organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Meth­­oxy­indan-1-one

aDepartment of Chemistry, Tung Hai University, 407 Taichung, Taiwan, and bDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 26 September 2012; accepted 27 September 2012; online 3 October 2012)

In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π inter­action. A second weak C—H⋯π inter­action links the layers, forming a three-dimensional structure.

Related literature

For the preparation of the title compound, see: Li et al. (2011[Li, Z., Lin, Y., Xia, J.-L., Zhang, H., Fan, F., Zeng, Q., Feng, D., Yin, J. & Liu, S. H. (2011). Dyes Pigm. 90, 245-252.]). For applications of indanone derivatives, see: Borge et al. (2010[Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209-217.]); Cai et al. (2005[Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479-482.]); Cui et al. (2009[Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53-57.]); Fu & Wang (2008[Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590-595.]); Li et al. (2009[Li, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293-298.]); Sousa et al. (2011[Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537-541.]); Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]). For related structures, see: Ali et al. (2010a[Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878.],b[Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o2875.],c[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753.],d[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864.]); Chen et al. (2011a[Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.],b[Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.]). For C—H⋯O hydrogen bonds, see: Li et al. (2011a[Li, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539-542.],b[Li, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280-283.]); Wang & Chen (2011[Wang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847-850.]); Xi et al. (2010[Xi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633-636.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O2

  • Mr = 162.18

  • Orthorhombic, P b c a

  • a = 8.5386 (7) Å

  • b = 10.4949 (9) Å

  • c = 18.8536 (16) Å

  • V = 1689.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.64 × 0.55 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.683, Tmax = 1.000

  • 8807 measured reflections

  • 1663 independent reflections

  • 1278 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.116

  • S = 1.02

  • 1663 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2i 0.97 2.60 3.5183 (18) 159
C7—H7A⋯O1ii 0.93 2.57 3.4802 (18) 167
C10—H10B⋯O1iii 0.96 2.59 3.486 (2) 156
C4—H4ACg1iv 0.97 2.80 3.6430 (16) 146
C10—H10ACg1v 0.96 2.82 3.6260 (16) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indanone and its derivatives are some of the most widely used organic compounds (Tang et al., 2011). They are used as dyes and pigments (Cui et al., 2009; Li et al., 2009), intermediates in organic synthesis (Fu & Wang, 2008; Borge et al., 2010) and exhibit a wide variety of biological activities (Sousa et al., 2011). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai et al., 2005).

The molecular structure of the title compound is shown in Figure 1. The 1-indaneone moiety is essentially planar (r.m.s. deviation = 0.028 Å), which is consistent with previous studies (Chen et al., 2011a,b; Ali et al., 2010a,b,c,d). There are three different kinds of C—H···O (Li et al., 2011a,b; Wang et al., 2011; Xi et al., 2010) hydrogen bonds (Table 1) in the crystal structure (Figure 2). In addition, C—H···π hydrogen bonds further stabilize the crystal structure (2.80 Å for the C4—H4A···Cg1 distance and 146° for the C4—H4A—Cg1i angle; 2.82 Å for the C10—H10A···Cg1 distance and 143° for the C10—H10A—Cg1ii angle; Cg1 is the centroid of the C1/C5—C9 ring; symmetry codes: (i): -x, 1 - y,- z (ii): -x, 1/2 + y, 1/2 - z).

Related literature top

For the preparation of the title compound, see: Li et al. (2011). For applications of indanone derivatives, see: Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Tang et al. (2011). For related structures, see: Chen et al. (2011a,b); Ali et al. (2010a,b,c,d). For C—H···O hydrogen bonds, see: Li et al. (2011a,b); Wang et al. (2011); Xi et al. (2010).

Experimental top

The title compound was synthesized by the methylation of 7-hydroxyindan-1-one with methyl iodide (Li et al., 2011). Colorless parallelepiped-shaped crystals suitable for the crystallographic study reported here were isolated over a period of six weeks by slow evaporation from a chloroform solution.

Refinement top

The C bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the b axis. Blue, green and red dashed lines denote the intermolecular C10—H10B···O1, C3—H3B···O2 and C7—H7A···O1 hydrogen bonds, respectively. Yellow and purple dashed lines denote the intermolecular C10—H10A···π and C4—H4A···π hydrogen bonds, respectively. Cg1 (black circles) is the centroid of the C1/C5—C9 ring. For symmetry operators, see Table 1.
7-Methoxyindan-1-one top
Crystal data top
C10H10O2F(000) = 688
Mr = 162.18Dx = 1.275 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3629 reflections
a = 8.5386 (7) Åθ = 2.9–26.0°
b = 10.4949 (9) ŵ = 0.09 mm1
c = 18.8536 (16) ÅT = 297 K
V = 1689.5 (2) Å3Parallelepiped, colorless
Z = 80.64 × 0.55 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1663 independent reflections
Radiation source: fine-focus sealed tube1278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.683, Tmax = 1.000k = 1212
8807 measured reflectionsl = 1623
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2236P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1663 reflectionsΔρmax = 0.20 e Å3
110 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (15)
Crystal data top
C10H10O2V = 1689.5 (2) Å3
Mr = 162.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.5386 (7) ŵ = 0.09 mm1
b = 10.4949 (9) ÅT = 297 K
c = 18.8536 (16) Å0.64 × 0.55 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1278 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 1.000Rint = 0.032
8807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
1663 reflectionsΔρmin = 0.13 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34168 (11)0.54158 (11)0.13950 (7)0.0741 (4)
O20.07222 (10)0.67528 (9)0.20144 (5)0.0545 (3)
C10.06609 (14)0.50056 (11)0.12296 (6)0.0412 (3)
C20.23519 (16)0.47945 (13)0.11460 (7)0.0480 (3)
C30.25583 (19)0.36302 (14)0.06788 (8)0.0637 (4)
H3A0.32070.38350.02720.076*
H3B0.30570.29480.09430.076*
C40.09387 (18)0.32271 (14)0.04396 (8)0.0606 (4)
H4A0.08290.33180.00700.073*
H4B0.07340.23480.05680.073*
C50.01569 (17)0.41149 (12)0.08242 (7)0.0475 (3)
C60.17764 (18)0.41110 (14)0.08112 (8)0.0610 (4)
H6A0.23220.35220.05380.073*
C70.25596 (18)0.49998 (16)0.12127 (8)0.0643 (5)
H7A0.36490.50060.12070.077*
C80.17749 (16)0.58882 (14)0.16256 (7)0.0560 (4)
H8A0.23400.64700.18960.067*
C90.01507 (15)0.59128 (12)0.16371 (6)0.0431 (3)
C100.0085 (2)0.76805 (14)0.24349 (8)0.0662 (4)
H10A0.06640.82100.26740.099*
H10B0.07290.72550.27790.099*
H10C0.07300.81980.21340.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (6)0.0783 (8)0.1039 (9)0.0010 (5)0.0001 (6)0.0157 (6)
O20.0529 (6)0.0558 (6)0.0548 (6)0.0059 (4)0.0009 (4)0.0125 (4)
C10.0415 (7)0.0426 (6)0.0395 (6)0.0022 (5)0.0007 (5)0.0071 (5)
C20.0418 (7)0.0503 (7)0.0520 (7)0.0065 (6)0.0016 (6)0.0054 (6)
C30.0651 (9)0.0637 (9)0.0624 (8)0.0227 (8)0.0009 (7)0.0052 (7)
C40.0793 (11)0.0469 (8)0.0555 (8)0.0084 (7)0.0041 (7)0.0038 (6)
C50.0565 (8)0.0429 (7)0.0432 (7)0.0009 (6)0.0041 (6)0.0052 (5)
C60.0548 (9)0.0610 (9)0.0674 (9)0.0121 (7)0.0116 (7)0.0017 (7)
C70.0380 (7)0.0802 (11)0.0747 (10)0.0061 (7)0.0015 (7)0.0120 (8)
C80.0435 (8)0.0664 (9)0.0583 (8)0.0090 (6)0.0094 (6)0.0041 (7)
C90.0440 (7)0.0458 (7)0.0393 (6)0.0026 (5)0.0020 (5)0.0043 (5)
C100.0800 (10)0.0591 (8)0.0594 (9)0.0161 (8)0.0020 (8)0.0128 (7)
Geometric parameters (Å, º) top
O1—C21.2134 (17)C4—H4B0.9700
O2—C91.3560 (15)C5—C61.383 (2)
O2—C101.4321 (16)C6—C71.375 (2)
C1—C51.3948 (17)C6—H6A0.9300
C1—C91.4061 (17)C7—C81.387 (2)
C1—C21.4692 (18)C7—H7A0.9300
C2—C31.517 (2)C8—C91.387 (2)
C3—C41.515 (2)C8—H8A0.9300
C3—H3A0.9700C10—H10A0.9600
C3—H3B0.9700C10—H10B0.9600
C4—C51.5063 (19)C10—H10C0.9600
C4—H4A0.9700
C9—O2—C10117.90 (11)C6—C5—C4127.63 (13)
C5—C1—C9120.43 (12)C1—C5—C4111.55 (12)
C5—C1—C2109.40 (11)C7—C6—C5118.33 (13)
C9—C1—C2130.17 (12)C7—C6—H6A120.8
O1—C2—C1127.87 (13)C5—C6—H6A120.8
O1—C2—C3124.79 (13)C6—C7—C8122.01 (14)
C1—C2—C3107.34 (12)C6—C7—H7A119.0
C4—C3—C2106.97 (12)C8—C7—H7A119.0
C4—C3—H3A110.3C7—C8—C9120.27 (13)
C2—C3—H3A110.3C7—C8—H8A119.9
C4—C3—H3B110.3C9—C8—H8A119.9
C2—C3—H3B110.3O2—C9—C8124.74 (12)
H3A—C3—H3B108.6O2—C9—C1117.13 (11)
C5—C4—C3104.53 (11)C8—C9—C1118.14 (12)
C5—C4—H4A110.8O2—C10—H10A109.5
C3—C4—H4A110.8O2—C10—H10B109.5
C5—C4—H4B110.8H10A—C10—H10B109.5
C3—C4—H4B110.8O2—C10—H10C109.5
H4A—C4—H4B108.9H10A—C10—H10C109.5
C6—C5—C1120.81 (13)H10B—C10—H10C109.5
C5—C1—C2—O1176.75 (14)C1—C5—C6—C70.6 (2)
C9—C1—C2—O13.7 (2)C4—C5—C6—C7179.00 (13)
C5—C1—C2—C33.15 (14)C5—C6—C7—C80.1 (2)
C9—C1—C2—C3176.41 (12)C6—C7—C8—C90.8 (2)
O1—C2—C3—C4175.29 (13)C10—O2—C9—C80.29 (18)
C1—C2—C3—C44.62 (15)C10—O2—C9—C1179.75 (11)
C2—C3—C4—C54.24 (15)C7—C8—C9—O2179.03 (12)
C9—C1—C5—C60.42 (18)C7—C8—C9—C10.93 (19)
C2—C1—C5—C6179.97 (12)C5—C1—C9—O2179.63 (10)
C9—C1—C5—C4179.21 (11)C2—C1—C9—O20.84 (18)
C2—C1—C5—C40.41 (14)C5—C1—C9—C80.33 (17)
C3—C4—C5—C6177.12 (14)C2—C1—C9—C8179.19 (12)
C3—C4—C5—C12.47 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.603.5183 (18)159
C7—H7A···O1ii0.932.573.4802 (18)167
C10—H10B···O1iii0.962.593.486 (2)156
C4—H4A···Cg1iv0.972.803.6430 (16)146
C10—H10A···Cg1v0.962.823.6260 (16)143
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1, y, z; (iii) x1/2, y, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10O2
Mr162.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)297
a, b, c (Å)8.5386 (7), 10.4949 (9), 18.8536 (16)
V3)1689.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.55 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.683, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8807, 1663, 1278
Rint0.032
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.116, 1.02
No. of reflections1663
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.603.5183 (18)159
C7—H7A···O1ii0.932.573.4802 (18)167
C10—H10B···O1iii0.962.593.486 (2)156
C4—H4A···Cg1iv0.972.803.6430 (16)146
C10—H10A···Cg1v0.962.823.6260 (16)143
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1, y, z; (iii) x1/2, y, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Science Council, Tung Hai University and Feng Chia University in Taiwan.

References

First citationAli, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o2875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBorge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479–482.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53–57.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590–595.  Web of Science CrossRef CAS Google Scholar
First citationLi, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293–298.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Lin, Y., Xia, J.-L., Zhang, H., Fan, F., Zeng, Q., Feng, D., Yin, J. & Liu, S. H. (2011). Dyes Pigm. 90, 245–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537–541.  Web of Science CrossRef Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847–850.  Web of Science CSD CrossRef CAS Google Scholar
First citationXi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds