organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3240-o3241

3-[(R)-1-Hy­dr­oxy­butan-2-yl]-1,2,3-benzo­triazin-4(3H)-one

aDepartamento de Ciencias Químico Bilógicas, Universidad de Sonora, Hermosillo, Sonora, 83000 México, bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México D.F., 04510 México, and cCentro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, B.C., 22500 México
*Correspondence e-mail: fernando.rocha@guayacan.uson.mx, miguelhake@yahoo.com

(Received 21 October 2012; accepted 22 October 2012; online 31 October 2012)

The crystal structure of the title compound, C11H13N3O2, is stabilized by O—H⋯O hydrogen bonds, which link the mol­ecules into chains along [100].

Related literature

For biological and synthetic applications of benzo-1,2,3-triazinones, see: Caliendo et al. (1999[Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Mattace-Raso, G., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043-1051.]); Zheng et al. (2005[Zheng, G. Z., Bhatia, P., Daanen, J., Kolasa, T., Patel, M., Latshaw, S., El Kouhen, O. F., Chang, R., Uchic, M. E., Miller, L., Nakane, M., Lehto, S. J., Honore, M. P., Moreland, R. B., Brioni, J. D. & Stewart, A. O. (2005). J. Med. Chem. 48, 7374-7388.]); Vaisburg et al. (2004[Vaisburg, A., Bernstein, N., Frechette, S., Allan, M., Abou-Khalil, E., Leit, S., Moradei, O., Bouchain, G., Wang, J., Hyung Woo, S., Fournel, M., Yan, P. T., Trachy-Bourget, M.-C., Kalita, A., Beaulieu, C., Li, Z., MacLeod, A. R., Bestermanb, J. M. & Delormea, D. (2004). Bioorg. Med. Chem. Lett. 14, 283-287.]); Chollet et al. (2002[Chollet, A. M., Le Diguarher, T., Kucharczyk, N., Oynel, A., Bertrand, M., Tucker, G., Guilbaud, N., Burbridge, M., Pastoureau, P., Fradin, A., Sabatini, M., Fauchére, J.-L. & Casara, P. (2002). Bioorg. Med. Chem. 10, 531-544.]); Le Diguarher et al. (2003[Le Diguarher, T., Chollet, A. M., Bertrand, M., Henning, P., Raimbaud, E., Sabatini, M. N., Guilbaud, N., Pierré, A., Tucker, G. C. & Casara, P. (2003). J. Med. Chem. 46, 3840-3852.]); Clark et al. (1995[Clark, A. S., Deans, B., Stevens, M. F. G., Tisdale, M. J., Wheelhouse, R. T., Denny, B. J. & Hartley, J. A. (1995). J. Med. Chem. 38, 1493-1504.]); Carpino et al. (2004[Carpino, L. A., Xia, J., Zhang, C. & El-Faham, A. (2004). J. Org. Chem. 69, 62-71.]); Janout et al. (2003[Janout, V., Jing, B., Staina, I. V. & Regen, S. L. (2003). J. Am. Chem. Soc. 125, 4436-4437.]); Gierasch et al. (2000[Gierasch, T. M., Chytil, M., Didiuk, M. T., Park, J. Y., Urban, J. J., Nolan, S. P. & Verdine, G. L. (2000). Org. Lett. 2, 3999-4002.]). For structures of benzo-1,2,3-triazinones, see: Hjortås et al. (1973[Hjortås, J. (1973). Acta Cryst. B29, 1916-1922.]); Hunt et al. (1983[Hunt, W. E., Schwalbe, C. H. & Vaughan, K. (1983). Acta Cryst. C39, 738-740.]); Reingruber et al. (2009[Reingruber, R., Vanderheiden, S., Muller, T., Nieger, M., Es-Sayed, M. & Bräse, S. (2009). Tetrahedron Lett. 50, 3439-3442.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Gómez et al. (2005[Gómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. pp. 4341-4351.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O2

  • Mr = 219.24

  • Orthorhombic, P 21 21 21

  • a = 8.9668 (13) Å

  • b = 10.1506 (15) Å

  • c = 12.0238 (17) Å

  • V = 1094.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.32 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 9057 measured reflections

  • 2000 independent reflections

  • 1700 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.076

  • S = 0.93

  • 2000 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.85 (1) 2.03 (1) 2.8712 (19) 171 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzo-1,2,3-triazinones are compounds widely investigated for their potential biological and chemical properties. These heterocyclic compounds have been studied as anesthetic (Caliendo et al., 1999), anti-inflammatory (Zheng et al., 2005), anticancer (Vaisburg et al.., 2004; Chollet et al., 2002), and antitumoural (Le Diguarher et al., 2003; Clark et al., 1995) agents. In organic synthesis, 1,2,3-triazinones are used as an activating moiety in coupling agents for the preparation of peptides and amino acids (Carpino et al., 2004; Janout et al., 2003; Gierasch et al., 2000). As result of its biological and synthetic importance, we have developed an alternative method for obtaining compounds with 1,2,3-triazinone moiety and in this paper we are describing the crystal structure of the title compound (I, Figure 1).

In the molecular structure of I, the N1=N2 bond [1.2636 (17) Å] is longer than the typical values for N=N double bonds (1.236 Å), whereas the N2–N3 bond [1.3735 (18) Å] is shorter than typical values for a N–N single bonds (1.404 Å) (Allen et al.., 1987). The structure of I shows co-planarity between two rings (1.30°). These measurements are in agreement with other benzo-1,2,3-triazinone crystal structure reports (Hjortås et al., 1973; Hunt et al., 1983; Reingruber et al., 2009). Of interest to pharmaceutical applications, it has been suggested that co-planar structure in benzo-1,2,3-triazinones could give DNA-intercalating abilities such as those displayed by some anticancer agents (Reingruber et al., 2009).

In the crystal structure, adjacent units are arranged into one-dimensional chain along [100] direction via O–H···O intermolecular hydrogen bonds (Figure 2 and Table 1).

Related literature top

For biological and synthetic applications of benzo-1,2,3-triazinones, see: Caliendo et al. (1999); Zheng et al. (2005); Vaisburg et al. (2004); Chollet et al. (2002); Le Diguarher et al. (2003); Clark et al. (1995); Carpino et al. (2004); Janout et al. (2003); Gierasch et al. (2000). For structures of benzo-1,2,3-triazinones, see: Hjortås et al. (1973); Hunt et al. (1983); Reingruber et al. (2009). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Gómez et al. (2005).

Experimental top

The synthesis of the tittle compound included reagents and solvents of reagent grade, which were used without further purification. To a solution of 2-[(4R)-4-ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline (Gómez et al., 2005) (0.89 g, 4.7 mmol, dissolved in 85 ml of methanol) was slowly added isoamyl nitrite (4.40 g, 37.6 mmol, 8 equiv) and the reaction mixture was stirred at room temperature until the disappearance of the aniline (followed by TLC, hexane/ethyl acetate, 3:1). The solvent was evaporated under reduced pressure to give a crude product that was purified by washing with petroleum ether and recrystallization from hexane/ethyl acetate. Crystalline colorless prisms of I were grown by slow diffusion of hexane over saturated ethyl acetate solutions of I. Yield > 99%, based on 2-[(4R)-4-Ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline; m.p., 89–90 °C. = -5.45° (c 0.22, MeOH). FTIR (KBr pellet, cm-1): 3439, 1686, 1663, 1296. 1H NMR [(CD3)2CO, 200 MHz] d 8.29 (ddd, J = 0.6, 1.5, 7.9 Hz, 2H), 8.16 (ddd, J = 0.6, 1.5, 8.1 Hz, 2H), 8.07 (ddd, J = 1.5, 7.0, 8.2 Hz, 2H), 7.91 (ddd,, J = 1.5, 7.0, 7.9 Hz, 2H), 5.22 (ddd, J = 5.1, 7.6, 15.5 Hz, 2H), 4.10 (dd, J = 8.4, 11.3 Hz, 2H), 3.96 (dd, J = 5.1, 11.3 Hz, 2H), 1.99 (dd, J = 7.5, 15.0 Hz, 4H), 0.90 (t, J = 7.4 Hz, 6H). 13C NMR [(CD3)2CO, 50 MHz] d 156.6, 144.5, 135.8, 133.2, 128.8, 125.7, 120.3, 64.2, 62.3, 24.2, 10.8. ESI-HRMS:220.1091 (100), calculated for [M+H]+, C11H14N3O2+, 220.1081; 192.1025 (8), calculated for [M+H—N2]+, C11H14NO2+, 192.1019. Anal for C11H13N3O2 (% Calcd./found) C, 60.26/60.73; H, 5.98/6.45; N, 19.17/19.47.

Refinement top

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.98 for methyn, C—H =0.97 Å for methylene H, and C—H= 0.96 Å for methyl H), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atoms. The hydroxyl H atoms were located in a difference map and refined with O–H = 0.85±0.01 Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at 50% probability.
[Figure 2] Fig. 2. Packing of I showing the H-bonds. The molecules are forming a one-dimensional chain in the [100] direction. H-bonds are indicated by dashed lines.
3-[(R)-1-Hydroxybutan-2-yl]-1,2,3-benzotriazin-4(3H)-one top
Crystal data top
C11H13N3O2F(000) = 464
Mr = 219.24Dx = 1.331 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4276 reflections
a = 8.9668 (13) Åθ = 2.6–25.2°
b = 10.1506 (15) ŵ = 0.09 mm1
c = 12.0238 (17) ÅT = 298 K
V = 1094.4 (3) Å3Prism, colourless
Z = 40.32 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1700 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.4°, θmin = 2.6°
Detector resolution: 0.83 pixels mm-1h = 1010
ω scansk = 1212
9057 measured reflectionsl = 1414
2000 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
2000 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C11H13N3O2V = 1094.4 (3) Å3
Mr = 219.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9668 (13) ŵ = 0.09 mm1
b = 10.1506 (15) ÅT = 298 K
c = 12.0238 (17) Å0.32 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1700 reflections with I > 2σ(I)
9057 measured reflectionsRint = 0.044
2000 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.11 e Å3
2000 reflectionsΔρmin = 0.15 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56004 (14)0.68985 (11)1.02583 (10)0.0584 (4)
N10.87770 (16)0.64809 (13)0.79106 (11)0.0438 (4)
O20.82337 (18)0.99854 (13)0.99816 (15)0.0797 (5)
H20.885 (2)0.9362 (16)0.992 (2)0.096*
N20.80536 (16)0.75426 (13)0.80106 (11)0.0430 (4)
N30.70312 (14)0.76906 (12)0.88520 (11)0.0372 (3)
C40.66320 (18)0.67321 (15)0.96026 (14)0.0386 (4)
C4A0.75154 (18)0.55429 (16)0.95179 (13)0.0362 (4)
C50.7338 (2)0.44941 (16)1.02537 (14)0.0469 (4)
H50.66420.45461.08260.056*
C60.8194 (2)0.33848 (17)1.01301 (16)0.0545 (5)
H60.80810.26861.06230.065*
C70.9226 (2)0.32979 (18)0.92741 (17)0.0568 (5)
H70.97900.25350.91910.068*
C80.94229 (19)0.43244 (17)0.85511 (16)0.0517 (5)
H81.01270.42660.79850.062*
C8A0.85625 (17)0.54564 (15)0.86684 (13)0.0382 (4)
C90.62783 (18)0.89954 (14)0.88408 (15)0.0420 (4)
H90.55940.90210.94760.050*
C100.7406 (2)1.00892 (17)0.89991 (17)0.0553 (5)
H10A0.80881.00880.83720.066*
H10B0.68861.09270.89980.066*
C110.5352 (2)0.91729 (17)0.77929 (16)0.0559 (5)
H11A0.48381.00120.78330.067*
H11B0.60150.92020.71560.067*
C120.4222 (2)0.80997 (19)0.76146 (19)0.0765 (7)
H12A0.35400.80810.82300.092*
H12B0.47220.72660.75600.092*
H12C0.36810.82660.69400.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0643 (8)0.0449 (7)0.0660 (9)0.0042 (7)0.0294 (8)0.0035 (6)
N10.0471 (8)0.0409 (8)0.0434 (8)0.0020 (7)0.0101 (7)0.0012 (7)
O20.0754 (11)0.0612 (10)0.1026 (12)0.0097 (8)0.0365 (10)0.0201 (9)
N20.0473 (8)0.0401 (8)0.0415 (8)0.0014 (7)0.0075 (7)0.0013 (7)
N30.0410 (8)0.0319 (7)0.0387 (8)0.0029 (6)0.0047 (7)0.0002 (6)
C40.0396 (9)0.0364 (9)0.0398 (9)0.0021 (8)0.0043 (8)0.0018 (8)
C4A0.0380 (9)0.0339 (8)0.0366 (9)0.0030 (7)0.0024 (8)0.0013 (7)
C50.0532 (11)0.0426 (10)0.0448 (10)0.0046 (9)0.0004 (9)0.0019 (8)
C60.0638 (12)0.0392 (10)0.0604 (12)0.0009 (9)0.0109 (10)0.0083 (9)
C70.0538 (12)0.0365 (10)0.0800 (14)0.0100 (9)0.0071 (11)0.0013 (10)
C80.0435 (10)0.0465 (11)0.0651 (12)0.0061 (9)0.0060 (9)0.0089 (10)
C8A0.0379 (9)0.0352 (9)0.0416 (10)0.0030 (7)0.0017 (8)0.0044 (8)
C90.0457 (9)0.0337 (9)0.0467 (10)0.0058 (7)0.0009 (9)0.0019 (8)
C100.0587 (11)0.0362 (10)0.0711 (12)0.0034 (8)0.0022 (12)0.0055 (9)
C110.0648 (12)0.0429 (10)0.0600 (12)0.0132 (9)0.0118 (10)0.0007 (9)
C120.0765 (14)0.0602 (13)0.0927 (17)0.0111 (12)0.0357 (14)0.0133 (12)
Geometric parameters (Å, º) top
O1—C41.2271 (18)C7—C81.368 (2)
N1—N21.2636 (17)C7—H70.9300
N1—C8A1.396 (2)C8—C8A1.391 (2)
O2—C101.399 (2)C8—H80.9300
O2—H20.846 (9)C9—C101.514 (2)
N2—N31.3735 (18)C9—C111.520 (2)
N3—C41.3745 (19)C9—H90.9800
N3—C91.4866 (19)C10—H10A0.9700
C4—C4A1.447 (2)C10—H10B0.9700
C4A—C8A1.390 (2)C11—C121.503 (2)
C4A—C51.393 (2)C11—H11A0.9700
C5—C61.371 (2)C11—H11B0.9700
C5—H50.9300C12—H12A0.9600
C6—C71.387 (3)C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
N2—N1—C8A120.17 (13)C8—C8A—N1118.22 (15)
C10—O2—H2109.5 (17)N3—C9—C10110.42 (13)
N1—N2—N3120.40 (12)N3—C9—C11111.17 (14)
N2—N3—C4125.45 (12)C10—C9—C11112.49 (14)
N2—N3—C9113.20 (12)N3—C9—H9107.5
C4—N3—C9121.22 (13)C10—C9—H9107.5
O1—C4—N3121.38 (14)C11—C9—H9107.5
O1—C4—C4A124.93 (15)O2—C10—C9113.91 (15)
N3—C4—C4A113.68 (14)O2—C10—H10A108.8
C8A—C4A—C5119.70 (15)C9—C10—H10A108.8
C8A—C4A—C4118.29 (14)O2—C10—H10B108.8
C5—C4A—C4122.01 (15)C9—C10—H10B108.8
C6—C5—C4A119.66 (17)H10A—C10—H10B107.7
C6—C5—H5120.2C12—C11—C9113.63 (15)
C4A—C5—H5120.2C12—C11—H11A108.8
C5—C6—C7120.42 (17)C9—C11—H11A108.8
C5—C6—H6119.8C12—C11—H11B108.8
C7—C6—H6119.8C9—C11—H11B108.8
C8—C7—C6120.59 (17)H11A—C11—H11B107.7
C8—C7—H7119.7C11—C12—H12A109.5
C6—C7—H7119.7C11—C12—H12B109.5
C7—C8—C8A119.55 (17)H12A—C12—H12B109.5
C7—C8—H8120.2C11—C12—H12C109.5
C8A—C8—H8120.2H12A—C12—H12C109.5
C4A—C8A—C8120.07 (15)H12B—C12—H12C109.5
C4A—C8A—N1121.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.85 (1)2.03 (1)2.8712 (19)171 (2)
Symmetry code: (i) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC11H13N3O2
Mr219.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.9668 (13), 10.1506 (15), 12.0238 (17)
V3)1094.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9057, 2000, 1700
Rint0.044
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 0.93
No. of reflections2000
No. of parameters149
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.846 (9)2.033 (11)2.8712 (19)171 (2)
Symmetry code: (i) x+1/2, y+3/2, z+2.
 

Acknowledgements

We gratefully acknowledge support for this project by the Consejo Nacional de Ciencia y Tecnología (CONACyT grant 36435-E) and Consejo del Sistema Nacional de Educación Tecnológica (COSNET) grant 486–02-P. The authors are indebted to Adrián Ochoa Terán and Ignacio Rivero Espejel for their analytical support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Mattace-Raso, G., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34, 1043–1051.  Web of Science CrossRef CAS Google Scholar
First citationCarpino, L. A., Xia, J., Zhang, C. & El-Faham, A. (2004). J. Org. Chem. 69, 62–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChollet, A. M., Le Diguarher, T., Kucharczyk, N., Oynel, A., Bertrand, M., Tucker, G., Guilbaud, N., Burbridge, M., Pastoureau, P., Fradin, A., Sabatini, M., Fauchére, J.-L. & Casara, P. (2002). Bioorg. Med. Chem. 10, 531–544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, A. S., Deans, B., Stevens, M. F. G., Tisdale, M. J., Wheelhouse, R. T., Denny, B. J. & Hartley, J. A. (1995). J. Med. Chem. 38, 1493–1504.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGierasch, T. M., Chytil, M., Didiuk, M. T., Park, J. Y., Urban, J. J., Nolan, S. P. & Verdine, G. L. (2000). Org. Lett. 2, 3999–4002.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. pp. 4341–4351.  Google Scholar
First citationHjortås, J. (1973). Acta Cryst. B29, 1916–1922.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationHunt, W. E., Schwalbe, C. H. & Vaughan, K. (1983). Acta Cryst. C39, 738–740.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanout, V., Jing, B., Staina, I. V. & Regen, S. L. (2003). J. Am. Chem. Soc. 125, 4436–4437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLe Diguarher, T., Chollet, A. M., Bertrand, M., Henning, P., Raimbaud, E., Sabatini, M. N., Guilbaud, N., Pierré, A., Tucker, G. C. & Casara, P. (2003). J. Med. Chem. 46, 3840–3852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReingruber, R., Vanderheiden, S., Muller, T., Nieger, M., Es-Sayed, M. & Bräse, S. (2009). Tetrahedron Lett. 50, 3439–3442.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaisburg, A., Bernstein, N., Frechette, S., Allan, M., Abou-Khalil, E., Leit, S., Moradei, O., Bouchain, G., Wang, J., Hyung Woo, S., Fournel, M., Yan, P. T., Trachy-Bourget, M.-C., Kalita, A., Beaulieu, C., Li, Z., MacLeod, A. R., Bestermanb, J. M. & Delormea, D. (2004). Bioorg. Med. Chem. Lett. 14, 283–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, G. Z., Bhatia, P., Daanen, J., Kolasa, T., Patel, M., Latshaw, S., El Kouhen, O. F., Chang, R., Uchic, M. E., Miller, L., Nakane, M., Lehto, S. J., Honore, M. P., Moreland, R. B., Brioni, J. D. & Stewart, A. O. (2005). J. Med. Chem. 48, 7374–7388.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3240-o3241
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds