organic compounds
3-[(R)-1-Hydroxybutan-2-yl]-1,2,3-benzotriazin-4(3H)-one
aDepartamento de Ciencias Químico Bilógicas, Universidad de Sonora, Hermosillo, Sonora, 83000 México, bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México D.F., 04510 México, and cCentro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, B.C., 22500 México
*Correspondence e-mail: fernando.rocha@guayacan.uson.mx, miguelhake@yahoo.com
The 11H13N3O2, is stabilized by O—H⋯O hydrogen bonds, which link the molecules into chains along [100].
of the title compound, CRelated literature
For biological and synthetic applications of benzo-1,2,3-triazinones, see: Caliendo et al. (1999); Zheng et al. (2005); Vaisburg et al. (2004); Chollet et al. (2002); Le Diguarher et al. (2003); Clark et al. (1995); Carpino et al. (2004); Janout et al. (2003); Gierasch et al. (2000). For structures of benzo-1,2,3-triazinones, see: Hjortås et al. (1973); Hunt et al. (1983); Reingruber et al. (2009). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Gómez et al. (2005).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812043802/zj2097sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043802/zj2097Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812043802/zj2097Isup3.cml
The synthesis of the tittle compound included reagents and solvents of reagent grade, which were used without further purification. To a solution of 2-[(4R)-4-ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline (Gómez et al., 2005) (0.89 g, 4.7 mmol, dissolved in 85 ml of methanol) was slowly added isoamyl nitrite (4.40 g, 37.6 mmol, 8 equiv) and the reaction mixture was stirred at room temperature until the disappearance of the aniline (followed by TLC, hexane/ethyl acetate, 3:1). The solvent was evaporated under reduced pressure to give a crude product that was purified by washing with petroleum ether and recrystallization from hexane/ethyl acetate. Crystalline colorless prisms of I were grown by slow diffusion of hexane over saturated ethyl acetate solutions of I. Yield > 99%, based on 2-[(4R)-4-Ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline; m.p., 89–90 °C. = -5.45° (c 0.22, MeOH). FTIR (KBr pellet, cm-1): 3439, 1686, 1663, 1296. 1H NMR [(CD3)2CO, 200 MHz] d 8.29 (ddd, J = 0.6, 1.5, 7.9 Hz, 2H), 8.16 (ddd, J = 0.6, 1.5, 8.1 Hz, 2H), 8.07 (ddd, J = 1.5, 7.0, 8.2 Hz, 2H), 7.91 (ddd,, J = 1.5, 7.0, 7.9 Hz, 2H), 5.22 (ddd, J = 5.1, 7.6, 15.5 Hz, 2H), 4.10 (dd, J = 8.4, 11.3 Hz, 2H), 3.96 (dd, J = 5.1, 11.3 Hz, 2H), 1.99 (dd, J = 7.5, 15.0 Hz, 4H), 0.90 (t, J = 7.4 Hz, 6H). 13C NMR [(CD3)2CO, 50 MHz] d 156.6, 144.5, 135.8, 133.2, 128.8, 125.7, 120.3, 64.2, 62.3, 24.2, 10.8. ESI-HRMS:220.1091 (100), calculated for [M+H]+, C11H14N3O2+, 220.1081; 192.1025 (8), calculated for [M+H—N2]+, C11H14NO2+, 192.1019. Anal for C11H13N3O2 (% Calcd./found) C, 60.26/60.73; H, 5.98/6.45; N, 19.17/19.47.
H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.98 for methyn, C—H =0.97 Å for methylene H, and C—H= 0.96 Å for methyl H), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atoms. The hydroxyl H atoms were located in a difference map and refined with O–H = 0.85±0.01 Å, and with Uiso(H) = 1.2Ueq(O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H13N3O2 | F(000) = 464 |
Mr = 219.24 | Dx = 1.331 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4276 reflections |
a = 8.9668 (13) Å | θ = 2.6–25.2° |
b = 10.1506 (15) Å | µ = 0.09 mm−1 |
c = 12.0238 (17) Å | T = 298 K |
V = 1094.4 (3) Å3 | Prism, colourless |
Z = 4 | 0.32 × 0.10 × 0.10 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1700 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.044 |
Graphite monochromator | θmax = 25.4°, θmin = 2.6° |
Detector resolution: 0.83 pixels mm-1 | h = −10→10 |
ω scans | k = −12→12 |
9057 measured reflections | l = −14→14 |
2000 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3 |
2000 reflections | (Δ/σ)max < 0.001 |
149 parameters | Δρmax = 0.11 e Å−3 |
1 restraint | Δρmin = −0.15 e Å−3 |
C11H13N3O2 | V = 1094.4 (3) Å3 |
Mr = 219.24 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.9668 (13) Å | µ = 0.09 mm−1 |
b = 10.1506 (15) Å | T = 298 K |
c = 12.0238 (17) Å | 0.32 × 0.10 × 0.10 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1700 reflections with I > 2σ(I) |
9057 measured reflections | Rint = 0.044 |
2000 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 1 restraint |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | Δρmax = 0.11 e Å−3 |
2000 reflections | Δρmin = −0.15 e Å−3 |
149 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.56004 (14) | 0.68985 (11) | 1.02583 (10) | 0.0584 (4) | |
N1 | 0.87770 (16) | 0.64809 (13) | 0.79106 (11) | 0.0438 (4) | |
O2 | 0.82337 (18) | 0.99854 (13) | 0.99816 (15) | 0.0797 (5) | |
H2 | 0.885 (2) | 0.9362 (16) | 0.992 (2) | 0.096* | |
N2 | 0.80536 (16) | 0.75426 (13) | 0.80106 (11) | 0.0430 (4) | |
N3 | 0.70312 (14) | 0.76906 (12) | 0.88520 (11) | 0.0372 (3) | |
C4 | 0.66320 (18) | 0.67321 (15) | 0.96026 (14) | 0.0386 (4) | |
C4A | 0.75154 (18) | 0.55429 (16) | 0.95179 (13) | 0.0362 (4) | |
C5 | 0.7338 (2) | 0.44941 (16) | 1.02537 (14) | 0.0469 (4) | |
H5 | 0.6642 | 0.4546 | 1.0826 | 0.056* | |
C6 | 0.8194 (2) | 0.33848 (17) | 1.01301 (16) | 0.0545 (5) | |
H6 | 0.8081 | 0.2686 | 1.0623 | 0.065* | |
C7 | 0.9226 (2) | 0.32979 (18) | 0.92741 (17) | 0.0568 (5) | |
H7 | 0.9790 | 0.2535 | 0.9191 | 0.068* | |
C8 | 0.94229 (19) | 0.43244 (17) | 0.85511 (16) | 0.0517 (5) | |
H8 | 1.0127 | 0.4266 | 0.7985 | 0.062* | |
C8A | 0.85625 (17) | 0.54564 (15) | 0.86684 (13) | 0.0382 (4) | |
C9 | 0.62783 (18) | 0.89954 (14) | 0.88408 (15) | 0.0420 (4) | |
H9 | 0.5594 | 0.9021 | 0.9476 | 0.050* | |
C10 | 0.7406 (2) | 1.00892 (17) | 0.89991 (17) | 0.0553 (5) | |
H10A | 0.8088 | 1.0088 | 0.8372 | 0.066* | |
H10B | 0.6886 | 1.0927 | 0.8998 | 0.066* | |
C11 | 0.5352 (2) | 0.91729 (17) | 0.77929 (16) | 0.0559 (5) | |
H11A | 0.4838 | 1.0012 | 0.7833 | 0.067* | |
H11B | 0.6015 | 0.9202 | 0.7156 | 0.067* | |
C12 | 0.4222 (2) | 0.80997 (19) | 0.76146 (19) | 0.0765 (7) | |
H12A | 0.3540 | 0.8081 | 0.8230 | 0.092* | |
H12B | 0.4722 | 0.7266 | 0.7560 | 0.092* | |
H12C | 0.3681 | 0.8266 | 0.6940 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0643 (8) | 0.0449 (7) | 0.0660 (9) | 0.0042 (7) | 0.0294 (8) | 0.0035 (6) |
N1 | 0.0471 (8) | 0.0409 (8) | 0.0434 (8) | 0.0020 (7) | 0.0101 (7) | −0.0012 (7) |
O2 | 0.0754 (11) | 0.0612 (10) | 0.1026 (12) | 0.0097 (8) | −0.0365 (10) | −0.0201 (9) |
N2 | 0.0473 (8) | 0.0401 (8) | 0.0415 (8) | 0.0014 (7) | 0.0075 (7) | 0.0013 (7) |
N3 | 0.0410 (8) | 0.0319 (7) | 0.0387 (8) | 0.0029 (6) | 0.0047 (7) | 0.0002 (6) |
C4 | 0.0396 (9) | 0.0364 (9) | 0.0398 (9) | −0.0021 (8) | 0.0043 (8) | −0.0018 (8) |
C4A | 0.0380 (9) | 0.0339 (8) | 0.0366 (9) | −0.0030 (7) | −0.0024 (8) | −0.0013 (7) |
C5 | 0.0532 (11) | 0.0426 (10) | 0.0448 (10) | −0.0046 (9) | −0.0004 (9) | 0.0019 (8) |
C6 | 0.0638 (12) | 0.0392 (10) | 0.0604 (12) | −0.0009 (9) | −0.0109 (10) | 0.0083 (9) |
C7 | 0.0538 (12) | 0.0365 (10) | 0.0800 (14) | 0.0100 (9) | −0.0071 (11) | −0.0013 (10) |
C8 | 0.0435 (10) | 0.0465 (11) | 0.0651 (12) | 0.0061 (9) | 0.0060 (9) | −0.0089 (10) |
C8A | 0.0379 (9) | 0.0352 (9) | 0.0416 (10) | −0.0030 (7) | −0.0017 (8) | −0.0044 (8) |
C9 | 0.0457 (9) | 0.0337 (9) | 0.0467 (10) | 0.0058 (7) | 0.0009 (9) | −0.0019 (8) |
C10 | 0.0587 (11) | 0.0362 (10) | 0.0711 (12) | 0.0034 (8) | −0.0022 (12) | −0.0055 (9) |
C11 | 0.0648 (12) | 0.0429 (10) | 0.0600 (12) | 0.0132 (9) | −0.0118 (10) | −0.0007 (9) |
C12 | 0.0765 (14) | 0.0602 (13) | 0.0927 (17) | 0.0111 (12) | −0.0357 (14) | −0.0133 (12) |
O1—C4 | 1.2271 (18) | C7—C8 | 1.368 (2) |
N1—N2 | 1.2636 (17) | C7—H7 | 0.9300 |
N1—C8A | 1.396 (2) | C8—C8A | 1.391 (2) |
O2—C10 | 1.399 (2) | C8—H8 | 0.9300 |
O2—H2 | 0.846 (9) | C9—C10 | 1.514 (2) |
N2—N3 | 1.3735 (18) | C9—C11 | 1.520 (2) |
N3—C4 | 1.3745 (19) | C9—H9 | 0.9800 |
N3—C9 | 1.4866 (19) | C10—H10A | 0.9700 |
C4—C4A | 1.447 (2) | C10—H10B | 0.9700 |
C4A—C8A | 1.390 (2) | C11—C12 | 1.503 (2) |
C4A—C5 | 1.393 (2) | C11—H11A | 0.9700 |
C5—C6 | 1.371 (2) | C11—H11B | 0.9700 |
C5—H5 | 0.9300 | C12—H12A | 0.9600 |
C6—C7 | 1.387 (3) | C12—H12B | 0.9600 |
C6—H6 | 0.9300 | C12—H12C | 0.9600 |
N2—N1—C8A | 120.17 (13) | C8—C8A—N1 | 118.22 (15) |
C10—O2—H2 | 109.5 (17) | N3—C9—C10 | 110.42 (13) |
N1—N2—N3 | 120.40 (12) | N3—C9—C11 | 111.17 (14) |
N2—N3—C4 | 125.45 (12) | C10—C9—C11 | 112.49 (14) |
N2—N3—C9 | 113.20 (12) | N3—C9—H9 | 107.5 |
C4—N3—C9 | 121.22 (13) | C10—C9—H9 | 107.5 |
O1—C4—N3 | 121.38 (14) | C11—C9—H9 | 107.5 |
O1—C4—C4A | 124.93 (15) | O2—C10—C9 | 113.91 (15) |
N3—C4—C4A | 113.68 (14) | O2—C10—H10A | 108.8 |
C8A—C4A—C5 | 119.70 (15) | C9—C10—H10A | 108.8 |
C8A—C4A—C4 | 118.29 (14) | O2—C10—H10B | 108.8 |
C5—C4A—C4 | 122.01 (15) | C9—C10—H10B | 108.8 |
C6—C5—C4A | 119.66 (17) | H10A—C10—H10B | 107.7 |
C6—C5—H5 | 120.2 | C12—C11—C9 | 113.63 (15) |
C4A—C5—H5 | 120.2 | C12—C11—H11A | 108.8 |
C5—C6—C7 | 120.42 (17) | C9—C11—H11A | 108.8 |
C5—C6—H6 | 119.8 | C12—C11—H11B | 108.8 |
C7—C6—H6 | 119.8 | C9—C11—H11B | 108.8 |
C8—C7—C6 | 120.59 (17) | H11A—C11—H11B | 107.7 |
C8—C7—H7 | 119.7 | C11—C12—H12A | 109.5 |
C6—C7—H7 | 119.7 | C11—C12—H12B | 109.5 |
C7—C8—C8A | 119.55 (17) | H12A—C12—H12B | 109.5 |
C7—C8—H8 | 120.2 | C11—C12—H12C | 109.5 |
C8A—C8—H8 | 120.2 | H12A—C12—H12C | 109.5 |
C4A—C8A—C8 | 120.07 (15) | H12B—C12—H12C | 109.5 |
C4A—C8A—N1 | 121.71 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.85 (1) | 2.03 (1) | 2.8712 (19) | 171 (2) |
Symmetry code: (i) x+1/2, −y+3/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C11H13N3O2 |
Mr | 219.24 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 8.9668 (13), 10.1506 (15), 12.0238 (17) |
V (Å3) | 1094.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.32 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9057, 2000, 1700 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.076, 0.93 |
No. of reflections | 2000 |
No. of parameters | 149 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.11, −0.15 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.846 (9) | 2.033 (11) | 2.8712 (19) | 171 (2) |
Symmetry code: (i) x+1/2, −y+3/2, −z+2. |
Acknowledgements
We gratefully acknowledge support for this project by the Consejo Nacional de Ciencia y Tecnología (CONACyT grant 36435-E) and Consejo del Sistema Nacional de Educación Tecnológica (COSNET) grant 486–02-P. The authors are indebted to Adrián Ochoa Terán and Ignacio Rivero Espejel for their analytical support of this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Google Scholar
Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Mattace-Raso, G., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043–1051. Web of Science CrossRef CAS Google Scholar
Carpino, L. A., Xia, J., Zhang, C. & El-Faham, A. (2004). J. Org. Chem. 69, 62–71. Web of Science CrossRef PubMed CAS Google Scholar
Chollet, A. M., Le Diguarher, T., Kucharczyk, N., Oynel, A., Bertrand, M., Tucker, G., Guilbaud, N., Burbridge, M., Pastoureau, P., Fradin, A., Sabatini, M., Fauchére, J.-L. & Casara, P. (2002). Bioorg. Med. Chem. 10, 531–544. Web of Science CrossRef PubMed CAS Google Scholar
Clark, A. S., Deans, B., Stevens, M. F. G., Tisdale, M. J., Wheelhouse, R. T., Denny, B. J. & Hartley, J. A. (1995). J. Med. Chem. 38, 1493–1504. CrossRef CAS PubMed Web of Science Google Scholar
Gierasch, T. M., Chytil, M., Didiuk, M. T., Park, J. Y., Urban, J. J., Nolan, S. P. & Verdine, G. L. (2000). Org. Lett. 2, 3999–4002. Web of Science CrossRef PubMed CAS Google Scholar
Gómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. pp. 4341–4351. Google Scholar
Hjortås, J. (1973). Acta Cryst. B29, 1916–1922. CSD CrossRef IUCr Journals Web of Science Google Scholar
Hunt, W. E., Schwalbe, C. H. & Vaughan, K. (1983). Acta Cryst. C39, 738–740. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Janout, V., Jing, B., Staina, I. V. & Regen, S. L. (2003). J. Am. Chem. Soc. 125, 4436–4437. Web of Science CrossRef PubMed CAS Google Scholar
Le Diguarher, T., Chollet, A. M., Bertrand, M., Henning, P., Raimbaud, E., Sabatini, M. N., Guilbaud, N., Pierré, A., Tucker, G. C. & Casara, P. (2003). J. Med. Chem. 46, 3840–3852. Web of Science CrossRef PubMed CAS Google Scholar
Reingruber, R., Vanderheiden, S., Muller, T., Nieger, M., Es-Sayed, M. & Bräse, S. (2009). Tetrahedron Lett. 50, 3439–3442. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaisburg, A., Bernstein, N., Frechette, S., Allan, M., Abou-Khalil, E., Leit, S., Moradei, O., Bouchain, G., Wang, J., Hyung Woo, S., Fournel, M., Yan, P. T., Trachy-Bourget, M.-C., Kalita, A., Beaulieu, C., Li, Z., MacLeod, A. R., Bestermanb, J. M. & Delormea, D. (2004). Bioorg. Med. Chem. Lett. 14, 283–287. Web of Science CrossRef PubMed CAS Google Scholar
Zheng, G. Z., Bhatia, P., Daanen, J., Kolasa, T., Patel, M., Latshaw, S., El Kouhen, O. F., Chang, R., Uchic, M. E., Miller, L., Nakane, M., Lehto, S. J., Honore, M. P., Moreland, R. B., Brioni, J. D. & Stewart, A. O. (2005). J. Med. Chem. 48, 7374–7388. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzo-1,2,3-triazinones are compounds widely investigated for their potential biological and chemical properties. These heterocyclic compounds have been studied as anesthetic (Caliendo et al., 1999), anti-inflammatory (Zheng et al., 2005), anticancer (Vaisburg et al.., 2004; Chollet et al., 2002), and antitumoural (Le Diguarher et al., 2003; Clark et al., 1995) agents. In organic synthesis, 1,2,3-triazinones are used as an activating moiety in coupling agents for the preparation of peptides and amino acids (Carpino et al., 2004; Janout et al., 2003; Gierasch et al., 2000). As result of its biological and synthetic importance, we have developed an alternative method for obtaining compounds with 1,2,3-triazinone moiety and in this paper we are describing the crystal structure of the title compound (I, Figure 1).
In the molecular structure of I, the N1=N2 bond [1.2636 (17) Å] is longer than the typical values for N=N double bonds (1.236 Å), whereas the N2–N3 bond [1.3735 (18) Å] is shorter than typical values for a N–N single bonds (1.404 Å) (Allen et al.., 1987). The structure of I shows co-planarity between two rings (1.30°). These measurements are in agreement with other benzo-1,2,3-triazinone crystal structure reports (Hjortås et al., 1973; Hunt et al., 1983; Reingruber et al., 2009). Of interest to pharmaceutical applications, it has been suggested that co-planar structure in benzo-1,2,3-triazinones could give DNA-intercalating abilities such as those displayed by some anticancer agents (Reingruber et al., 2009).
In the crystal structure, adjacent units are arranged into one-dimensional chain along [100] direction via O–H···O intermolecular hydrogen bonds (Figure 2 and Table 1).