metal-organic compounds
trans-Dichloridobis[dicyclohexyl(2,4,6-trimethylphenyl)phosphane-κP]palladium(II)
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com, rmeijboom@uj.ac.za
The title compound, [PdCl2(C21H33P)2], forms a monomeric complex with a trans-square-planar coordination geometry about the PdII atom which lies on an inversion centre. The Pd—P bond lengths are 2.3760 (13) Å, while the Pd—Cl bond lengths are 2.3172 (14) Å. The observed structure was found to be closely related to that of trans-dichloridobis[dicyclohexyl(phenyl)phosphane-κP]palladium(II), [PdCl2{P(C6H11)2(C6H5)}2] [Burgoyne et al. (2012). Acta Cryst. E68, m404].
Related literature
For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For similar R—P2PdCl2 compounds, see: Ogutu & Meijboom (2011); Muller & Meijboom (2010a,b). For their applications, see: Bedford et al. (2004). For the closely related structure of trans-dichloridobis[dicyclohexyl(phenyl)phosphane-κP]palladium(II), see: Burgoyne et al. (2012). For isotypic structures, see: Clarke et al. (2003); Grushin et al. (1994); Vuoti et al. (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812040810/zj2095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812040810/zj2095Isup2.hkl
Dicyclohexyl-(2,4,6 trimethyl phenyl)phosphine (0.11 g, 0.35 mmol) was dissolved in acetone (5cm3). A solution of [Pd(COD)Cl2] (0.05 g,0.17 mmol) in acetone (5 cm3) was added to the phosphine solution. The mixture was stirred for 5 minutes, after which the solution was left to crystallize. Yellow crystals of the title compound suitable for X-ray diffraction studies were obtained. 1H NMR (CDCl3, 400 MHz,p.p.m.): 6.9–6.8(m, 4H), 2.3 (m, 18H),1.5–1.4 (m, 16H),1.5 (m, 8H),1.6 (m, 16H),1.3 (m, 16H), 1.4 (m, 4H).31P NMR (CDCl3, 162.0 MHz, p.p.m.): 80.82. FTIR (cm-1):2920, 2850, 1713, 1678, 1597, 1553, 1442, 1337, 1074, 998, 883, 846, 728,
The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C42H66Cl2P2Pd | Z = 1 |
Mr = 810.19 | F(000) = 428 |
Triclinic, P1 | Dx = 1.332 Mg m−3 Dm = 1.332 Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 9.466 (5) Å | Cell parameters from 3294 reflections |
b = 10.625 (5) Å | θ = 2.2–28.3° |
c = 11.527 (5) Å | µ = 0.70 mm−1 |
α = 63.932 (5)° | T = 100 K |
β = 84.500 (5)° | Cube, yellow |
γ = 75.874 (5)° | 0.22 × 0.17 × 0.16 mm |
V = 1009.8 (8) Å3 |
Bruker APEXII CCD diffractometer | 3385 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.861, Tmax = 0.896 | k = −14→14 |
17391 measured reflections | l = −15→15 |
4932 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0919P)2] where P = (Fo2 + 2Fc2)/3 |
4932 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 1.05 e Å−3 |
0 restraints | Δρmin = −1.93 e Å−3 |
C42H66Cl2P2Pd | γ = 75.874 (5)° |
Mr = 810.19 | V = 1009.8 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.466 (5) Å | Mo Kα radiation |
b = 10.625 (5) Å | µ = 0.70 mm−1 |
c = 11.527 (5) Å | T = 100 K |
α = 63.932 (5)° | 0.22 × 0.17 × 0.16 mm |
β = 84.500 (5)° |
Bruker APEXII CCD diffractometer | 4932 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 3385 reflections with I > 2σ(I) |
Tmin = 0.861, Tmax = 0.896 | Rint = 0.082 |
17391 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.05 e Å−3 |
4932 reflections | Δρmin = −1.93 e Å−3 |
217 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.5 | 0 | 0.5 | 0.02770 (17) | |
Cl2 | 0.66664 (12) | 0.13206 (13) | 0.48974 (13) | 0.0403 (3) | |
P1 | 0.31238 (11) | 0.14874 (12) | 0.56557 (10) | 0.0279 (3) | |
C16 | 0.3797 (5) | 0.2560 (5) | 0.6307 (4) | 0.0332 (10) | |
C11 | 0.1511 (6) | 0.2214 (6) | 0.3425 (5) | 0.0420 (12) | |
H11A | 0.0817 | 0.1659 | 0.4001 | 0.05* | |
H11B | 0.2285 | 0.1549 | 0.3197 | 0.05* | |
C6 | 0.0268 (5) | 0.1246 (5) | 0.6872 (5) | 0.0363 (11) | |
C2 | 0.2357 (5) | −0.0711 (5) | 0.7937 (5) | 0.0358 (11) | |
C1 | 0.1790 (5) | 0.0641 (5) | 0.6878 (4) | 0.0316 (10) | |
H1 | 0.1609 | 0.0137 | 0.6369 | 0.038* | |
C4 | −0.0041 (6) | −0.0812 (6) | 0.8892 (5) | 0.0438 (12) | |
C21 | 0.4639 (5) | 0.1621 (6) | 0.7596 (5) | 0.0405 (12) | |
H21A | 0.3976 | 0.1123 | 0.8265 | 0.049* | |
H21B | 0.5438 | 0.0881 | 0.7492 | 0.049* | |
C17 | 0.2603 (5) | 0.3749 (5) | 0.6446 (5) | 0.0415 (12) | |
H17A | 0.2087 | 0.4373 | 0.5608 | 0.05* | |
H17B | 0.1885 | 0.3314 | 0.7089 | 0.05* | |
C15 | 0.3216 (5) | 0.3781 (6) | 0.3220 (5) | 0.0435 (12) | |
H15A | 0.3587 | 0.4253 | 0.3663 | 0.052* | |
H15B | 0.406 | 0.3152 | 0.3018 | 0.052* | |
C3 | 0.1420 (6) | −0.1368 (5) | 0.8900 (5) | 0.0427 (12) | |
H3 | 0.1822 | −0.2255 | 0.9604 | 0.051* | |
C12 | 0.0713 (6) | 0.3418 (6) | 0.2195 (5) | 0.0501 (14) | |
H12A | 0.028 | 0.2989 | 0.1747 | 0.06* | |
H12B | −0.009 | 0.4051 | 0.2434 | 0.06* | |
C7 | 0.3943 (6) | −0.1527 (6) | 0.8096 (5) | 0.0491 (14) | |
H7A | 0.4314 | −0.173 | 0.894 | 0.074* | |
H7B | 0.4521 | −0.0943 | 0.7411 | 0.074* | |
H7C | 0.4014 | −0.2434 | 0.8039 | 0.074* | |
C10 | 0.2180 (5) | 0.2864 (5) | 0.4122 (4) | 0.0300 (9) | |
H10 | 0.1369 | 0.3521 | 0.4343 | 0.036* | |
C18 | 0.3265 (6) | 0.4651 (6) | 0.6878 (7) | 0.0567 (16) | |
H18A | 0.3939 | 0.5129 | 0.6208 | 0.068* | |
H18B | 0.248 | 0.5408 | 0.6971 | 0.068* | |
C20 | 0.5269 (6) | 0.2537 (7) | 0.8028 (6) | 0.0527 (14) | |
H20A | 0.5996 | 0.2965 | 0.7393 | 0.063* | |
H20B | 0.5774 | 0.1917 | 0.8871 | 0.063* | |
C9 | −0.0548 (5) | 0.2671 (6) | 0.5890 (5) | 0.0477 (13) | |
H9A | −0.155 | 0.2882 | 0.6177 | 0.071* | |
H9B | −0.056 | 0.2633 | 0.5057 | 0.071* | |
H9C | −0.0064 | 0.3428 | 0.5796 | 0.071* | |
C13 | 0.1717 (7) | 0.4301 (6) | 0.1292 (5) | 0.0555 (15) | |
H13A | 0.1159 | 0.5087 | 0.0527 | 0.067* | |
H13B | 0.2475 | 0.3689 | 0.0991 | 0.067* | |
C5 | −0.0587 (5) | 0.0501 (6) | 0.7852 (5) | 0.0449 (13) | |
H5 | −0.1604 | 0.0906 | 0.7816 | 0.054* | |
C19 | 0.4088 (6) | 0.3735 (7) | 0.8154 (6) | 0.0565 (15) | |
H19A | 0.3405 | 0.3313 | 0.8844 | 0.068* | |
H19B | 0.4537 | 0.434 | 0.8392 | 0.068* | |
C14 | 0.2432 (6) | 0.4931 (6) | 0.1962 (5) | 0.0517 (14) | |
H14A | 0.1681 | 0.564 | 0.2157 | 0.062* | |
H14B | 0.3144 | 0.5446 | 0.1373 | 0.062* | |
C8 | −0.1042 (7) | −0.1536 (7) | 0.9946 (6) | 0.0652 (18) | |
H8A | −0.0615 | −0.257 | 1.038 | 0.098* | |
H8B | −0.199 | −0.1378 | 0.9569 | 0.098* | |
H8C | −0.1171 | −0.1129 | 1.0575 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0255 (3) | 0.0175 (3) | 0.0286 (3) | 0.00253 (18) | 0.00010 (18) | −0.00339 (19) |
Cl2 | 0.0323 (6) | 0.0314 (6) | 0.0560 (8) | −0.0062 (5) | 0.0050 (5) | −0.0190 (6) |
P1 | 0.0264 (6) | 0.0194 (6) | 0.0277 (6) | 0.0018 (4) | −0.0007 (4) | −0.0043 (5) |
C16 | 0.034 (2) | 0.027 (2) | 0.034 (2) | 0.0008 (19) | −0.0038 (19) | −0.011 (2) |
C11 | 0.042 (3) | 0.035 (3) | 0.041 (3) | −0.001 (2) | −0.007 (2) | −0.013 (2) |
C6 | 0.032 (2) | 0.032 (3) | 0.042 (3) | −0.002 (2) | 0.003 (2) | −0.017 (2) |
C2 | 0.037 (2) | 0.026 (2) | 0.034 (2) | 0.0014 (19) | 0.0014 (19) | −0.007 (2) |
C1 | 0.036 (2) | 0.021 (2) | 0.029 (2) | 0.0017 (18) | −0.0018 (18) | −0.0067 (18) |
C4 | 0.051 (3) | 0.038 (3) | 0.046 (3) | −0.021 (2) | 0.016 (2) | −0.019 (2) |
C21 | 0.038 (3) | 0.037 (3) | 0.035 (3) | 0.002 (2) | −0.004 (2) | −0.009 (2) |
C17 | 0.035 (2) | 0.032 (3) | 0.054 (3) | 0.001 (2) | −0.002 (2) | −0.020 (2) |
C15 | 0.042 (3) | 0.035 (3) | 0.031 (2) | −0.003 (2) | −0.003 (2) | 0.004 (2) |
C3 | 0.055 (3) | 0.030 (3) | 0.030 (2) | −0.007 (2) | 0.008 (2) | −0.005 (2) |
C12 | 0.051 (3) | 0.049 (3) | 0.044 (3) | −0.004 (3) | −0.016 (2) | −0.014 (3) |
C7 | 0.049 (3) | 0.030 (3) | 0.040 (3) | 0.013 (2) | 0.005 (2) | −0.002 (2) |
C10 | 0.027 (2) | 0.024 (2) | 0.027 (2) | 0.0038 (17) | −0.0026 (17) | −0.0049 (18) |
C18 | 0.046 (3) | 0.044 (3) | 0.088 (5) | −0.003 (3) | 0.004 (3) | −0.040 (3) |
C20 | 0.045 (3) | 0.061 (4) | 0.051 (3) | −0.001 (3) | −0.008 (3) | −0.028 (3) |
C9 | 0.029 (2) | 0.045 (3) | 0.047 (3) | 0.006 (2) | 0.003 (2) | −0.009 (3) |
C13 | 0.065 (4) | 0.048 (3) | 0.035 (3) | 0.002 (3) | −0.013 (3) | −0.006 (3) |
C5 | 0.029 (2) | 0.047 (3) | 0.057 (3) | −0.008 (2) | 0.008 (2) | −0.023 (3) |
C19 | 0.052 (3) | 0.069 (4) | 0.065 (4) | −0.016 (3) | 0.015 (3) | −0.045 (4) |
C14 | 0.051 (3) | 0.039 (3) | 0.038 (3) | −0.006 (3) | −0.012 (2) | 0.007 (2) |
C8 | 0.075 (4) | 0.056 (4) | 0.062 (4) | −0.024 (3) | 0.032 (3) | −0.024 (3) |
Pd1—Cl2 | 2.3172 (14) | C15—H15A | 0.99 |
Pd1—Cl2i | 2.3172 (14) | C15—H15B | 0.99 |
Pd1—P1 | 2.3760 (13) | C3—H3 | 0.95 |
Pd1—P1i | 2.3760 (13) | C12—C13 | 1.502 (8) |
P1—C10 | 1.859 (4) | C12—H12A | 0.99 |
P1—C16 | 1.862 (5) | C12—H12B | 0.99 |
P1—C1 | 1.868 (5) | C7—H7A | 0.98 |
C16—C17 | 1.532 (6) | C7—H7B | 0.98 |
C16—C21 | 1.541 (6) | C7—H7C | 0.98 |
C11—C10 | 1.524 (7) | C10—H10 | 1 |
C11—C12 | 1.536 (7) | C18—C19 | 1.520 (9) |
C11—H11A | 0.99 | C18—H18A | 0.99 |
C11—H11B | 0.99 | C18—H18B | 0.99 |
C6—C5 | 1.382 (7) | C20—C19 | 1.526 (8) |
C6—C1 | 1.427 (6) | C20—H20A | 0.99 |
C6—C9 | 1.503 (7) | C20—H20B | 0.99 |
C2—C3 | 1.393 (6) | C9—H9A | 0.98 |
C2—C1 | 1.431 (6) | C9—H9B | 0.98 |
C2—C7 | 1.522 (6) | C9—H9C | 0.98 |
C1—H1 | 1 | C13—C14 | 1.509 (8) |
C4—C3 | 1.364 (7) | C13—H13A | 0.99 |
C4—C5 | 1.395 (8) | C13—H13B | 0.99 |
C4—C8 | 1.510 (7) | C5—H5 | 0.95 |
C21—C20 | 1.522 (8) | C19—H19A | 0.99 |
C21—H21A | 0.99 | C19—H19B | 0.99 |
C21—H21B | 0.99 | C14—H14A | 0.99 |
C17—C18 | 1.526 (7) | C14—H14B | 0.99 |
C17—H17A | 0.99 | C8—H8A | 0.98 |
C17—H17B | 0.99 | C8—H8B | 0.98 |
C15—C14 | 1.534 (6) | C8—H8C | 0.98 |
C15—C10 | 1.540 (6) | ||
Cl2—Pd1—Cl2i | 180 | C13—C12—H12B | 109.2 |
Cl2—Pd1—P1 | 91.61 (6) | C11—C12—H12B | 109.2 |
Cl2i—Pd1—P1 | 88.39 (6) | H12A—C12—H12B | 107.9 |
Cl2—Pd1—P1i | 88.39 (6) | C2—C7—H7A | 109.5 |
Cl2i—Pd1—P1i | 91.61 (6) | C2—C7—H7B | 109.5 |
P1—Pd1—P1i | 180 | H7A—C7—H7B | 109.5 |
C10—P1—C16 | 103.8 (2) | C2—C7—H7C | 109.5 |
C10—P1—C1 | 110.9 (2) | H7A—C7—H7C | 109.5 |
C16—P1—C1 | 104.3 (2) | H7B—C7—H7C | 109.5 |
C10—P1—Pd1 | 104.11 (15) | C11—C10—C15 | 110.4 (4) |
C16—P1—Pd1 | 114.10 (15) | C11—C10—P1 | 112.8 (3) |
C1—P1—Pd1 | 118.79 (15) | C15—C10—P1 | 110.9 (3) |
C17—C16—C21 | 109.7 (4) | C11—C10—H10 | 107.5 |
C17—C16—P1 | 113.7 (3) | C15—C10—H10 | 107.5 |
C21—C16—P1 | 112.9 (3) | P1—C10—H10 | 107.5 |
C10—C11—C12 | 109.6 (4) | C19—C18—C17 | 111.6 (5) |
C10—C11—H11A | 109.7 | C19—C18—H18A | 109.3 |
C12—C11—H11A | 109.7 | C17—C18—H18A | 109.3 |
C10—C11—H11B | 109.7 | C19—C18—H18B | 109.3 |
C12—C11—H11B | 109.7 | C17—C18—H18B | 109.3 |
H11A—C11—H11B | 108.2 | H18A—C18—H18B | 108 |
C5—C6—C1 | 119.4 (4) | C21—C20—C19 | 111.7 (5) |
C5—C6—C9 | 114.2 (4) | C21—C20—H20A | 109.3 |
C1—C6—C9 | 126.4 (4) | C19—C20—H20A | 109.3 |
C3—C2—C1 | 119.4 (4) | C21—C20—H20B | 109.3 |
C3—C2—C7 | 115.9 (4) | C19—C20—H20B | 109.3 |
C1—C2—C7 | 124.7 (4) | H20A—C20—H20B | 107.9 |
C6—C1—C2 | 117.3 (4) | C6—C9—H9A | 109.5 |
C6—C1—P1 | 125.7 (3) | C6—C9—H9B | 109.5 |
C2—C1—P1 | 116.9 (3) | H9A—C9—H9B | 109.5 |
C6—C1—H1 | 90.7 | C6—C9—H9C | 109.5 |
C2—C1—H1 | 90.7 | H9A—C9—H9C | 109.5 |
P1—C1—H1 | 90.7 | H9B—C9—H9C | 109.5 |
C3—C4—C5 | 116.5 (4) | C12—C13—C14 | 110.5 (5) |
C3—C4—C8 | 123.1 (5) | C12—C13—H13A | 109.6 |
C5—C4—C8 | 120.4 (5) | C14—C13—H13A | 109.6 |
C20—C21—C16 | 110.7 (4) | C12—C13—H13B | 109.6 |
C20—C21—H21A | 109.5 | C14—C13—H13B | 109.6 |
C16—C21—H21A | 109.5 | H13A—C13—H13B | 108.1 |
C20—C21—H21B | 109.5 | C6—C5—C4 | 123.7 (5) |
C16—C21—H21B | 109.5 | C6—C5—H5 | 118.2 |
H21A—C21—H21B | 108.1 | C4—C5—H5 | 118.2 |
C18—C17—C16 | 110.3 (4) | C18—C19—C20 | 109.5 (5) |
C18—C17—H17A | 109.6 | C18—C19—H19A | 109.8 |
C16—C17—H17A | 109.6 | C20—C19—H19A | 109.8 |
C18—C17—H17B | 109.6 | C18—C19—H19B | 109.8 |
C16—C17—H17B | 109.6 | C20—C19—H19B | 109.8 |
H17A—C17—H17B | 108.1 | H19A—C19—H19B | 108.2 |
C14—C15—C10 | 110.9 (4) | C13—C14—C15 | 112.5 (5) |
C14—C15—H15A | 109.4 | C13—C14—H14A | 109.1 |
C10—C15—H15A | 109.4 | C15—C14—H14A | 109.1 |
C14—C15—H15B | 109.4 | C13—C14—H14B | 109.1 |
C10—C15—H15B | 109.4 | C15—C14—H14B | 109.1 |
H15A—C15—H15B | 108 | H14A—C14—H14B | 107.8 |
C4—C3—C2 | 123.7 (5) | C4—C8—H8A | 109.5 |
C4—C3—H3 | 118.1 | C4—C8—H8B | 109.5 |
C2—C3—H3 | 118.1 | H8A—C8—H8B | 109.5 |
C13—C12—C11 | 111.8 (5) | C4—C8—H8C | 109.5 |
C13—C12—H12A | 109.2 | H8A—C8—H8C | 109.5 |
C11—C12—H12A | 109.2 | H8B—C8—H8C | 109.5 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C42H66Cl2P2Pd |
Mr | 810.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.466 (5), 10.625 (5), 11.527 (5) |
α, β, γ (°) | 63.932 (5), 84.500 (5), 75.874 (5) |
V (Å3) | 1009.8 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.22 × 0.17 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.861, 0.896 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17391, 4932, 3385 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.165, 1.02 |
No. of reflections | 4932 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −1.93 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged.
References
Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321. Web of Science CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burgoyne, A. R., Meijboom, R. & Ogutu, H. (2012). Acta Cryst. E68, m404. CSD CrossRef IUCr Journals Google Scholar
Clarke, M. L., Orpen, A. G., Pringle, P. G. & Turley, E. (2003). Dalton Trans. pp. 4393–4394. Web of Science CSD CrossRef Google Scholar
Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349. CrossRef CAS Web of Science Google Scholar
Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804–4806. CSD CrossRef CAS Web of Science Google Scholar
Muller, A. & Meijboom, R. (2010a). Acta Cryst. E66, m1420. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muller, A. & Meijboom, R. (2010b). Acta Cryst. E66, m1463. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ogutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135 Upper Saddle River, New Jersey: Prentice Hall. Google Scholar
Vuoti, S., Autio, J., Laitila, M., Haukka, M. & Pursiainen, J. (2008). Eur. J. Inorg. Chem. pp. 397–407. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes involving palladium metal centres are amongst some of the most popular catalytic precursors in organic synthesis due to their catalytic abilities. They are used in carbon-carbon bond formation reactions like the Heck, Stille and Suzuki reactions (Bedford et al., 2004).[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2(C21H33P)2], crystallizes with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation.The geometry is,therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with Cl2—Pd1—P1 = 88.39 (6)° and Cl2—Pd1—P1 = 91.61 (6)°. As required by the crystallographic symmetry, the Cl2—Pd1—Cl2 and P1—Pd1—P1 angles are 180°. The symmetry code used to define atoms through the inversion point is: 1 - x, -y, 1 - z.
The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry (Muller & Meijboom, 2010a, b). The title compound, having a Pd1—Cl2 bond length of 2.3172 (14) Å and a Pd—P bond length of 2.3760 (13) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Ogutu & Meijboom, 2011).
Notably, the title compound is quintessentially isostructural with: [PdCl2{P(C6H11)3}2] (Grushin et al., 1994); [PdBr2{P(C6H11)3}2] (Clarke et al., 2003); and [PdCl2{P(C6H11)2(C7H7)}2] (Vuoti et al., 2008) ((C6H11) = cyclohexyl, (C7H7) = o-tolyl). The Pd–P and Pd–X (X = Br and Cl) bond lengths were compared and it was observed that they were all within the same range of 2.3–2.4 Å. The angles between the bonds around the Pd atom were all observed to be approximately right angles.