metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1375-m1376

Tri­aqua­(cyclo­hex-4-ene-1,2-di­carboxyl­ato-κO1)(1,10-phenanthroline-κ2N,N′)cobalt(II)

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
*Correspondence e-mail: huangfp2006@163.com

(Received 6 September 2012; accepted 22 September 2012; online 20 October 2012)

In the title compound, [Co(C8H8O4)(C12H8N2)(H2O)3], the CoII atom is coordinated by two N atoms from a bidentate 1,10-phenanthroline ligand, one O atom from a monodentate 4-cyclo­hexene-1,2-dicarboxyl­ate ligand and three water O atoms in a distorted octa­hedral geometry. The mononuclear mol­ecules are engaged in extensive intra- and inter­molecular O—H⋯O hydrogen-bonding inter­actions and ππ stacking inter­actions [centroid–centroid distance = 3.784 (3) Å], forming a three-dimensional supra­molecular network.

Related literature

For background to compounds with metal-organic framework structures, see: Huang et al. (2010[Huang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010). Inorg. Chem. 49, 2525-2529.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). For a description of the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For 4-cyclo­hexene-1,2-dicarboxyl­ates, see: Kim et al. (2004[Kim, D. S., Forster, P. M., Delgado, G. D., Park, S. E. & Cheetham, A. K. (2004). Dalton Trans. pp. 3365-3369.]); Lee et al. (2006[Lee, C., Mellot-Draznieks, C., Slater, B., Wu, G., Harrison, W. T. A., Rao, C. N. R. & Cheetham, A. K. (2006). Chem. Commun. pp. 2687-2689.]). For related structures, see: Baruah et al. (2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479-4488.]); Hou et al. (2007[Hou, Y.-J., Yu, Y.-H., Sun, Z.-Z., Li, B.-Y. & Hou, G.-F. (2007). Acta Cryst. E63, m1884.]); Zhang et al. (2008[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m986.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H8O4)(C12H8N2)(H2O)3]

  • Mr = 461.33

  • Monoclinic, P 21 /c

  • a = 8.1730 (16) Å

  • b = 20.210 (4) Å

  • c = 12.068 (2) Å

  • β = 91.44 (3)°

  • V = 1992.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.945

  • 15996 measured reflections

  • 3606 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.122

  • S = 0.99

  • 3606 reflections

  • 295 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.85 (3) 1.85 (3) 2.695 (4) 171 (4)
O5—H5B⋯O4 0.86 (4) 2.06 (4) 2.912 (4) 172 (4)
O6—H6A⋯O4i 0.86 (3) 1.86 (4) 2.716 (4) 174 (5)
O6—H6B⋯O3 0.86 (3) 1.99 (3) 2.835 (4) 165 (3)
O7—H7A⋯O2 0.86 (3) 1.77 (4) 2.610 (4) 165 (4)
O7—H7B⋯O4ii 0.86 (3) 1.87 (3) 2.734 (4) 175 (4)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, carboxylic acid (as well as carboxylate) has been widely applied in engineering studies of inorganic-organic hybrid materials and the construction of metal-organic coordination supramolecular complexes (Huang et al., 2010; Ockwig et al., 2005; Rao et al., 2004). Although the Cambridge Structural Database (Allen, 2002) contains a great number of transition metal derivatives of carboxylic acids, the metal derivatives of cis-4-cyclohexene-1,2-dicarboxylate acid documented are surprisingly rare (Kim et al., 2004; Lee et al., 2006). As part of this ongoing work, the title complex, [Co(C8H8O4)(C12H8N2)(H2O)3], has been prepared and structurally characterized (Fig. 1).

In the title compound, the CoII atom is coordinated by two N atoms from a bidentate 1,10-phenanthroline ligand (phen), one O atom from a monodentate cis-4-cyclohexene-1,2-dicarboxylate ligand, and three O atoms from water molecules in a distorted octahedral geometry. The coordinating Co—N and Co—O bond lengths [Co—N 2.107 (3)–2.122 (3) Å; Co—O 2.071 (3)–2.152 (3) Å] agree well with those observed in analogous complexes (Baruah et al., 2007; Hou et al., 2007; Zhang et al., 2008). The crystal packing (Fig. 2) exhibits intra- and inter-molecular O—H···O hydrogen bonds (Table 1) and ππ stacking interactions [Cg1···Cg2iii distance is 3.784 (3) Å (iii = -x, 1-y, 1-z) between the centroids of the (N1-C9-C10-C11-C12-C20) and (C12-C13-C14-C15-C19-C20) six-membered rings] forming a three-dimensional supramolecular network.

Related literature top

For background to compounds with metal-organic framework structures, see: Huang et al. (2010); Ockwig et al. (2005); Rao et al. (2004). For a description of the Cambridge Structural Database (CSD), see: Allen (2002). For 4-cyclohexene-1,2-dicarboxylates, see: Kim et al. (2004); Lee et al. (2006). For related structures, see: Baruah et al. (2007); Hou et al. (2007); Zhang et al. (2008).

Experimental top

For the preparation of the title complex, cis-4-cyclohexene-1,2-dicarboxylate acid (0.085 g, 0.5 mmol), Co(NO3)2.6H2O (0.12 g, 0.5 mmol), phen (0.10 g, 0.5 mmol) and KHCO3 (0.10 g, 1 mmol) were dissolved in a water/ethanol solution (20 ml, 1:1). The solution was stirred for 3 h at room temperature and filtered. Red block-shaped crystals were obtained from the filtrate after 4 d.

Refinement top

H atoms of water molecules were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (2) Å and H···H = 1.39 (2) Å. All other H atoms were positoned geometrically and refined using a riding model, with C—H = 0.93 Å for C—Haromatic and C—H = 0.97 Å for C—Haliphatic [Uiso(H) = 1.2Ueq(C)] .

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dotted lines.
Triaqua(cyclohex-4-ene-1,2-dicarboxylato-κO1)(1,10-phenanthroline- κ2N,N')cobalt(II) top
Crystal data top
[Co(C8H8O4)(C12H8N2)(H2O)3]F(000) = 956
Mr = 461.33Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2567 reflections
a = 8.1730 (16) Åθ = 1.5–25.3°
b = 20.210 (4) ŵ = 0.91 mm1
c = 12.068 (2) ÅT = 293 K
β = 91.44 (3)°Block, red
V = 1992.7 (7) Å30.40 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.801, Tmax = 0.945k = 2424
15996 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0338P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.28 e Å3
9 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co(C8H8O4)(C12H8N2)(H2O)3]V = 1992.7 (7) Å3
Mr = 461.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1730 (16) ŵ = 0.91 mm1
b = 20.210 (4) ÅT = 293 K
c = 12.068 (2) Å0.40 × 0.20 × 0.08 mm
β = 91.44 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2982 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.945Rint = 0.073
15996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0619 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.28 e Å3
3606 reflectionsΔρmin = 0.34 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.23393 (6)0.53534 (3)0.19466 (4)0.02844 (17)
C10.3182 (5)0.67605 (19)0.1389 (3)0.0319 (9)
C20.4497 (5)0.71600 (19)0.0814 (3)0.0327 (9)
H2A0.42490.71430.00160.039*
C30.4475 (6)0.7890 (2)0.1160 (4)0.0463 (12)
H3A0.50510.81510.06200.056*
H3B0.33520.80450.11690.056*
C40.5250 (6)0.7988 (2)0.2267 (5)0.0567 (14)
H4A0.50060.83720.26550.068*
C50.6267 (6)0.7561 (3)0.2732 (4)0.0545 (14)
H5C0.66760.76570.34400.065*
C60.6815 (5)0.6932 (2)0.2206 (4)0.0400 (11)
H6C0.64190.65600.26320.048*
H6D0.80010.69160.22280.048*
C70.6202 (5)0.68620 (19)0.1002 (3)0.0319 (9)
H7C0.69470.71230.05530.038*
C80.6262 (5)0.61588 (19)0.0556 (3)0.0305 (9)
C90.3023 (5)0.5544 (2)0.4478 (3)0.0387 (10)
H9A0.34740.59520.42980.046*
C100.3035 (6)0.5346 (2)0.5592 (4)0.0460 (12)
H10A0.34910.56190.61380.055*
C110.2385 (6)0.4760 (2)0.5869 (4)0.0446 (12)
H11A0.23920.46280.66080.054*
C120.1695 (5)0.4345 (2)0.5047 (3)0.0369 (10)
C130.0959 (6)0.3723 (2)0.5252 (4)0.0446 (11)
H13A0.09150.35680.59760.054*
C140.0322 (6)0.3351 (2)0.4419 (4)0.0457 (12)
H14A0.01400.29420.45770.055*
C150.0348 (5)0.3577 (2)0.3300 (3)0.0359 (10)
C160.0345 (5)0.3215 (2)0.2400 (4)0.0426 (11)
H16A0.08390.28070.25180.051*
C170.0280 (5)0.3472 (2)0.1365 (4)0.0429 (11)
H17A0.07320.32420.07640.051*
C180.0467 (5)0.4080 (2)0.1210 (3)0.0357 (10)
H18A0.05050.42460.04930.043*
C190.1057 (5)0.41830 (19)0.3069 (3)0.0295 (9)
C200.1743 (5)0.4581 (2)0.3947 (3)0.0306 (9)
N10.2392 (4)0.51715 (16)0.3679 (3)0.0312 (8)
N20.1127 (4)0.44351 (16)0.2022 (3)0.0295 (8)
O10.3622 (3)0.62360 (13)0.1889 (2)0.0315 (6)
O20.1735 (3)0.69566 (14)0.1286 (3)0.0439 (8)
O30.5410 (3)0.60345 (14)0.0292 (2)0.0382 (7)
O40.7164 (3)0.57339 (13)0.1038 (2)0.0356 (7)
O50.4681 (4)0.48671 (15)0.1938 (2)0.0349 (7)
O60.2453 (4)0.53756 (15)0.0198 (2)0.0334 (7)
O70.0207 (4)0.59085 (15)0.1985 (3)0.0378 (7)
H5A0.465 (6)0.4552 (16)0.147 (3)0.062 (17)*
H6A0.258 (5)0.5009 (13)0.015 (4)0.061 (17)*
H7A0.054 (5)0.6283 (14)0.174 (4)0.052 (15)*
H5B0.538 (5)0.5151 (17)0.172 (4)0.059 (17)*
H6B0.324 (4)0.5630 (16)0.000 (4)0.054 (16)*
H7B0.077 (3)0.584 (2)0.172 (4)0.059 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0293 (3)0.0295 (3)0.0264 (3)0.0004 (2)0.0010 (2)0.0015 (2)
C10.037 (3)0.025 (2)0.033 (2)0.0006 (18)0.0004 (18)0.0067 (18)
C20.039 (2)0.028 (2)0.031 (2)0.0023 (18)0.0014 (18)0.0018 (18)
C30.044 (3)0.027 (2)0.069 (3)0.001 (2)0.008 (2)0.004 (2)
C40.053 (3)0.038 (3)0.080 (4)0.002 (2)0.005 (3)0.028 (3)
C50.055 (3)0.058 (3)0.050 (3)0.009 (3)0.001 (2)0.030 (3)
C60.039 (3)0.040 (3)0.040 (3)0.005 (2)0.005 (2)0.008 (2)
C70.031 (2)0.031 (2)0.034 (2)0.0034 (18)0.0025 (18)0.0011 (18)
C80.028 (2)0.030 (2)0.034 (2)0.0042 (18)0.0074 (18)0.0021 (18)
C90.045 (3)0.038 (2)0.033 (2)0.005 (2)0.000 (2)0.0021 (19)
C100.059 (3)0.047 (3)0.032 (2)0.002 (2)0.010 (2)0.010 (2)
C110.057 (3)0.050 (3)0.027 (2)0.002 (2)0.003 (2)0.001 (2)
C120.039 (3)0.042 (3)0.030 (2)0.002 (2)0.0023 (19)0.0049 (19)
C130.054 (3)0.050 (3)0.030 (2)0.004 (2)0.001 (2)0.011 (2)
C140.054 (3)0.043 (3)0.040 (3)0.009 (2)0.002 (2)0.011 (2)
C150.035 (2)0.038 (2)0.035 (2)0.0007 (19)0.0006 (19)0.0013 (19)
C160.040 (3)0.037 (3)0.051 (3)0.011 (2)0.001 (2)0.002 (2)
C170.043 (3)0.049 (3)0.036 (3)0.012 (2)0.005 (2)0.004 (2)
C180.038 (2)0.043 (3)0.026 (2)0.003 (2)0.0022 (18)0.0007 (19)
C190.027 (2)0.033 (2)0.028 (2)0.0013 (17)0.0009 (17)0.0007 (17)
C200.030 (2)0.035 (2)0.026 (2)0.0045 (18)0.0017 (17)0.0014 (18)
N10.033 (2)0.0333 (19)0.0272 (19)0.0009 (15)0.0018 (15)0.0008 (15)
N20.0291 (18)0.0335 (19)0.0261 (18)0.0026 (15)0.0024 (14)0.0007 (14)
O10.0310 (15)0.0284 (15)0.0349 (16)0.0012 (12)0.0008 (12)0.0018 (12)
O20.0292 (17)0.0342 (17)0.068 (2)0.0063 (13)0.0034 (15)0.0008 (15)
O30.0409 (17)0.0386 (17)0.0349 (17)0.0004 (13)0.0023 (14)0.0103 (13)
O40.0337 (16)0.0298 (16)0.0432 (18)0.0029 (13)0.0031 (13)0.0023 (13)
O50.0360 (18)0.0356 (17)0.0329 (17)0.0033 (14)0.0010 (13)0.0023 (14)
O60.0376 (18)0.0334 (17)0.0293 (16)0.0010 (14)0.0023 (12)0.0015 (14)
O70.0280 (17)0.0381 (19)0.0474 (19)0.0029 (14)0.0000 (14)0.0003 (15)
Geometric parameters (Å, º) top
Co1—O12.071 (3)C9—H9A0.9300
Co1—O72.074 (3)C10—C111.345 (6)
Co1—N22.107 (3)C10—H10A0.9300
Co1—O62.115 (3)C11—C121.407 (6)
Co1—N12.122 (3)C11—H11A0.9300
Co1—O52.152 (3)C12—C201.412 (5)
C1—O21.250 (5)C12—C131.418 (6)
C1—O11.268 (5)C13—C141.348 (6)
C1—C21.525 (6)C13—H13A0.9300
C2—C71.530 (6)C14—C151.427 (6)
C2—C31.533 (6)C14—H14A0.9300
C2—H2A0.9800C15—C191.387 (6)
C3—C41.477 (7)C15—C161.415 (6)
C3—H3A0.9700C16—C171.355 (6)
C3—H3B0.9700C16—H16A0.9300
C4—C51.315 (7)C17—C181.386 (6)
C4—H4A0.9300C17—H17A0.9300
C5—C61.494 (6)C18—N21.319 (5)
C5—H5C0.9300C18—H18A0.9300
C6—C71.531 (6)C19—N21.364 (5)
C6—H6C0.9700C19—C201.433 (5)
C6—H6D0.9700C20—N11.349 (5)
C7—C81.521 (5)O5—H5A0.852 (19)
C7—H7C0.9800O5—H5B0.854 (19)
C8—O31.250 (5)O6—H6A0.860 (19)
C8—O41.264 (5)O6—H6B0.859 (19)
C9—N11.319 (5)O7—H7A0.859 (18)
C9—C101.403 (6)O7—H7B0.858 (19)
O1—Co1—O787.78 (12)N1—C9—H9A119.0
O1—Co1—N2177.61 (12)C10—C9—H9A119.0
O7—Co1—N294.53 (13)C11—C10—C9119.8 (4)
O1—Co1—O685.03 (11)C11—C10—H10A120.1
O7—Co1—O693.97 (12)C9—C10—H10A120.1
N2—Co1—O695.43 (12)C10—C11—C12120.3 (4)
O1—Co1—N1100.63 (12)C10—C11—H11A119.9
O7—Co1—N193.88 (12)C12—C11—H11A119.9
N2—Co1—N178.61 (12)C11—C12—C20116.2 (4)
O6—Co1—N1170.49 (12)C11—C12—C13124.7 (4)
O1—Co1—O586.69 (11)C20—C12—C13119.0 (4)
O7—Co1—O5174.34 (13)C14—C13—C12121.4 (4)
N2—Co1—O590.99 (12)C14—C13—H13A119.3
O6—Co1—O586.76 (11)C12—C13—H13A119.3
N1—Co1—O585.96 (12)C13—C14—C15120.9 (4)
O2—C1—O1124.7 (4)C13—C14—H14A119.6
O2—C1—C2117.6 (4)C15—C14—H14A119.6
O1—C1—C2117.7 (4)C19—C15—C16117.6 (4)
C1—C2—C7112.0 (3)C19—C15—C14119.3 (4)
C1—C2—C3111.9 (3)C16—C15—C14123.1 (4)
C7—C2—C3110.8 (3)C17—C16—C15119.0 (4)
C1—C2—H2A107.3C17—C16—H16A120.5
C7—C2—H2A107.3C15—C16—H16A120.5
C3—C2—H2A107.3C16—C17—C18119.4 (4)
C4—C3—C2111.6 (4)C16—C17—H17A120.3
C4—C3—H3A109.3C18—C17—H17A120.3
C2—C3—H3A109.3N2—C18—C17123.8 (4)
C4—C3—H3B109.3N2—C18—H18A118.1
C2—C3—H3B109.3C17—C18—H18A118.1
H3A—C3—H3B108.0N2—C19—C15122.9 (4)
C5—C4—C3123.3 (4)N2—C19—C20116.8 (3)
C5—C4—H4A118.3C15—C19—C20120.3 (4)
C3—C4—H4A118.3N1—C20—C12123.0 (4)
C4—C5—C6124.8 (5)N1—C20—C19117.9 (3)
C4—C5—H5C117.6C12—C20—C19119.1 (4)
C6—C5—H5C117.6C9—N1—C20118.6 (3)
C5—C6—C7112.8 (4)C9—N1—Co1128.3 (3)
C5—C6—H6C109.0C20—N1—Co1113.0 (3)
C7—C6—H6C109.0C18—N2—C19117.3 (3)
C5—C6—H6D109.0C18—N2—Co1129.1 (3)
C7—C6—H6D109.0C19—N2—Co1113.6 (2)
H6C—C6—H6D107.8C1—O1—Co1126.8 (2)
C8—C7—C2110.7 (3)Co1—O5—H5A109 (3)
C8—C7—C6114.2 (3)Co1—O5—H5B107 (3)
C2—C7—C6112.3 (3)H5A—O5—H5B108 (3)
C8—C7—H7C106.4Co1—O6—H6A119 (3)
C2—C7—H7C106.4Co1—O6—H6B110 (3)
C6—C7—H7C106.4H6A—O6—H6B107 (3)
O3—C8—O4123.2 (4)Co1—O7—H7A101 (3)
O3—C8—C7117.1 (4)Co1—O7—H7B133 (3)
O4—C8—C7119.7 (4)H7A—O7—H7B108 (3)
N1—C9—C10122.1 (4)
O2—C1—C2—C7179.6 (3)N2—C19—C20—N10.4 (5)
O1—C1—C2—C73.0 (5)C15—C19—C20—N1178.9 (4)
O2—C1—C2—C355.3 (5)N2—C19—C20—C12179.7 (3)
O1—C1—C2—C3128.1 (4)C15—C19—C20—C120.4 (6)
C1—C2—C3—C477.6 (5)C10—C9—N1—C200.1 (6)
C7—C2—C3—C448.1 (5)C10—C9—N1—Co1177.0 (3)
C2—C3—C4—C520.1 (7)C12—C20—N1—C90.5 (6)
C3—C4—C5—C61.7 (9)C19—C20—N1—C9179.7 (4)
C4—C5—C6—C75.8 (7)C12—C20—N1—Co1177.9 (3)
C1—C2—C7—C859.8 (4)C19—C20—N1—Co12.9 (4)
C3—C2—C7—C8174.5 (3)O1—Co1—N1—C92.4 (4)
C1—C2—C7—C669.1 (4)O7—Co1—N1—C986.0 (4)
C3—C2—C7—C656.6 (5)N2—Co1—N1—C9179.9 (4)
C5—C6—C7—C8161.8 (4)O5—Co1—N1—C988.3 (4)
C5—C6—C7—C234.8 (5)O1—Co1—N1—C20174.6 (3)
C2—C7—C8—O334.0 (5)O7—Co1—N1—C2096.9 (3)
C6—C7—C8—O3161.9 (4)N2—Co1—N1—C203.1 (3)
C2—C7—C8—O4146.7 (4)O5—Co1—N1—C2088.7 (3)
C6—C7—C8—O418.9 (5)C17—C18—N2—C190.1 (6)
N1—C9—C10—C110.2 (7)C17—C18—N2—Co1178.9 (3)
C9—C10—C11—C120.1 (7)C15—C19—N2—C180.7 (6)
C10—C11—C12—C200.3 (7)C20—C19—N2—C18178.6 (4)
C10—C11—C12—C13179.0 (5)C15—C19—N2—Co1178.4 (3)
C11—C12—C13—C14180.0 (5)C20—C19—N2—Co12.3 (4)
C20—C12—C13—C140.7 (7)O7—Co1—N2—C1885.1 (4)
C12—C13—C14—C150.8 (7)O6—Co1—N2—C189.4 (4)
C13—C14—C15—C190.7 (7)N1—Co1—N2—C18178.1 (4)
C13—C14—C15—C16178.1 (4)O5—Co1—N2—C1896.2 (4)
C19—C15—C16—C170.4 (6)O1—Co1—N2—C1969 (3)
C14—C15—C16—C17179.2 (4)O7—Co1—N2—C1995.9 (3)
C15—C16—C17—C180.2 (7)O6—Co1—N2—C19169.6 (3)
C16—C17—C18—N20.4 (7)N1—Co1—N2—C192.9 (3)
C16—C15—C19—N20.9 (6)O5—Co1—N2—C1982.8 (3)
C14—C15—C19—N2179.8 (4)O2—C1—O1—Co134.6 (6)
C16—C15—C19—C20178.4 (4)C2—C1—O1—Co1141.7 (3)
C14—C15—C19—C200.5 (6)O7—Co1—O1—C136.1 (3)
C11—C12—C20—N10.6 (6)O6—Co1—O1—C158.1 (3)
C13—C12—C20—N1178.8 (4)N1—Co1—O1—C1129.6 (3)
C11—C12—C20—C19179.8 (4)O5—Co1—O1—C1145.1 (3)
C13—C12—C20—C190.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.85 (3)1.85 (3)2.695 (4)171 (4)
O5—H5B···O40.86 (4)2.06 (4)2.912 (4)172 (4)
O6—H6A···O4i0.86 (3)1.86 (4)2.716 (4)174 (5)
O6—H6B···O30.86 (3)1.99 (3)2.835 (4)165 (3)
O7—H7A···O20.86 (3)1.77 (4)2.610 (4)165 (4)
O7—H7B···O4ii0.86 (3)1.87 (3)2.734 (4)175 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C8H8O4)(C12H8N2)(H2O)3]
Mr461.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1730 (16), 20.210 (4), 12.068 (2)
β (°) 91.44 (3)
V3)1992.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.40 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.801, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
15996, 3606, 2982
Rint0.073
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.122, 0.99
No. of reflections3606
No. of parameters295
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.85 (3)1.85 (3)2.695 (4)171 (4)
O5—H5B···O40.86 (4)2.06 (4)2.912 (4)172 (4)
O6—H6A···O4i0.86 (3)1.86 (4)2.716 (4)174 (5)
O6—H6B···O30.86 (3)1.99 (3)2.835 (4)165 (3)
O7—H7A···O20.86 (3)1.77 (4)2.610 (4)165 (4)
O7—H7B···O4ii0.86 (3)1.87 (3)2.734 (4)175 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge the Guangxi Natural Science Foundation of China (2010GXNSFD013017, 2012­GXNSF­BA053017) and the Natural Science Foundation of Guangxi Normal University.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, Y.-J., Yu, Y.-H., Sun, Z.-Z., Li, B.-Y. & Hou, G.-F. (2007). Acta Cryst. E63, m1884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010). Inorg. Chem. 49, 2525–2529.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKim, D. S., Forster, P. M., Delgado, G. D., Park, S. E. & Cheetham, A. K. (2004). Dalton Trans. pp. 3365–3369.  Web of Science CSD CrossRef Google Scholar
First citationLee, C., Mellot-Draznieks, C., Slater, B., Wu, G., Harrison, W. T. A., Rao, C. N. R. & Cheetham, A. K. (2006). Chem. Commun. pp. 2687–2689.  Web of Science CSD CrossRef Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m986.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1375-m1376
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds