organic compounds
7-Methoxyindan-1-one
aDepartment of Chemistry, Tung Hai University, 407 Taichung, Taiwan, and bDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π interaction. A second weak C—H⋯π interaction links the layers, forming a three-dimensional structure.
Related literature
For the preparation of the title compound, see: Li et al. (2011). For applications of indanone derivatives, see: Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Tang et al. (2011). For related structures, see: Ali et al. (2010a,b,c,d); Chen et al. (2011a,b). For C—H⋯O hydrogen bonds, see: Li et al. (2011a,b); Wang & Chen (2011); Xi et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536812040743/zl2507sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812040743/zl2507Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812040743/zl2507Isup3.cml
The title compound was synthesized by the methylation of 7-hydroxyindan-1-one with methyl iodide (Li et al., 2011). Colorless parallelepiped-shaped crystals suitable for the crystallographic study reported here were isolated over a period of six weeks by slow evaporation from a chloroform solution.
The C bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. | |
Fig. 2. A section of the crystal packing of the title compound, viewed along the b axis. Blue, green and red dashed lines denote the intermolecular C10—H10B···O1, C3—H3B···O2 and C7—H7A···O1 hydrogen bonds, respectively. Yellow and purple dashed lines denote the intermolecular C10—H10A···π and C4—H4A···π hydrogen bonds, respectively. Cg1 (black circles) is the centroid of the C1/C5—C9 ring. For symmetry operators, see Table 1. |
C10H10O2 | F(000) = 688 |
Mr = 162.18 | Dx = 1.275 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3629 reflections |
a = 8.5386 (7) Å | θ = 2.9–26.0° |
b = 10.4949 (9) Å | µ = 0.09 mm−1 |
c = 18.8536 (16) Å | T = 297 K |
V = 1689.5 (2) Å3 | Parallelepiped, colorless |
Z = 8 | 0.64 × 0.55 × 0.32 mm |
Bruker SMART CCD area-detector diffractometer | 1663 independent reflections |
Radiation source: fine-focus sealed tube | 1278 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
phi and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→10 |
Tmin = 0.683, Tmax = 1.000 | k = −12→12 |
8807 measured reflections | l = −16→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2236P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1663 reflections | Δρmax = 0.20 e Å−3 |
110 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0068 (15) |
C10H10O2 | V = 1689.5 (2) Å3 |
Mr = 162.18 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.5386 (7) Å | µ = 0.09 mm−1 |
b = 10.4949 (9) Å | T = 297 K |
c = 18.8536 (16) Å | 0.64 × 0.55 × 0.32 mm |
Bruker SMART CCD area-detector diffractometer | 1663 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1278 reflections with I > 2σ(I) |
Tmin = 0.683, Tmax = 1.000 | Rint = 0.032 |
8807 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.20 e Å−3 |
1663 reflections | Δρmin = −0.13 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.34168 (11) | 0.54158 (11) | 0.13950 (7) | 0.0741 (4) | |
O2 | 0.07222 (10) | 0.67528 (9) | 0.20144 (5) | 0.0545 (3) | |
C1 | 0.06609 (14) | 0.50056 (11) | 0.12296 (6) | 0.0412 (3) | |
C2 | 0.23519 (16) | 0.47945 (13) | 0.11460 (7) | 0.0480 (3) | |
C3 | 0.25583 (19) | 0.36302 (14) | 0.06788 (8) | 0.0637 (4) | |
H3A | 0.3207 | 0.3835 | 0.0272 | 0.076* | |
H3B | 0.3057 | 0.2948 | 0.0943 | 0.076* | |
C4 | 0.09387 (18) | 0.32271 (14) | 0.04396 (8) | 0.0606 (4) | |
H4A | 0.0829 | 0.3318 | −0.0070 | 0.073* | |
H4B | 0.0734 | 0.2348 | 0.0568 | 0.073* | |
C5 | −0.01569 (17) | 0.41149 (12) | 0.08242 (7) | 0.0475 (3) | |
C6 | −0.17764 (18) | 0.41110 (14) | 0.08112 (8) | 0.0610 (4) | |
H6A | −0.2322 | 0.3522 | 0.0538 | 0.073* | |
C7 | −0.25596 (18) | 0.49998 (16) | 0.12127 (8) | 0.0643 (5) | |
H7A | −0.3649 | 0.5006 | 0.1207 | 0.077* | |
C8 | −0.17749 (16) | 0.58882 (14) | 0.16256 (7) | 0.0560 (4) | |
H8A | −0.2340 | 0.6470 | 0.1896 | 0.067* | |
C9 | −0.01507 (15) | 0.59128 (12) | 0.16371 (6) | 0.0431 (3) | |
C10 | −0.0085 (2) | 0.76805 (14) | 0.24349 (8) | 0.0662 (4) | |
H10A | 0.0664 | 0.8210 | 0.2674 | 0.099* | |
H10B | −0.0729 | 0.7255 | 0.2779 | 0.099* | |
H10C | −0.0730 | 0.8198 | 0.2134 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0400 (6) | 0.0783 (8) | 0.1039 (9) | 0.0010 (5) | 0.0001 (6) | −0.0157 (6) |
O2 | 0.0529 (6) | 0.0558 (6) | 0.0548 (6) | 0.0059 (4) | −0.0009 (4) | −0.0125 (4) |
C1 | 0.0415 (7) | 0.0426 (6) | 0.0395 (6) | 0.0022 (5) | 0.0007 (5) | 0.0071 (5) |
C2 | 0.0418 (7) | 0.0503 (7) | 0.0520 (7) | 0.0065 (6) | 0.0016 (6) | 0.0054 (6) |
C3 | 0.0651 (9) | 0.0637 (9) | 0.0624 (8) | 0.0227 (8) | 0.0009 (7) | −0.0052 (7) |
C4 | 0.0793 (11) | 0.0469 (8) | 0.0555 (8) | 0.0084 (7) | −0.0041 (7) | −0.0038 (6) |
C5 | 0.0565 (8) | 0.0429 (7) | 0.0432 (7) | −0.0009 (6) | −0.0041 (6) | 0.0052 (5) |
C6 | 0.0548 (9) | 0.0610 (9) | 0.0674 (9) | −0.0121 (7) | −0.0116 (7) | 0.0017 (7) |
C7 | 0.0380 (7) | 0.0802 (11) | 0.0747 (10) | −0.0061 (7) | −0.0015 (7) | 0.0120 (8) |
C8 | 0.0435 (8) | 0.0664 (9) | 0.0583 (8) | 0.0090 (6) | 0.0094 (6) | 0.0041 (7) |
C9 | 0.0440 (7) | 0.0458 (7) | 0.0393 (6) | 0.0026 (5) | 0.0020 (5) | 0.0043 (5) |
C10 | 0.0800 (10) | 0.0591 (8) | 0.0594 (9) | 0.0161 (8) | 0.0020 (8) | −0.0128 (7) |
O1—C2 | 1.2134 (17) | C4—H4B | 0.9700 |
O2—C9 | 1.3560 (15) | C5—C6 | 1.383 (2) |
O2—C10 | 1.4321 (16) | C6—C7 | 1.375 (2) |
C1—C5 | 1.3948 (17) | C6—H6A | 0.9300 |
C1—C9 | 1.4061 (17) | C7—C8 | 1.387 (2) |
C1—C2 | 1.4692 (18) | C7—H7A | 0.9300 |
C2—C3 | 1.517 (2) | C8—C9 | 1.387 (2) |
C3—C4 | 1.515 (2) | C8—H8A | 0.9300 |
C3—H3A | 0.9700 | C10—H10A | 0.9600 |
C3—H3B | 0.9700 | C10—H10B | 0.9600 |
C4—C5 | 1.5063 (19) | C10—H10C | 0.9600 |
C4—H4A | 0.9700 | ||
C9—O2—C10 | 117.90 (11) | C6—C5—C4 | 127.63 (13) |
C5—C1—C9 | 120.43 (12) | C1—C5—C4 | 111.55 (12) |
C5—C1—C2 | 109.40 (11) | C7—C6—C5 | 118.33 (13) |
C9—C1—C2 | 130.17 (12) | C7—C6—H6A | 120.8 |
O1—C2—C1 | 127.87 (13) | C5—C6—H6A | 120.8 |
O1—C2—C3 | 124.79 (13) | C6—C7—C8 | 122.01 (14) |
C1—C2—C3 | 107.34 (12) | C6—C7—H7A | 119.0 |
C4—C3—C2 | 106.97 (12) | C8—C7—H7A | 119.0 |
C4—C3—H3A | 110.3 | C7—C8—C9 | 120.27 (13) |
C2—C3—H3A | 110.3 | C7—C8—H8A | 119.9 |
C4—C3—H3B | 110.3 | C9—C8—H8A | 119.9 |
C2—C3—H3B | 110.3 | O2—C9—C8 | 124.74 (12) |
H3A—C3—H3B | 108.6 | O2—C9—C1 | 117.13 (11) |
C5—C4—C3 | 104.53 (11) | C8—C9—C1 | 118.14 (12) |
C5—C4—H4A | 110.8 | O2—C10—H10A | 109.5 |
C3—C4—H4A | 110.8 | O2—C10—H10B | 109.5 |
C5—C4—H4B | 110.8 | H10A—C10—H10B | 109.5 |
C3—C4—H4B | 110.8 | O2—C10—H10C | 109.5 |
H4A—C4—H4B | 108.9 | H10A—C10—H10C | 109.5 |
C6—C5—C1 | 120.81 (13) | H10B—C10—H10C | 109.5 |
C5—C1—C2—O1 | 176.75 (14) | C1—C5—C6—C7 | −0.6 (2) |
C9—C1—C2—O1 | −3.7 (2) | C4—C5—C6—C7 | 179.00 (13) |
C5—C1—C2—C3 | −3.15 (14) | C5—C6—C7—C8 | −0.1 (2) |
C9—C1—C2—C3 | 176.41 (12) | C6—C7—C8—C9 | 0.8 (2) |
O1—C2—C3—C4 | −175.29 (13) | C10—O2—C9—C8 | 0.29 (18) |
C1—C2—C3—C4 | 4.62 (15) | C10—O2—C9—C1 | −179.75 (11) |
C2—C3—C4—C5 | −4.24 (15) | C7—C8—C9—O2 | 179.03 (12) |
C9—C1—C5—C6 | 0.42 (18) | C7—C8—C9—C1 | −0.93 (19) |
C2—C1—C5—C6 | −179.97 (12) | C5—C1—C9—O2 | −179.63 (10) |
C9—C1—C5—C4 | −179.21 (11) | C2—C1—C9—O2 | 0.84 (18) |
C2—C1—C5—C4 | 0.41 (14) | C5—C1—C9—C8 | 0.33 (17) |
C3—C4—C5—C6 | −177.12 (14) | C2—C1—C9—C8 | −179.19 (12) |
C3—C4—C5—C1 | 2.47 (15) |
Cg1 is the centroid of the C1/C5–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O2i | 0.97 | 2.60 | 3.5183 (18) | 159 |
C7—H7A···O1ii | 0.93 | 2.57 | 3.4802 (18) | 167 |
C10—H10B···O1iii | 0.96 | 2.59 | 3.486 (2) | 156 |
C4—H4A···Cg1iv | 0.97 | 2.80 | 3.6430 (16) | 146 |
C10—H10A···Cg1v | 0.96 | 2.82 | 3.6260 (16) | 143 |
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x−1, y, z; (iii) x−1/2, y, −z+1/2; (iv) −x, −y+1, −z; (v) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10O2 |
Mr | 162.18 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 297 |
a, b, c (Å) | 8.5386 (7), 10.4949 (9), 18.8536 (16) |
V (Å3) | 1689.5 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.64 × 0.55 × 0.32 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.683, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8807, 1663, 1278 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.116, 1.02 |
No. of reflections | 1663 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.13 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
Cg1 is the centroid of the C1/C5–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O2i | 0.97 | 2.60 | 3.5183 (18) | 159 |
C7—H7A···O1ii | 0.93 | 2.57 | 3.4802 (18) | 167 |
C10—H10B···O1iii | 0.96 | 2.59 | 3.486 (2) | 156 |
C4—H4A···Cg1iv | 0.97 | 2.80 | 3.6430 (16) | 146 |
C10—H10A···Cg1v | 0.96 | 2.82 | 3.6260 (16) | 143 |
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x−1, y, z; (iii) x−1/2, y, −z+1/2; (iv) −x, −y+1, −z; (v) −x, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the National Science Council, Tung Hai University and Feng Chia University in Taiwan.
References
Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o2875. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590–595. Web of Science CrossRef CAS Google Scholar
Li, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539–542. Web of Science CSD CrossRef CAS Google Scholar
Li, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293–298. Web of Science CrossRef CAS Google Scholar
Li, Z., Lin, Y., Xia, J.-L., Zhang, H., Fan, F., Zeng, Q., Feng, D., Yin, J. & Liu, S. H. (2011). Dyes Pigm. 90, 245–252. Web of Science CSD CrossRef CAS Google Scholar
Li, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280–283. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541. Web of Science CrossRef Google Scholar
Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847–850. Web of Science CSD CrossRef CAS Google Scholar
Xi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indanone and its derivatives are some of the most widely used organic compounds (Tang et al., 2011). They are used as dyes and pigments (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Fu & Wang, 2008; Borge et al., 2010) and exhibit a wide variety of biological activities (Sousa et al., 2011). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).
The molecular structure of the title compound is shown in Figure 1. The 1-indaneone moiety is essentially planar (r.m.s. deviation = 0.028 Å), which is consistent with previous studies (Chen et al., 2011a,b; Ali et al., 2010a,b,c,d). There are three different kinds of C—H···O (Li et al., 2011a,b; Wang et al., 2011; Xi et al., 2010) hydrogen bonds (Table 1) in the crystal structure (Figure 2). In addition, C—H···π hydrogen bonds further stabilize the crystal structure (2.80 Å for the C4—H4A···Cg1 distance and 146° for the C4—H4A—Cg1i angle; 2.82 Å for the C10—H10A···Cg1 distance and 143° for the C10—H10A—Cg1ii angle; Cg1 is the centroid of the C1/C5—C9 ring; symmetry codes: (i): -x, 1 - y,- z (ii): -x, 1/2 + y, 1/2 - z).