H atoms bonded to N atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHEXTl97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure with N—H···S hydrogen bonds and C—H···centroid interactions are linked into one dimensional chain shown as dashed lines.
Iodido[1-(propan-2-ylidene)thiosemicarbazide- κS]bis(triphenylphosphane-κP)copper(I) top
Crystal data top
[CuI(C4H9N3S)(C18H15P)2]Z = 2
Mr = 846.18F(000) = 856
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8832 (6) ÅCell parameters from 7509 reflections
b = 12.5712 (7) Åθ = 2.2–26.4°
c = 16.0206 (8) ŵ = 1.56 mm1
α = 98.867 (1)°T = 293 K
β = 100.517 (1)°Plate, colourless
γ = 114.056 (1)°0.26 × 0.21 × 0.04 mm
V = 1903.04 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9206 independent reflections
Radiation source: fine-focus sealed tube7690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Frames, each covering 0.3 ° in ω scansθmax = 28.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.682, Tmax = 0.940k = 1616
26251 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.6367P]
where P = (Fo2 + 2Fc2)/3
9206 reflections(Δ/σ)max = 0.002
444 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[CuI(C4H9N3S)(C18H15P)2]γ = 114.056 (1)°
Mr = 846.18V = 1903.04 (18) Å3
Triclinic, P1Z = 2
a = 10.8832 (6) ÅMo Kα radiation
b = 12.5712 (7) ŵ = 1.56 mm1
c = 16.0206 (8) ÅT = 293 K
α = 98.867 (1)°0.26 × 0.21 × 0.04 mm
β = 100.517 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
7690 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.940Rint = 0.033
26251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.66 e Å3
9206 reflectionsΔρmin = 0.27 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9764 (3)0.3109 (2)0.05375 (16)0.0384 (5)
C20.8564 (3)0.2797 (3)0.01226 (18)0.0496 (7)
H20.78740.29980.00060.060*
C30.8377 (4)0.2189 (3)0.0971 (2)0.0630 (8)
H30.75600.19770.14020.076*
C40.9382 (4)0.1899 (3)0.1178 (2)0.0627 (9)
H40.92610.15080.17510.075*
C51.0567 (4)0.2185 (3)0.05395 (19)0.0544 (7)
H51.12520.19870.06800.065*
C61.0759 (3)0.2770 (2)0.03164 (17)0.0435 (6)
H61.15590.29390.07470.052*
C71.1523 (3)0.5247 (2)0.20007 (17)0.0402 (6)
C81.2636 (3)0.5503 (3)0.1635 (2)0.0606 (8)
H81.25710.49480.11510.073*
C91.3843 (3)0.6576 (3)0.1979 (3)0.0781 (11)
H91.45860.67330.17300.094*
C101.3953 (4)0.7406 (3)0.2683 (3)0.0765 (11)
H101.47730.81210.29180.092*
C111.2856 (4)0.7183 (3)0.3039 (2)0.0780 (11)
H111.29190.77580.35090.094*
C121.1647 (4)0.6105 (3)0.2707 (2)0.0606 (8)
H121.09100.59570.29610.073*
C130.8550 (3)0.4181 (2)0.16390 (16)0.0371 (5)
C140.7594 (3)0.3687 (2)0.21055 (18)0.0435 (6)
H140.77320.32000.24570.052*
C150.6439 (3)0.3907 (3)0.2057 (2)0.0526 (7)
H150.58040.35650.23710.063*
C160.6236 (3)0.4628 (3)0.1546 (2)0.0594 (8)
H160.54530.47670.15050.071*
C170.7184 (3)0.5151 (3)0.1092 (2)0.0590 (8)
H170.70410.56450.07490.071*
C180.8342 (3)0.4947 (2)0.11416 (19)0.0487 (6)
H180.89890.53190.08440.058*
C190.7536 (2)0.0101 (2)0.13076 (15)0.0360 (5)
C200.6175 (3)0.1014 (3)0.10113 (19)0.0613 (9)
H200.56290.12030.14010.074*
C210.5629 (3)0.1644 (3)0.0135 (2)0.0762 (11)
H210.47160.22550.00600.091*
C220.6418 (3)0.1376 (3)0.04459 (19)0.0640 (9)
H220.60390.17940.10350.077*
C230.7762 (3)0.0493 (3)0.01590 (18)0.0511 (7)
H230.83090.03220.05500.061*
C240.8314 (3)0.0147 (2)0.07120 (16)0.0404 (6)
H240.92270.07580.08990.048*
C250.7027 (3)0.0710 (2)0.29446 (17)0.0377 (5)
C260.7158 (3)0.0687 (3)0.38138 (19)0.0557 (7)
H260.79230.06280.41310.067*
C270.6157 (5)0.0750 (3)0.4216 (3)0.0819 (12)
H270.62560.07340.48030.098*
C280.5032 (5)0.0836 (4)0.3762 (4)0.0937 (15)
H280.43630.08750.40350.112*
C290.4888 (4)0.0864 (4)0.2902 (3)0.0862 (13)
H290.41140.09150.25890.103*
C300.5887 (3)0.0819 (3)0.2494 (2)0.0592 (8)
H300.57930.08610.19130.071*
C310.8974 (2)0.0266 (2)0.29335 (15)0.0340 (5)
C321.0122 (3)0.0236 (3)0.3647 (2)0.0566 (8)
H321.06040.10690.38580.068*
C331.0572 (4)0.0485 (3)0.4057 (2)0.0738 (10)
H331.13390.01340.45490.089*
C340.9894 (4)0.1706 (3)0.3743 (2)0.0640 (9)
H341.02040.21880.40150.077*
C350.8769 (4)0.2213 (3)0.3035 (2)0.0599 (8)
H350.83050.30470.28230.072*
C360.8299 (3)0.1508 (2)0.26227 (18)0.0478 (6)
H360.75270.18700.21340.057*
C371.1977 (3)0.4956 (2)0.45169 (16)0.0399 (5)
C381.5399 (3)0.6307 (2)0.43728 (17)0.0436 (6)
C391.5519 (3)0.5446 (3)0.3685 (2)0.0624 (8)
H39A1.53030.46990.38470.094*
H39B1.64550.57770.36270.094*
H39C1.48750.53040.31350.094*
C401.6672 (3)0.7473 (3)0.4791 (2)0.0663 (9)
H40A1.68770.79310.43630.099*
H40B1.74490.73210.50130.099*
H40C1.65110.79210.52650.099*
N11.3115 (2)0.5081 (2)0.42585 (14)0.0410 (5)
N21.4325 (2)0.6151 (2)0.46382 (14)0.0467 (5)
N31.2117 (3)0.5846 (2)0.51463 (18)0.0631 (8)
P10.99834 (6)0.37784 (5)0.16846 (4)0.03298 (13)
P20.84194 (6)0.07508 (5)0.24472 (4)0.03094 (13)
S11.04319 (6)0.36891 (6)0.40876 (4)0.04410 (16)
Cu11.01628 (3)0.26360 (2)0.264156 (18)0.03273 (8)
I11.243129 (17)0.239385 (16)0.254284 (11)0.04628 (7)
H11.304 (3)0.454 (3)0.388 (2)0.056*
H3A1.140 (3)0.583 (3)0.529 (2)0.056*
H3B1.290 (3)0.643 (3)0.535 (2)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (14)0.0323 (12)0.0416 (13)0.0173 (11)0.0158 (11)0.0157 (10)
C20.0542 (16)0.0495 (16)0.0475 (15)0.0279 (14)0.0099 (13)0.0100 (13)
C30.077 (2)0.065 (2)0.0428 (16)0.0356 (18)0.0025 (15)0.0104 (14)
C40.099 (3)0.0581 (19)0.0399 (16)0.0413 (19)0.0238 (17)0.0133 (14)
C50.081 (2)0.0505 (17)0.0540 (17)0.0397 (16)0.0368 (16)0.0217 (14)
C60.0530 (15)0.0426 (14)0.0453 (14)0.0258 (13)0.0202 (12)0.0184 (12)
C70.0381 (13)0.0318 (12)0.0475 (14)0.0119 (11)0.0078 (11)0.0167 (11)
C80.0480 (16)0.0408 (16)0.095 (2)0.0169 (13)0.0287 (17)0.0216 (16)
C90.0428 (17)0.052 (2)0.136 (4)0.0129 (15)0.027 (2)0.035 (2)
C100.055 (2)0.0445 (19)0.093 (3)0.0013 (15)0.0123 (19)0.0233 (19)
C110.095 (3)0.0460 (19)0.0530 (19)0.0045 (18)0.0016 (19)0.0034 (15)
C120.068 (2)0.0408 (16)0.0518 (17)0.0064 (14)0.0162 (15)0.0069 (13)
C130.0378 (13)0.0306 (12)0.0417 (13)0.0153 (10)0.0112 (10)0.0059 (10)
C140.0414 (14)0.0405 (14)0.0468 (15)0.0174 (12)0.0136 (12)0.0067 (12)
C150.0418 (15)0.0529 (17)0.0617 (18)0.0217 (13)0.0204 (13)0.0019 (14)
C160.0450 (16)0.0563 (18)0.073 (2)0.0301 (15)0.0085 (15)0.0055 (16)
C170.0617 (19)0.0519 (18)0.071 (2)0.0360 (16)0.0111 (16)0.0134 (15)
C180.0525 (16)0.0418 (15)0.0600 (17)0.0255 (13)0.0207 (14)0.0167 (13)
C190.0371 (12)0.0321 (12)0.0308 (12)0.0103 (10)0.0050 (10)0.0060 (10)
C200.0433 (16)0.069 (2)0.0416 (15)0.0014 (14)0.0107 (12)0.0001 (14)
C210.0442 (17)0.085 (3)0.0500 (18)0.0024 (16)0.0006 (14)0.0140 (17)
C220.064 (2)0.071 (2)0.0333 (14)0.0187 (17)0.0003 (14)0.0025 (14)
C230.0654 (18)0.0476 (16)0.0367 (14)0.0218 (14)0.0157 (13)0.0088 (12)
C240.0442 (14)0.0317 (12)0.0387 (13)0.0120 (11)0.0105 (11)0.0066 (10)
C250.0365 (12)0.0275 (12)0.0487 (14)0.0112 (10)0.0176 (11)0.0105 (10)
C260.0610 (18)0.0609 (19)0.0456 (16)0.0255 (15)0.0230 (14)0.0098 (14)
C270.098 (3)0.080 (3)0.076 (2)0.035 (2)0.057 (2)0.014 (2)
C280.094 (3)0.074 (3)0.147 (4)0.048 (2)0.086 (3)0.027 (3)
C290.067 (2)0.082 (3)0.154 (4)0.055 (2)0.060 (3)0.056 (3)
C300.0519 (17)0.0611 (19)0.078 (2)0.0312 (15)0.0245 (16)0.0308 (17)
C310.0380 (12)0.0302 (12)0.0339 (12)0.0143 (10)0.0117 (10)0.0094 (9)
C320.0561 (17)0.0380 (15)0.0565 (17)0.0128 (13)0.0086 (14)0.0119 (13)
C330.068 (2)0.062 (2)0.074 (2)0.0213 (17)0.0143 (17)0.0292 (18)
C340.072 (2)0.064 (2)0.076 (2)0.0413 (18)0.0230 (18)0.0379 (18)
C350.079 (2)0.0348 (15)0.067 (2)0.0246 (15)0.0236 (17)0.0146 (14)
C360.0530 (16)0.0369 (14)0.0439 (15)0.0144 (12)0.0090 (12)0.0050 (11)
C370.0336 (12)0.0422 (14)0.0366 (13)0.0154 (11)0.0074 (10)0.0022 (11)
C380.0346 (13)0.0481 (15)0.0378 (13)0.0128 (11)0.0067 (10)0.0030 (11)
C390.0486 (16)0.062 (2)0.065 (2)0.0165 (15)0.0251 (15)0.0037 (16)
C400.0389 (15)0.059 (2)0.070 (2)0.0033 (14)0.0133 (15)0.0095 (16)
N10.0322 (10)0.0391 (12)0.0392 (12)0.0109 (9)0.0082 (9)0.0073 (9)
N20.0338 (11)0.0459 (13)0.0429 (12)0.0089 (10)0.0072 (9)0.0067 (10)
N30.0371 (13)0.0562 (16)0.0702 (18)0.0093 (12)0.0176 (13)0.0246 (13)
P10.0333 (3)0.0291 (3)0.0381 (3)0.0134 (2)0.0130 (3)0.0103 (2)
P20.0305 (3)0.0283 (3)0.0281 (3)0.0090 (2)0.0061 (2)0.0057 (2)
S10.0330 (3)0.0448 (4)0.0415 (3)0.0101 (3)0.0127 (3)0.0064 (3)
Cu10.03092 (14)0.02914 (15)0.03466 (15)0.01103 (12)0.00811 (11)0.00656 (12)
I10.03963 (10)0.05671 (12)0.04491 (11)0.02808 (9)0.01026 (7)0.00238 (8)
Geometric parameters (Å, º) top
C1—C21.389 (4)C23—H230.9300
C1—C61.395 (4)C24—H240.9300
C1—P11.828 (3)C25—C261.380 (4)
C2—C31.387 (4)C25—C301.385 (4)
C2—H20.9300C25—P21.824 (2)
C3—C41.364 (5)C26—C271.386 (4)
C3—H30.9300C26—H260.9300
C4—C51.366 (5)C27—C281.359 (6)
C4—H40.9300C27—H270.9300
C5—C61.387 (4)C28—C291.365 (6)
C5—H50.9300C28—H280.9300
C6—H60.9300C29—C301.382 (5)
C7—C121.383 (4)C29—H290.9300
C7—C81.383 (4)C30—H300.9300
C7—P11.831 (2)C31—C321.370 (4)
C8—C91.382 (4)C31—C361.384 (3)
C8—H80.9300C31—P21.836 (2)
C9—C101.364 (6)C32—C331.387 (4)
C9—H90.9300C32—H320.9300
C10—C111.362 (5)C33—C341.362 (5)
C10—H100.9300C33—H330.9300
C11—C121.386 (4)C34—C351.351 (4)
C11—H110.9300C34—H340.9300
C12—H120.9300C35—C361.382 (4)
C13—C141.388 (3)C35—H350.9300
C13—C181.401 (4)C36—H360.9300
C13—P11.819 (3)C37—N31.323 (3)
C14—C151.384 (4)C37—N11.334 (3)
C14—H140.9300C37—S11.701 (3)
C15—C161.367 (4)C38—N21.267 (3)
C15—H150.9300C38—C391.484 (4)
C16—C171.377 (5)C38—C401.490 (4)
C16—H160.9300C39—H39A0.9600
C17—C181.376 (4)C39—H39B0.9600
C17—H170.9300C39—H39C0.9600
C18—H180.9300C40—H40A0.9600
C19—C241.377 (3)C40—H40B0.9600
C19—C201.388 (4)C40—H40C0.9600
C19—P21.823 (2)N1—N21.388 (3)
C20—C211.385 (4)N1—H10.80 (3)
C20—H200.9300N3—H3A0.85 (3)
C21—C221.368 (4)N3—H3B0.83 (3)
C21—H210.9300P1—Cu12.2910 (7)
C22—C231.362 (4)P2—Cu12.2814 (6)
C22—H220.9300S1—Cu12.3866 (7)
C23—C241.382 (4)Cu1—I12.6369 (3)
C2—C1—C6117.4 (2)C25—C26—H26119.8
C2—C1—P1122.6 (2)C27—C26—H26119.8
C6—C1—P1119.7 (2)C28—C27—C26120.5 (4)
C3—C2—C1121.0 (3)C28—C27—H27119.7
C3—C2—H2119.5C26—C27—H27119.7
C1—C2—H2119.5C27—C28—C29119.8 (3)
C4—C3—C2120.6 (3)C27—C28—H28120.1
C4—C3—H3119.7C29—C28—H28120.1
C2—C3—H3119.7C28—C29—C30120.4 (4)
C3—C4—C5119.6 (3)C28—C29—H29119.8
C3—C4—H4120.2C30—C29—H29119.8
C5—C4—H4120.2C29—C30—C25120.5 (3)
C4—C5—C6120.7 (3)C29—C30—H30119.8
C4—C5—H5119.7C25—C30—H30119.8
C6—C5—H5119.7C32—C31—C36118.3 (2)
C5—C6—C1120.7 (3)C32—C31—P2117.90 (19)
C5—C6—H6119.6C36—C31—P2123.84 (19)
C1—C6—H6119.6C31—C32—C33120.7 (3)
C12—C7—C8118.0 (3)C31—C32—H32119.7
C12—C7—P1118.0 (2)C33—C32—H32119.7
C8—C7—P1123.7 (2)C34—C33—C32120.3 (3)
C9—C8—C7120.7 (3)C34—C33—H33119.9
C9—C8—H8119.7C32—C33—H33119.9
C7—C8—H8119.7C35—C34—C33119.7 (3)
C10—C9—C8120.5 (3)C35—C34—H34120.1
C10—C9—H9119.7C33—C34—H34120.1
C8—C9—H9119.7C34—C35—C36120.8 (3)
C11—C10—C9119.7 (3)C34—C35—H35119.6
C11—C10—H10120.2C36—C35—H35119.6
C9—C10—H10120.2C35—C36—C31120.3 (3)
C10—C11—C12120.4 (4)C35—C36—H36119.8
C10—C11—H11119.8C31—C36—H36119.8
C12—C11—H11119.8N3—C37—N1116.9 (2)
C7—C12—C11120.7 (3)N3—C37—S1121.4 (2)
C7—C12—H12119.6N1—C37—S1121.72 (19)
C11—C12—H12119.6N2—C38—C39126.6 (2)
C14—C13—C18118.1 (2)N2—C38—C40116.9 (2)
C14—C13—P1118.57 (19)C39—C38—C40116.5 (2)
C18—C13—P1123.3 (2)C38—C39—H39A109.5
C15—C14—C13121.2 (3)C38—C39—H39B109.5
C15—C14—H14119.4H39A—C39—H39B109.5
C13—C14—H14119.4C38—C39—H39C109.5
C16—C15—C14119.6 (3)H39A—C39—H39C109.5
C16—C15—H15120.2H39B—C39—H39C109.5
C14—C15—H15120.2C38—C40—H40A109.5
C15—C16—C17120.4 (3)C38—C40—H40B109.5
C15—C16—H16119.8H40A—C40—H40B109.5
C17—C16—H16119.8C38—C40—H40C109.5
C18—C17—C16120.5 (3)H40A—C40—H40C109.5
C18—C17—H17119.8H40B—C40—H40C109.5
C16—C17—H17119.8C37—N1—N2117.7 (2)
C17—C18—C13120.2 (3)C37—N1—H1117 (2)
C17—C18—H18119.9N2—N1—H1125 (2)
C13—C18—H18119.9C38—N2—N1118.6 (2)
C24—C19—C20118.3 (2)C37—N3—H3A119 (2)
C24—C19—P2116.79 (18)C37—N3—H3B118 (2)
C20—C19—P2124.8 (2)H3A—N3—H3B123 (3)
C21—C20—C19120.0 (3)C13—P1—C1103.89 (11)
C21—C20—H20120.0C13—P1—C7102.85 (11)
C19—C20—H20120.0C1—P1—C7106.61 (12)
C22—C21—C20120.7 (3)C13—P1—Cu1115.50 (8)
C22—C21—H21119.7C1—P1—Cu1115.50 (8)
C20—C21—H21119.7C7—P1—Cu1111.31 (8)
C23—C22—C21119.8 (3)C19—P2—C25105.23 (12)
C23—C22—H22120.1C19—P2—C31103.20 (11)
C21—C22—H22120.1C25—P2—C31102.33 (11)
C22—C23—C24120.0 (3)C19—P2—Cu1115.17 (8)
C22—C23—H23120.0C25—P2—Cu1114.47 (8)
C24—C23—H23120.0C31—P2—Cu1114.92 (8)
C19—C24—C23121.2 (2)C37—S1—Cu1113.83 (9)
C19—C24—H24119.4P2—Cu1—P1120.68 (2)
C23—C24—H24119.4P2—Cu1—S1104.67 (2)
C26—C25—C30118.3 (3)P1—Cu1—S1109.32 (3)
C26—C25—P2120.0 (2)P2—Cu1—I1106.92 (2)
C30—C25—P2121.4 (2)P1—Cu1—I1104.358 (19)
C25—C26—C27120.4 (3)S1—Cu1—I1110.821 (19)
C6—C1—C2—C31.0 (4)C18—C13—P1—C753.7 (2)
P1—C1—C2—C3173.9 (2)C14—C13—P1—Cu16.2 (2)
C1—C2—C3—C40.9 (5)C18—C13—P1—Cu1175.13 (19)
C2—C3—C4—C51.5 (5)C2—C1—P1—C1311.9 (2)
C3—C4—C5—C60.1 (5)C6—C1—P1—C13175.3 (2)
C4—C5—C6—C11.9 (4)C2—C1—P1—C7120.1 (2)
C2—C1—C6—C52.4 (4)C6—C1—P1—C767.1 (2)
P1—C1—C6—C5175.5 (2)C2—C1—P1—Cu1115.6 (2)
C12—C7—C8—C91.3 (5)C6—C1—P1—Cu157.2 (2)
P1—C7—C8—C9171.6 (3)C12—C7—P1—C1348.9 (2)
C7—C8—C9—C100.6 (5)C8—C7—P1—C13138.1 (2)
C8—C9—C10—C111.0 (6)C12—C7—P1—C1157.9 (2)
C9—C10—C11—C121.8 (6)C8—C7—P1—C129.1 (3)
C8—C7—C12—C110.6 (5)C12—C7—P1—Cu175.3 (2)
P1—C7—C12—C11172.8 (3)C8—C7—P1—Cu197.6 (2)
C10—C11—C12—C71.0 (5)C24—C19—P2—C25156.56 (19)
C18—C13—C14—C152.4 (4)C20—C19—P2—C2526.9 (3)
P1—C13—C14—C15176.4 (2)C24—C19—P2—C3196.5 (2)
C13—C14—C15—C160.4 (4)C20—C19—P2—C3180.0 (3)
C14—C15—C16—C171.0 (4)C24—C19—P2—Cu129.5 (2)
C15—C16—C17—C180.5 (5)C20—C19—P2—Cu1154.0 (2)
C16—C17—C18—C131.5 (5)C26—C25—P2—C19146.5 (2)
C14—C13—C18—C172.9 (4)C30—C25—P2—C1939.7 (2)
P1—C13—C18—C17175.7 (2)C26—C25—P2—C3139.0 (2)
C24—C19—C20—C210.4 (5)C30—C25—P2—C31147.3 (2)
P2—C19—C20—C21176.8 (3)C26—C25—P2—Cu186.0 (2)
C19—C20—C21—C220.1 (6)C30—C25—P2—Cu187.8 (2)
C20—C21—C22—C231.0 (6)C32—C31—P2—C19153.3 (2)
C21—C22—C23—C241.6 (5)C36—C31—P2—C1926.8 (2)
C20—C19—C24—C230.2 (4)C32—C31—P2—C2597.5 (2)
P2—C19—C24—C23176.6 (2)C36—C31—P2—C2582.4 (2)
C22—C23—C24—C191.1 (4)C32—C31—P2—Cu127.1 (2)
C30—C25—C26—C271.0 (4)C36—C31—P2—Cu1153.0 (2)
P2—C25—C26—C27175.0 (3)N3—C37—S1—Cu1156.4 (2)
C25—C26—C27—C280.0 (6)N1—C37—S1—Cu126.1 (3)
C26—C27—C28—C290.3 (6)C19—P2—Cu1—P135.40 (10)
C27—C28—C29—C300.6 (6)C25—P2—Cu1—P186.79 (10)
C28—C29—C30—C251.7 (6)C31—P2—Cu1—P1155.17 (8)
C26—C25—C30—C291.9 (5)C19—P2—Cu1—S1158.97 (9)
P2—C25—C30—C29175.8 (3)C25—P2—Cu1—S136.78 (10)
C36—C31—C32—C331.5 (5)C31—P2—Cu1—S181.26 (9)
P2—C31—C32—C33178.4 (3)C19—P2—Cu1—I183.40 (9)
C31—C32—C33—C341.4 (6)C25—P2—Cu1—I1154.41 (9)
C32—C33—C34—C350.8 (6)C31—P2—Cu1—I136.36 (9)
C33—C34—C35—C360.3 (5)C13—P1—Cu1—P263.00 (9)
C34—C35—C36—C310.4 (5)C1—P1—Cu1—P258.48 (10)
C32—C31—C36—C351.0 (4)C7—P1—Cu1—P2179.78 (10)
P2—C31—C36—C35178.9 (2)C13—P1—Cu1—S158.33 (9)
N3—C37—N1—N23.0 (4)C1—P1—Cu1—S1179.81 (9)
S1—C37—N1—N2179.31 (19)C7—P1—Cu1—S158.45 (10)
C39—C38—N2—N10.5 (5)C13—P1—Cu1—I1176.92 (9)
C40—C38—N2—N1179.4 (3)C1—P1—Cu1—I161.60 (9)
C37—N1—N2—C38176.9 (3)C7—P1—Cu1—I160.14 (10)
C14—C13—P1—C1121.3 (2)C37—S1—Cu1—P2161.89 (10)
C18—C13—P1—C157.3 (2)C37—S1—Cu1—P167.52 (11)
C14—C13—P1—C7127.7 (2)C37—S1—Cu1—I146.97 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.85 (3)2.62 (3)3.447 (3)166 (3)
N1—H1···I10.80 (3)2.93 (3)3.723 (2)173 (3)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuI(C4H9N3S)(C18H15P)2]
Mr846.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8832 (6), 12.5712 (7), 16.0206 (8)
α, β, γ (°)98.867 (1), 100.517 (1), 114.056 (1)
V3)1903.04 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.26 × 0.21 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.682, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
26251, 9206, 7690
Rint0.033
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.02
No. of reflections9206
No. of parameters444
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHEXTl97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.85 (3)2.62 (3)3.447 (3)166 (3)
N1—H1···I10.80 (3)2.93 (3)3.723 (2)173 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education and Department of Chemistry, Prince of Songkla University, is gratefully acknowledged.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615–1620.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonstantinović, S. S., Radovanović, B. C., Sovilj, S. P. & Stanojević, S. (2008). J. Serb. Chem. Soc. 73, 7–13.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatesanz, A. I., Pérez, J. M., Navarro, P., Moreno, J. M., Colacio, E. & Souza, P. (1999). J. Inorg. Biochem. 76, 29–37.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773–m774.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Thomas, R., Oupicky, D. & Peng, F. (2008). J. Biol. Inorg. Chem. 13, 47–55.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1417-m1418
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds