metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-(pyridin-2-yl)pyrazine-2-carbo­nitrile-κ2N4,N5](tri­fluoro­acetato-κO)silver(I)

aTianjin Entry–Exit Inspection and Quarantine Bureau, Tianjin 300201, People's Republic of China, and bDisease Hospital of TianJin City, Tianjin 300201, People's Republic of China
*Correspondence e-mail: yanjiuyuan_lee@126.com

(Received 15 September 2012; accepted 27 September 2012; online 6 October 2012)

In the asymmetric unit of the title compound, [Ag(C10H6N4)2(CF3CO2)], there two mononuclear but slightly different complex units. In each, two κ2N:N-chelating 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands surround the AgI atom, giving an N4O square-pyramidal coordination geometry with one trifluoro­acetate O atom at the apex. The difference between the two lies in the Ag—N bond lengths: in one complex, three normal [range 2.272 (5)–2.552 (5) Å] and one long [2.706 (4) Å] and in the second, two normal [2.254 (5) and 2.290 (5) Å] and two long [2.647 (5) and 2.675 (5) Å] are present. Short inter­molecular F⋯F contacts [2.586 (4) Å] and weak ππ stacking inter­actions [minimum ring centroid separation 3.836 (5) Å] between pyridyl and pyrazinyl rings connect the complex units, forming columns which extend along the b-axis direction.

Related literature

For metal complexes with pyridyl-based ligands, see: Wang et al. (2009[Wang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137-2145.]); O'Keeffe & Yaghi (2012[O'Keeffe, M. & Yaghi, O. M. (2012). Chem. Rev. 112, 675-702.]); Choudhury et al. (2002[Choudhury, A. R., Urs, U. K., Nagarajan, K. & Row, T. N. G. (2002). J. Mol. Struct. 605, 71-75.]). For complexes with 5-(pyridin-2-yl)pyrazine-2-carbonitrile, see: Wang et al. (2010[Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232-m1233.]); Zhang & Yang (2011[Zhang, F. & Yang, Y.-L. (2011). Acta Cryst. E67, m1863.]). For van der Waals radii, see: Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, p. 260. New York: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H6N4)2(C2F3O2)]

  • Mr = 585.27

  • Orthorhombic, P 21 21 21

  • a = 12.5237 (16) Å

  • b = 14.9638 (18) Å

  • c = 23.845 (3) Å

  • V = 4468.6 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 298 K

  • 0.41 × 0.31 × 0.29 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.861, Tmax = 1.000

  • 24472 measured reflections

  • 7881 independent reflections

  • 6180 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.02

  • 7881 reflections

  • 649 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3488 Friedel pairs

  • Flack parameter: −0.10 (4)

Data collection: APEX2 (Bruker 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Multidentate ligands are widely used to construct diverse metal-organic frameworks with attractive topological structures and interesting properties (Wang et al., 2009; O'Keeffe & Yaghi, 2012). 5-(2-pyridyl)pyrazine-2-carbonitrile is a new member of the family of pyridyl-based multidentate ligands, several mononuclear silver(I) complexes of which were reported recently (Wang et al., 2010; Zhang & Yang, 2011). In the present context, we report the structure of a AgI complex with 5-(2-pyridyl)pyrazine-2-carbonitrile, the title compound [Ag(C10H6N4)2 (CF3CO2)] (Scheme 1).

As shown in Fig. 1, there are two independent but slightly different mononuclear units (associated with Ag1 and Ag2) in the asymmetric unit of the title complex. For Ag1, a pair of chelating κ2N,N 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the Ag center to form a N4O-pyramidal coordination geometry, with a trifluoroacetate O bonding at the vertex site. The four N donors exibit different Ag—N bond lengths, with the Ag1—N5 [2.706 (4) Å] longer than the others [2.272 (5)–2.552 (5)Å]. The Ag2 unit exhibits a similar N4O-geometry to that for Ag1. However, both Ag2—N9 [2.647 (5) Å] and Ag2—N13 [2.675 (5) Å] are both longer than the other two Ag—N bonds [2.254 (5)–2.290 (5)Å]. This N4O-pyramidal coordination geometry is comparable to that found in the previously reported Ag complex with 5-(2-pyridyl)pyrazine-2-carbonitrile [Ag(C10H6N4)2]NO3 (Zhang & Yang, 2011). Interestingly, the two mononuclear units in the title complex are interconnected by a short F2···F5 interaction [2.586 (4) Å], giving a dimer. This F···F separation is much shorter than the sum of the van der Waals radii (2.70 Å) (Pauling, 1960), and the distance found in 1-(4-fluorophenyl)-2-phenyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline [2.778 (2) %A] (Choudhury et al., 2002).

In the present complex, F···F-connected dimers are interconnected through weak π···π stacking interactions between adjacent pyridyl rings and pyrazinyl rings, forming columns along b (Fig.2). The minimum distance between Cg1 (N1—C1—C2—N2—C3—C4) and Cg2i (C37—C38—C39—C40—C41—N15) is 3.836 (5) Å, while that between Cg3 (C5—C6—C7—C8—C9—N3) and Cg4i (N13—C33—C34 —N14—C35—C36) is 3.975 (3) Å [symmetry code: (i) x, y + 1, z]. Present within the columns are found short nonbonding N···C contacts between the acetonitrile N atoms and pyrazinyl C atoms (Fig. 3). These are N4···C37ii [3.246 (5) Å] and N16···C4iii [3.148 (4) Å] [symmetry codes: (ii) -x, y + 1/2, -z + 1/2; (iii) -x + 1, y - 1/2, -z + 1/2].

Related literature top

For metal complexes with pyridyl-based ligands, see: Wang et al. (2009); O'Keeffe & Yaghi (2012); Choudhury et al. (2002). For complexes with 5-(2-pyridyl)pyrazine-2-carbonitrile, see: Wang et al. (2010); Zhang & Yang (2011). For van der Waals radii, see: Pauling (1960).

Experimental top

The 5-(2-pyridyl)-2-cyanopyrazine was obtained from a commercial source. This ligand (36.2 mg, 0.2 mmol) and AgCF3CO2 (22 mg, 0.1 mmol) were mixed and dissolved in 5 ml of acetonitrile with stirring at room temperature, giving a clear solution. After 2 hours, this solution was filtered, and the clear filtrate was allowed to stand for about 3 weeks, yielding yellow block-like crystals (32.8 mg, 56% yeild).

Refinement top

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The high Ueq value compared to neighbors for the C22 and C44 atoms of the trifluoroacetate ligand can be ascribed to the large thermal vibration of the tail of the anion at room temperature.

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: APEX2 and SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme for the two independent complex units in the asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level and the intermolecular F···F interaction is shown as a dashed line. All H atoms are omitted for clarity.
[Figure 2] Fig. 2. The inter-unit F···F and π···π interactions between the mononuclear units extending along b. The purple balls indicate Ag atoms. All H atoms are omitted.
[Figure 3] Fig. 3. The packing structure of the title complex. Dashed-lines represent F···F and N(acetonitrile)···C(pyrazine) contacts.
Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile-κ2N4,N5] (trifluoroacetato-κO)silver(I) top
Crystal data top
[Ag(C10H6N4)2(C2F3O2)]F(000) = 2320
Mr = 585.27Dx = 1.740 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 254 reflections
a = 12.5237 (16) Åθ = 1.6–25.0°
b = 14.9638 (18) ŵ = 0.97 mm1
c = 23.845 (3) ÅT = 298 K
V = 4468.6 (10) Å3Block, yellow
Z = 80.41 × 0.31 × 0.29 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
7881 independent reflections
Radiation source: fine-focus sealed tube6180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω–scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 149
Tmin = 0.861, Tmax = 1.000k = 1717
24472 measured reflectionsl = 2728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0674P)2 + 4.5918P] P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.005
7881 reflectionsΔρmax = 0.97 e Å3
649 parametersΔρmin = 0.64 e Å3
10 restraintsAbsolute structure: Flack (1983), 3488 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (4)
Crystal data top
[Ag(C10H6N4)2(C2F3O2)]V = 4468.6 (10) Å3
Mr = 585.27Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.5237 (16) ŵ = 0.97 mm1
b = 14.9638 (18) ÅT = 298 K
c = 23.845 (3) Å0.41 × 0.31 × 0.29 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
7881 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6180 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 1.000Rint = 0.035
24472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.97 e Å3
S = 1.02Δρmin = 0.64 e Å3
7881 reflectionsAbsolute structure: Flack (1983), 3488 Friedel pairs
649 parametersAbsolute structure parameter: 0.10 (4)
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.26811 (4)0.58972 (3)0.15292 (2)0.05751 (16)
N10.1564 (4)0.6017 (4)0.2421 (2)0.0516 (13)
N20.0587 (5)0.6226 (5)0.3462 (3)0.0758 (17)
N30.3706 (4)0.6293 (4)0.2287 (2)0.0527 (14)
N40.1913 (6)0.5499 (5)0.3209 (3)0.093 (2)
N50.3874 (5)0.6246 (6)0.0607 (2)0.079 (2)
N60.4762 (5)0.6152 (6)0.0451 (3)0.085 (2)
N70.1688 (5)0.6166 (5)0.0750 (2)0.0601 (16)
N80.7394 (5)0.6236 (7)0.0189 (3)0.109 (3)
O10.2973 (3)0.4296 (3)0.1556 (3)0.0661 (12)
O20.1194 (4)0.4314 (3)0.1498 (3)0.0742 (14)
C10.0527 (5)0.5835 (5)0.2491 (3)0.0551 (16)
H1A0.01210.56540.21850.066*
C20.0051 (5)0.5914 (5)0.3012 (3)0.0559 (17)
C30.1610 (7)0.6397 (6)0.3375 (3)0.072 (2)
H3A0.20150.66020.36760.087*
C40.2113 (6)0.6289 (4)0.2861 (3)0.0503 (16)
C50.3309 (6)0.6352 (5)0.2808 (3)0.0512 (16)
C60.3954 (7)0.6446 (6)0.3270 (3)0.074 (2)
H6A0.36570.65230.36240.089*
C70.5039 (7)0.6426 (7)0.3203 (3)0.088 (3)
H7A0.54900.64740.35120.106*
C80.5444 (7)0.6337 (6)0.2682 (4)0.080 (3)
H8A0.61780.63040.26270.096*
C90.4753 (6)0.6294 (6)0.2234 (3)0.069 (2)
H9A0.50410.62650.18740.083*
C100.1049 (6)0.5672 (5)0.3110 (3)0.069 (2)
C110.3254 (5)0.6217 (5)0.0158 (3)0.0561 (18)
C120.3730 (6)0.6163 (7)0.0363 (3)0.081 (3)
H12A0.32850.61330.06750.098*
C130.5371 (6)0.6203 (6)0.0005 (3)0.067 (2)
C140.4929 (6)0.6226 (7)0.0529 (3)0.086 (3)
H14A0.53770.62270.08400.103*
C150.2073 (6)0.6224 (5)0.0227 (3)0.0508 (16)
C160.1397 (7)0.6286 (7)0.0234 (3)0.084 (3)
H16A0.16720.63470.05940.100*
C170.0316 (6)0.6256 (8)0.0145 (3)0.084 (3)
H17A0.01510.62850.04480.101*
C180.0068 (6)0.6185 (6)0.0383 (3)0.074 (2)
H18A0.07990.61630.04520.089*
C190.0659 (6)0.6145 (7)0.0814 (3)0.074 (2)
H19A0.03940.61000.11770.089*
C200.6515 (6)0.6222 (7)0.0092 (3)0.079 (2)
C210.2075 (5)0.3957 (4)0.1521 (3)0.0519 (14)
C220.2084 (5)0.2977 (5)0.1513 (4)0.0630 (17)
F10.1244 (6)0.2588 (4)0.1377 (5)0.237 (7)
F20.2200 (12)0.2641 (5)0.1986 (3)0.257 (8)
F30.2781 (8)0.2573 (4)0.1263 (5)0.224 (6)
Ag20.28673 (4)0.10754 (3)0.34638 (2)0.05706 (16)
N90.1721 (5)0.1347 (5)0.4381 (2)0.074 (2)
N100.0807 (5)0.1065 (5)0.5421 (2)0.0752 (19)
N110.3892 (5)0.1344 (5)0.4241 (2)0.0633 (18)
N120.1796 (6)0.1231 (8)0.5156 (4)0.124 (3)
N130.4147 (4)0.1294 (4)0.2578 (2)0.0556 (15)
N140.5064 (5)0.1172 (7)0.1529 (3)0.105 (3)
N150.1944 (4)0.1402 (4)0.2678 (2)0.0504 (13)
N160.7638 (6)0.0743 (5)0.1827 (3)0.0792 (19)
O30.3252 (4)0.0539 (4)0.3587 (3)0.0792 (17)
O40.1491 (4)0.0458 (4)0.3452 (3)0.0895 (17)
C230.0680 (6)0.1309 (7)0.4448 (3)0.086 (3)
H23A0.02370.13660.41370.104*
C240.0229 (5)0.1187 (6)0.4971 (3)0.0627 (19)
C250.1865 (6)0.1075 (6)0.5344 (3)0.071 (2)
H25A0.23070.09690.56500.085*
C260.2328 (6)0.1237 (5)0.4826 (3)0.0562 (17)
C270.3500 (6)0.1277 (6)0.4758 (3)0.0569 (19)
C280.4188 (6)0.1227 (6)0.5214 (3)0.069 (2)
H28A0.39160.11900.55760.083*
C290.5277 (6)0.1233 (7)0.5126 (3)0.081 (3)
H29A0.57400.11850.54290.097*
C300.5669 (6)0.1308 (7)0.4603 (3)0.082 (3)
H30A0.64010.13210.45370.099*
C310.4952 (6)0.1365 (7)0.4169 (3)0.078 (3)
H31A0.52150.14200.38060.094*
C320.0910 (6)0.1207 (7)0.5061 (3)0.083 (3)
C330.3560 (5)0.1388 (4)0.2121 (2)0.0450 (15)
C340.4038 (6)0.1342 (9)0.1600 (4)0.105 (4)
H34A0.36180.14340.12840.126*
C350.5629 (5)0.1076 (5)0.1990 (3)0.0567 (17)
C360.5175 (5)0.1122 (5)0.2514 (3)0.0600 (18)
H36A0.55990.10320.28290.072*
C370.2388 (5)0.1545 (4)0.2175 (2)0.0451 (14)
C380.1781 (6)0.1766 (5)0.1720 (3)0.0629 (19)
H38A0.21000.18890.13770.075*
C390.0679 (7)0.1805 (6)0.1779 (3)0.076 (2)
H39A0.02540.19510.14720.091*
C400.0224 (6)0.1632 (6)0.2279 (3)0.072 (2)
H40A0.05140.16400.23220.087*
C410.0882 (5)0.1442 (5)0.2721 (3)0.0624 (19)
H41A0.05740.13370.30700.075*
C420.6758 (6)0.0875 (5)0.1905 (3)0.0636 (18)
C430.2342 (5)0.0832 (5)0.3523 (3)0.0583 (16)
C440.2298 (6)0.1823 (5)0.3488 (4)0.0670 (18)
F40.1610 (7)0.2222 (5)0.3759 (5)0.224 (6)
F50.2152 (12)0.2131 (5)0.3023 (3)0.271 (9)
F60.3113 (6)0.2237 (4)0.3644 (5)0.228 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0607 (3)0.0771 (3)0.0347 (2)0.0027 (2)0.0086 (2)0.0001 (2)
N10.049 (3)0.063 (3)0.043 (3)0.001 (3)0.000 (2)0.002 (3)
N20.062 (4)0.110 (5)0.056 (4)0.006 (4)0.013 (4)0.016 (4)
N30.049 (3)0.072 (4)0.037 (3)0.007 (3)0.006 (2)0.002 (3)
N40.072 (5)0.091 (5)0.115 (6)0.010 (4)0.031 (4)0.019 (4)
N50.050 (4)0.153 (7)0.035 (3)0.003 (4)0.003 (3)0.000 (4)
N60.058 (4)0.145 (7)0.052 (4)0.006 (4)0.003 (3)0.014 (4)
N70.051 (3)0.094 (5)0.036 (3)0.006 (3)0.000 (2)0.010 (3)
N80.047 (4)0.177 (9)0.103 (6)0.003 (5)0.007 (4)0.001 (6)
O10.047 (3)0.068 (3)0.083 (3)0.001 (2)0.003 (3)0.002 (3)
O20.049 (3)0.077 (3)0.097 (4)0.011 (2)0.007 (3)0.002 (4)
C10.051 (4)0.070 (4)0.044 (4)0.007 (4)0.003 (3)0.006 (3)
C20.048 (4)0.065 (4)0.055 (4)0.001 (3)0.007 (3)0.002 (3)
C30.071 (5)0.106 (6)0.040 (4)0.003 (4)0.006 (4)0.014 (4)
C40.059 (4)0.051 (4)0.041 (3)0.002 (4)0.007 (3)0.000 (3)
C50.055 (4)0.063 (4)0.035 (3)0.011 (3)0.002 (3)0.001 (3)
C60.078 (6)0.101 (6)0.044 (4)0.026 (5)0.009 (4)0.005 (4)
C70.057 (5)0.151 (9)0.057 (5)0.030 (5)0.023 (4)0.016 (5)
C80.056 (5)0.116 (7)0.068 (5)0.011 (5)0.018 (4)0.001 (5)
C90.050 (4)0.101 (6)0.056 (4)0.016 (4)0.003 (3)0.004 (4)
C100.058 (5)0.080 (5)0.067 (5)0.005 (4)0.016 (4)0.012 (4)
C110.050 (4)0.076 (5)0.042 (3)0.004 (4)0.006 (3)0.013 (3)
C120.056 (5)0.143 (8)0.045 (4)0.006 (5)0.005 (3)0.017 (5)
C130.048 (4)0.097 (6)0.056 (5)0.008 (4)0.005 (3)0.013 (4)
C140.051 (4)0.157 (9)0.049 (4)0.003 (5)0.011 (4)0.004 (5)
C150.053 (4)0.059 (4)0.040 (3)0.004 (4)0.003 (3)0.004 (3)
C160.071 (5)0.144 (9)0.037 (4)0.009 (5)0.002 (3)0.014 (5)
C170.052 (4)0.155 (10)0.045 (4)0.005 (5)0.013 (3)0.016 (5)
C180.051 (4)0.115 (7)0.056 (4)0.001 (4)0.007 (3)0.002 (5)
C190.051 (4)0.128 (7)0.045 (4)0.009 (5)0.004 (3)0.013 (5)
C200.055 (5)0.119 (7)0.063 (5)0.004 (5)0.000 (4)0.010 (5)
C210.039 (3)0.070 (4)0.047 (3)0.008 (3)0.001 (3)0.004 (4)
C220.044 (4)0.070 (4)0.075 (5)0.005 (3)0.011 (4)0.008 (4)
F10.145 (6)0.068 (4)0.50 (2)0.009 (4)0.149 (10)0.026 (7)
F20.54 (3)0.081 (4)0.147 (7)0.007 (9)0.076 (12)0.029 (4)
F30.208 (9)0.073 (4)0.390 (15)0.004 (5)0.164 (10)0.035 (6)
Ag20.0630 (3)0.0748 (3)0.0334 (2)0.0014 (2)0.0081 (2)0.0026 (2)
N90.052 (4)0.127 (6)0.042 (3)0.008 (4)0.005 (3)0.003 (3)
N100.059 (4)0.124 (6)0.043 (3)0.013 (4)0.010 (3)0.008 (4)
N110.049 (3)0.107 (5)0.034 (3)0.005 (3)0.003 (2)0.009 (3)
N120.057 (5)0.216 (11)0.098 (6)0.009 (6)0.009 (4)0.005 (7)
N130.045 (3)0.079 (4)0.042 (3)0.009 (3)0.003 (2)0.005 (3)
N140.049 (3)0.219 (9)0.046 (3)0.011 (5)0.008 (3)0.002 (6)
N150.040 (3)0.073 (4)0.038 (3)0.001 (3)0.005 (2)0.005 (2)
N160.055 (4)0.086 (5)0.096 (5)0.012 (4)0.012 (4)0.010 (4)
O30.067 (3)0.066 (3)0.104 (5)0.003 (3)0.018 (3)0.007 (3)
O40.059 (3)0.100 (4)0.110 (5)0.016 (3)0.000 (4)0.022 (4)
C230.047 (4)0.160 (10)0.051 (5)0.011 (5)0.011 (4)0.004 (5)
C240.048 (4)0.087 (5)0.053 (4)0.006 (4)0.009 (3)0.011 (4)
C250.055 (4)0.117 (6)0.040 (4)0.005 (4)0.001 (3)0.006 (4)
C260.059 (4)0.066 (4)0.044 (3)0.001 (4)0.010 (3)0.009 (3)
C270.056 (4)0.080 (5)0.035 (4)0.002 (4)0.003 (3)0.004 (3)
C280.060 (4)0.108 (7)0.040 (4)0.001 (4)0.007 (3)0.009 (4)
C290.054 (4)0.140 (9)0.049 (4)0.003 (5)0.012 (4)0.001 (5)
C300.050 (4)0.140 (8)0.057 (5)0.001 (5)0.001 (4)0.012 (5)
C310.058 (5)0.132 (8)0.045 (4)0.002 (5)0.007 (3)0.004 (4)
C320.055 (5)0.129 (8)0.064 (5)0.006 (5)0.006 (4)0.006 (5)
C330.043 (3)0.058 (4)0.034 (3)0.003 (3)0.004 (3)0.003 (3)
C340.053 (4)0.218 (12)0.045 (4)0.008 (6)0.003 (4)0.016 (7)
C350.043 (3)0.070 (4)0.058 (4)0.006 (3)0.002 (3)0.001 (4)
C360.054 (4)0.080 (5)0.046 (4)0.007 (4)0.005 (3)0.008 (4)
C370.045 (3)0.056 (3)0.034 (3)0.001 (3)0.003 (3)0.004 (2)
C380.060 (4)0.090 (5)0.039 (4)0.013 (4)0.005 (3)0.001 (3)
C390.068 (5)0.101 (6)0.057 (5)0.026 (5)0.017 (4)0.002 (4)
C400.045 (4)0.098 (6)0.074 (6)0.012 (4)0.017 (4)0.009 (5)
C410.043 (4)0.090 (6)0.054 (4)0.003 (4)0.002 (3)0.003 (4)
C420.056 (4)0.074 (5)0.061 (4)0.001 (4)0.009 (3)0.009 (4)
C430.050 (4)0.075 (4)0.050 (4)0.005 (3)0.005 (3)0.003 (3)
C440.050 (4)0.076 (5)0.075 (5)0.008 (4)0.002 (5)0.002 (5)
F40.208 (9)0.101 (5)0.363 (14)0.032 (5)0.175 (10)0.015 (6)
F50.58 (3)0.102 (5)0.135 (7)0.060 (11)0.064 (12)0.023 (5)
F60.152 (7)0.067 (4)0.464 (18)0.001 (4)0.135 (10)0.016 (7)
Geometric parameters (Å, º) top
Ag1—N72.272 (5)Ag2—N152.254 (5)
Ag1—N32.295 (5)Ag2—N112.290 (5)
Ag1—O12.425 (5)Ag2—O32.481 (5)
Ag1—N12.552 (5)N9—C231.315 (10)
N1—C41.317 (8)N9—C261.317 (9)
N1—C11.337 (8)N10—C241.307 (9)
N2—C31.322 (10)N10—C251.338 (9)
N2—C21.349 (9)N11—C271.330 (8)
N3—C91.317 (9)N11—C311.338 (9)
N3—C51.342 (8)N12—C321.133 (10)
N4—C101.138 (9)N13—C361.322 (8)
N5—C111.323 (9)N13—C331.322 (8)
N5—C141.335 (9)N14—C351.316 (9)
N6—C121.310 (9)N14—C341.320 (10)
N6—C131.331 (9)N15—C411.335 (8)
N7—C191.298 (9)N15—C371.340 (7)
N7—C151.340 (8)N16—C421.135 (9)
N8—C201.125 (9)O3—C431.231 (8)
O1—C211.236 (7)O4—C431.217 (8)
O2—C211.228 (7)C23—C241.380 (10)
C1—C21.383 (9)C23—H23A0.9300
C1—H1A0.9300C24—C321.443 (10)
C2—C101.443 (10)C25—C261.386 (9)
C3—C41.390 (9)C25—H25A0.9300
C3—H3A0.9300C26—C271.478 (10)
C4—C51.505 (10)C27—C281.389 (9)
C5—C61.373 (9)C28—C291.379 (10)
C6—C71.368 (12)C28—H28A0.9300
C6—H6A0.9300C29—C301.346 (10)
C7—C81.348 (11)C29—H29A0.9300
C7—H7A0.9300C30—C311.374 (10)
C8—C91.378 (10)C30—H30A0.9300
C8—H8A0.9300C31—H31A0.9300
C9—H9A0.9300C33—C341.382 (10)
C11—C121.381 (10)C33—C371.492 (9)
C11—C151.487 (9)C34—H34A0.9300
C12—H12A0.9300C35—C361.374 (9)
C13—C141.366 (10)C35—C421.460 (10)
C13—C201.451 (10)C36—H36A0.9300
C14—H14A0.9300C37—C381.366 (8)
C15—C161.391 (10)C38—C391.388 (11)
C16—C171.370 (11)C38—H38A0.9300
C16—H16A0.9300C39—C401.347 (11)
C17—C181.353 (10)C39—H39A0.9300
C17—H17A0.9300C40—C411.368 (10)
C18—C191.375 (10)C40—H40A0.9300
C18—H18A0.9300C41—H41A0.9300
C19—H19A0.9300C43—C441.486 (10)
C21—C221.467 (10)C44—F51.215 (9)
C22—F31.218 (8)C44—F41.231 (9)
C22—F21.243 (9)C44—F61.251 (9)
C22—F11.245 (8)
N7—Ag1—N3154.8 (2)F2—C22—C21113.1 (8)
N7—Ag1—O1106.2 (2)F1—C22—C21117.6 (6)
N3—Ag1—O198.7 (2)N15—Ag2—N11157.2 (2)
N7—Ag1—N1111.66 (17)N15—Ag2—O3114.1 (2)
N3—Ag1—N168.41 (17)N11—Ag2—O388.1 (2)
O1—Ag1—N197.50 (19)C23—N9—C26117.9 (7)
C4—N1—C1118.1 (6)C24—N10—C25115.8 (6)
C4—N1—Ag1113.5 (4)C27—N11—C31119.2 (6)
C1—N1—Ag1128.5 (4)C27—N11—Ag2122.0 (5)
C3—N2—C2115.1 (6)C31—N11—Ag2117.1 (4)
C9—N3—C5117.3 (6)C36—N13—C33117.9 (6)
C9—N3—Ag1118.7 (5)C35—N14—C34115.9 (7)
C5—N3—Ag1122.6 (4)C41—N15—C37118.3 (6)
C11—N5—C14117.8 (6)C41—N15—Ag2117.2 (4)
C12—N6—C13115.7 (7)C37—N15—Ag2124.5 (4)
C19—N7—C15118.0 (6)C43—O3—Ag298.8 (4)
C19—N7—Ag1116.3 (4)N9—C23—C24121.5 (7)
C15—N7—Ag1125.1 (5)N9—C23—H23A119.3
C21—O1—Ag1105.4 (4)C24—C23—H23A119.3
N1—C1—C2120.9 (6)N10—C24—C23122.2 (6)
N1—C1—H1A119.5N10—C24—C32115.3 (6)
C2—C1—H1A119.5C23—C24—C32122.4 (7)
N2—C2—C1122.0 (6)N10—C25—C26122.6 (6)
N2—C2—C10115.6 (6)N10—C25—H25A118.7
C1—C2—C10122.4 (7)C26—C25—H25A118.7
N2—C3—C4123.7 (7)N9—C26—C25119.9 (7)
N2—C3—H3A118.1N9—C26—C27118.7 (6)
C4—C3—H3A118.1C25—C26—C27121.4 (6)
N1—C4—C3120.1 (7)N11—C27—C28120.0 (7)
N1—C4—C5118.2 (6)N11—C27—C26118.2 (6)
C3—C4—C5121.1 (6)C28—C27—C26121.8 (6)
N3—C5—C6122.1 (7)C29—C28—C27119.6 (7)
N3—C5—C4116.2 (6)C29—C28—H28A120.2
C6—C5—C4121.7 (6)C27—C28—H28A120.2
C5—C6—C7119.3 (8)C30—C29—C28120.1 (7)
C5—C6—H6A120.4C30—C29—H29A119.9
C7—C6—H6A120.4C28—C29—H29A119.9
C8—C7—C6118.9 (7)C29—C30—C31117.7 (7)
C8—C7—H7A120.6C29—C30—H30A121.1
C6—C7—H7A120.6C31—C30—H30A121.1
C7—C8—C9119.0 (8)N11—C31—C30123.3 (7)
C7—C8—H8A120.5N11—C31—H31A118.3
C9—C8—H8A120.5C30—C31—H31A118.3
N3—C9—C8123.3 (7)N12—C32—C24176.9 (10)
N3—C9—H9A118.3N13—C33—C34119.7 (6)
C8—C9—H9A118.3N13—C33—C37119.5 (5)
N4—C10—C2177.1 (9)C34—C33—C37120.8 (6)
N5—C11—C12118.5 (6)N14—C34—C33123.2 (8)
N5—C11—C15119.6 (6)N14—C34—H34A118.4
C12—C11—C15121.9 (6)C33—C34—H34A118.4
N6—C12—C11124.8 (7)N14—C35—C36122.2 (6)
N6—C12—H12A117.6N14—C35—C42115.3 (6)
C11—C12—H12A117.6C36—C35—C42122.5 (6)
N6—C13—C14121.0 (7)N13—C36—C35121.1 (6)
N6—C13—C20115.9 (7)N13—C36—H36A119.4
C14—C13—C20123.1 (7)C35—C36—H36A119.4
N5—C14—C13122.0 (7)N15—C37—C38121.2 (6)
N5—C14—H14A119.0N15—C37—C33117.4 (5)
C13—C14—H14A119.0C38—C37—C33121.2 (6)
N7—C15—C16121.3 (7)C37—C38—C39119.0 (7)
N7—C15—C11117.4 (6)C37—C38—H38A120.5
C16—C15—C11121.3 (6)C39—C38—H38A120.5
C17—C16—C15118.5 (7)C40—C39—C38120.1 (7)
C17—C16—H16A120.7C40—C39—H39A120.0
C15—C16—H16A120.7C38—C39—H39A120.0
C18—C17—C16119.9 (7)C39—C40—C41117.9 (7)
C18—C17—H17A120.1C39—C40—H40A121.1
C16—C17—H17A120.1C41—C40—H40A121.1
C17—C18—C19117.6 (7)N15—C41—C40123.4 (7)
C17—C18—H18A121.2N15—C41—H41A118.3
C19—C18—H18A121.2C40—C41—H41A118.3
N7—C19—C18124.6 (7)N16—C42—C35177.6 (9)
N7—C19—H19A117.7O4—C43—O3131.6 (7)
C18—C19—H19A117.7O4—C43—C44114.8 (6)
N8—C20—C13177.4 (9)O3—C43—C44113.4 (6)
O2—C21—O1129.9 (7)F5—C44—F4101.0 (8)
O2—C21—C22116.2 (6)F5—C44—F6101.9 (9)
O1—C21—C22113.8 (5)F4—C44—F6100.1 (8)
F3—C22—F299.2 (8)F5—C44—C43115.7 (8)
F3—C22—F1104.2 (9)F4—C44—C43118.8 (8)
F2—C22—F198.4 (8)F6—C44—C43116.5 (7)
F3—C22—C21120.5 (7)
N7—Ag1—N1—C4149.5 (5)Ag1—O1—C21—C22178.3 (5)
N3—Ag1—N1—C43.3 (5)O2—C21—C22—F3142.7 (10)
O1—Ag1—N1—C499.7 (5)O1—C21—C22—F338.0 (13)
N7—Ag1—N1—C131.1 (6)O2—C21—C22—F2100.3 (11)
N3—Ag1—N1—C1176.0 (7)O1—C21—C22—F279.0 (11)
O1—Ag1—N1—C179.7 (6)O2—C21—C22—F113.5 (13)
N7—Ag1—N3—C994.7 (7)O1—C21—C22—F1167.2 (10)
O1—Ag1—N3—C975.4 (6)N15—Ag2—N11—C27109.2 (7)
N1—Ag1—N3—C9170.1 (7)O3—Ag2—N11—C2783.7 (7)
N7—Ag1—N3—C598.8 (7)N15—Ag2—N11—C3186.1 (9)
O1—Ag1—N3—C591.1 (6)O3—Ag2—N11—C3181.0 (7)
N1—Ag1—N3—C53.6 (5)N11—Ag2—N15—C41101.2 (7)
N3—Ag1—N7—C19100.3 (8)O3—Ag2—N15—C4193.0 (6)
O1—Ag1—N7—C1990.0 (7)N11—Ag2—N15—C3779.6 (7)
N1—Ag1—N7—C1915.2 (7)O3—Ag2—N15—C3786.2 (5)
N3—Ag1—N7—C1589.0 (8)N15—Ag2—O3—C4351.4 (6)
O1—Ag1—N7—C1580.8 (6)N11—Ag2—O3—C43134.1 (5)
N1—Ag1—N7—C15174.1 (6)C26—N9—C23—C242.0 (15)
N7—Ag1—O1—C2153.2 (5)C25—N10—C24—C230.6 (14)
N3—Ag1—O1—C21131.2 (5)C25—N10—C24—C32177.8 (9)
N1—Ag1—O1—C2162.0 (5)N9—C23—C24—N102.9 (16)
C4—N1—C1—C21.2 (11)N9—C23—C24—C32175.4 (10)
Ag1—N1—C1—C2178.1 (5)C24—N10—C25—C262.4 (13)
C3—N2—C2—C14.0 (12)C23—N9—C26—C250.9 (13)
C3—N2—C2—C10176.3 (8)C23—N9—C26—C27180.0 (9)
N1—C1—C2—N24.1 (12)N10—C25—C26—N93.3 (13)
N1—C1—C2—C10176.2 (7)N10—C25—C26—C27177.7 (8)
C2—N2—C3—C41.4 (13)C31—N11—C27—C280.2 (13)
C1—N1—C4—C31.4 (11)Ag2—N11—C27—C28164.2 (6)
Ag1—N1—C4—C3179.2 (6)C31—N11—C27—C26178.8 (8)
C1—N1—C4—C5170.4 (6)Ag2—N11—C27—C2614.4 (11)
Ag1—N1—C4—C59.1 (8)N9—C26—C27—N115.8 (13)
N2—C3—C4—N11.4 (13)C25—C26—C27—N11173.2 (8)
N2—C3—C4—C5170.1 (8)N9—C26—C27—C28175.6 (8)
C9—N3—C5—C62.5 (11)C25—C26—C27—C285.3 (13)
Ag1—N3—C5—C6169.2 (6)N11—C27—C28—C291.0 (14)
C9—N3—C5—C4176.1 (7)C26—C27—C28—C29177.5 (9)
Ag1—N3—C5—C49.4 (9)C27—C28—C29—C301.6 (16)
N1—C4—C5—N312.4 (10)C28—C29—C30—C310.9 (16)
C3—C4—C5—N3175.9 (7)C27—N11—C31—C300.9 (15)
N1—C4—C5—C6166.2 (7)Ag2—N11—C31—C30164.2 (8)
C3—C4—C5—C65.4 (12)C29—C30—C31—N110.4 (16)
N3—C5—C6—C74.0 (13)C36—N13—C33—C342.6 (12)
C4—C5—C6—C7174.6 (8)C36—N13—C33—C37177.5 (7)
C5—C6—C7—C81.6 (15)C35—N14—C34—C332.2 (17)
C6—C7—C8—C91.9 (15)N13—C33—C34—N142.7 (17)
C5—N3—C9—C81.2 (13)C37—C33—C34—N14177.5 (10)
Ag1—N3—C9—C8166.0 (7)C34—N14—C35—C361.9 (15)
C7—C8—C9—N33.4 (15)C34—N14—C35—C42179.0 (9)
C14—N5—C11—C120.3 (14)C33—N13—C36—C352.4 (11)
C14—N5—C11—C15179.1 (9)N14—C35—C36—N132.1 (13)
C13—N6—C12—C110.5 (15)C42—C35—C36—N13179.0 (7)
N5—C11—C12—N61.0 (15)C41—N15—C37—C382.8 (10)
C15—C11—C12—N6179.9 (9)Ag2—N15—C37—C38178.0 (5)
C12—N6—C13—C142.8 (15)C41—N15—C37—C33172.7 (6)
C12—N6—C13—C20178.0 (9)Ag2—N15—C37—C336.4 (8)
C11—N5—C14—C132.0 (16)N13—C33—C37—N1513.5 (10)
N6—C13—C14—N53.7 (17)C34—C33—C37—N15166.7 (8)
C20—C13—C14—N5177.1 (10)N13—C33—C37—C38170.9 (7)
C19—N7—C15—C161.8 (12)C34—C33—C37—C388.9 (12)
Ag1—N7—C15—C16172.4 (7)N15—C37—C38—C392.7 (11)
C19—N7—C15—C11178.0 (8)C33—C37—C38—C39172.7 (7)
Ag1—N7—C15—C117.4 (10)C37—C38—C39—C400.4 (13)
N5—C11—C15—N76.9 (13)C38—C39—C40—C411.6 (14)
C12—C11—C15—N7171.9 (8)C37—N15—C41—C400.6 (12)
N5—C11—C15—C16173.4 (9)Ag2—N15—C41—C40179.9 (6)
C12—C11—C15—C167.8 (13)C39—C40—C41—N151.6 (13)
N7—C15—C16—C172.2 (14)Ag2—O3—C43—O43.7 (11)
C11—C15—C16—C17177.6 (9)Ag2—O3—C43—C44171.6 (6)
C15—C16—C17—C181.2 (16)O4—C43—C44—F571.1 (12)
C16—C17—C18—C190.0 (16)O3—C43—C44—F5105.0 (11)
C15—N7—C19—C180.5 (15)O4—C43—C44—F449.4 (13)
Ag1—N7—C19—C18171.9 (8)O3—C43—C44—F4134.5 (10)
C17—C18—C19—N70.4 (16)O4—C43—C44—F6169.2 (9)
Ag1—O1—C21—O22.5 (10)O3—C43—C44—F614.7 (13)

Experimental details

Crystal data
Chemical formula[Ag(C10H6N4)2(C2F3O2)]
Mr585.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)12.5237 (16), 14.9638 (18), 23.845 (3)
V3)4468.6 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.41 × 0.31 × 0.29
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.861, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24472, 7881, 6180
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.02
No. of reflections7881
No. of parameters649
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.64
Absolute structureFlack (1983), 3488 Friedel pairs
Absolute structure parameter0.10 (4)

Computer programs: APEX2 (Bruker 2007), APEX2 and SAINT (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful for financial support from the Science and Technology Program, Tianjin Municipal Commission.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChoudhury, A. R., Urs, U. K., Nagarajan, K. & Row, T. N. G. (2002). J. Mol. Struct. 605, 71–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationO'Keeffe, M. & Yaghi, O. M. (2012). Chem. Rev. 112, 675–702.  Web of Science CAS PubMed Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, p. 260. New York: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232–m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137–2145.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F. & Yang, Y.-L. (2011). Acta Cryst. E67, m1863.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds