organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3092-o3093

rac-Ethyl 4-hy­dr­oxy-4-tri­fluoro­methyl-6-(2,4,5-trimeth­­oxy­phen­yl)-2-thio-1,3-diazinane-5-carboxyl­ate

aState Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province, 461000, People's Republic of China
*Correspondence e-mail: chinarenbeijing@126.com

(Received 15 September 2012; accepted 29 September 2012; online 10 October 2012)

In the title compound, C17H21F3N2O6S, the hexa­hydro­pyrimidine ring adopts a half-chair conformation: the mean plane formed by the ring atoms excluding the C atom bonded to the eth­oxy­carbonyl group has an r.m.s. deviation of 0.0427 Å and forms a dihedral angle of 66.41 (5)° with the benzene ring. The mol­ecular conformation is stabilized by an intra­molecular hydroxyl O—H⋯Ocarbox­yl hydrogen bond, generating an S(6) ring. In the crystal, pairs of N—H⋯S and N–H⋯O hydrogen bonds give rise to the formation of two-dimensional networks lying parallel to the ab plane, which incorporate graph-set motifs R22(8) and R22(16), respectively.

Related literature

For the bioactivity of dihydro­pyrimidines, see: Brier et al. (2004[Brier, S., Lemaire, D., Debonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072-13082.]); Cochran et al. (2005[Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658-12667.]); Moran et al. (2007[Moran, M. M., Fanger, C., Chong, J. A., Mcnamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.]); Zorkun et al. (2006[Zorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582-8589.]) and for the bioactivity of organofluorine compounds, see: Hermann et al. (2003[Hermann, B., Erwin, H. & Hansjorg, K. (2003). US patent No. 2 003 176 284.]); Ulrich (2004[Ulrich, H. (2004). US patent No. 2 004 033 897.]). For the original Biginelli synthesis, see: Biginelli (1893[Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360-413.]). For a related structure, see: Li et al. (2011[Li, G.-C., Wu, C.-Z., Guo, L.-L. & Yang, F.-L. (2011). Acta Cryst. E67, o1704-o1705.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21F3N2O6S

  • Mr = 438.42

  • Triclinic, [P \overline 1]

  • a = 9.5070 (8) Å

  • b = 9.9040 (8) Å

  • c = 11.4710 (13) Å

  • α = 71.582 (13)°

  • β = 76.740 (16)°

  • γ = 79.743 (15)°

  • V = 990.89 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998)[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.] Tmin = 0.939, Tmax = 0.956

  • 13891 measured reflections

  • 5290 independent reflections

  • 3175 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 0.90

  • 5290 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.820 (15) 2.103 (16) 2.8055 (15) 143.5 (15)
N2—H2⋯O5i 0.824 (15) 2.129 (15) 2.9521 (15) 176.6 (15)
N1—H1A⋯S1ii 0.834 (15) 2.526 (16) 3.3427 (13) 166.3 (15)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The Biginelli reaction, the direct synthesis of dihydropyrimidinones by the one-pot condensation of aldehydes, urea or thiourea, was first reported more than a century ago (Biginelli, 1893). Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005; Brier et al., 2004) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C17H21F3N2O6S was isolated and the structure confirmed by X-ray diffraction.

In the structure of the title molecule, the hexahydropyrimidine ring adopts a half-chair conformation, the mean plane formed by the ring atoms excluding the C atom bonded to the ethoxy carbonyl group has an r.m.s. deviation of 0.0427 Å, with a dihedral angle of 66.41 (5)° between the this plane and the benzene ring. The molecular conformation is stabilized by an intramolecular hydroxyl O—H···Ocarboxyl hydrogen bond (Table 1), generating an S(6) ring. In the crystal structure, intermolecular cyclic N—H···S, and N—H···O hydrogen-bonding interactions [graph sets R22(8) and R22(16), respectively (Bernstein et al., 1995)], together with a short hydroxyl O—H···O interaction give a two-dimensional structure (Fig. 2). For the crystal structure of a compound related to the title compound, see Li et al. (2011).

Related literature top

For the bioactivity of dihydropyrimidines, see: Brier et al. (2004); Cochran et al. (2005); Moran et al. (2007); Zorkun et al. (2006) and for the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For the original Biginelli synthesis, see: Biginelli (1893). For a related structure, see: Li et al. (2011). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by refluxing for 3 h a stirred solution of 2,4,5-trimethoxybenzaldehyde (0.98 g, 5 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate (1.11 g, 6 mmol) and thiourea (0.57 g, 7.5 mmol) in 5 ml of anhydrous ethanol, the reaction catalyzed by sulfamic acid (0.15 g). The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized from 50% aqueous ethanol and single crystals were obtained by slow room-temperature evaporation of the solution.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.98 Å, 0.99 Å or 1.00 Å and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2009); cell refinement: CrystalClear (Rigaku/MSC, 2009); data reduction: CrystalClear (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound in the unit cell viewed down the c axis, with hydrogen bonds shown as dashed lines.
rac-Ethyl 4-hydroxy-4-trifluoromethyl-6-(2,4,5-trimethoxyphenyl)- 2-thio-1,3-diazinane-5-carboxylate top
Crystal data top
C17H21F3N2O6SZ = 2
Mr = 438.42F(000) = 456
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.5070 (8) ÅCell parameters from 3446 reflections
b = 9.9040 (8) Åθ = 1.9–29.2°
c = 11.4710 (13) ŵ = 0.23 mm1
α = 71.582 (13)°T = 113 K
β = 76.740 (16)°Prism, colorless
γ = 79.743 (15)°0.28 × 0.22 × 0.20 mm
V = 990.89 (19) Å3
Data collection top
Rigaku Saturn724 CCD-detector
diffractometer
5290 independent reflections
Radiation source: rotating anode3175 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.049
Detector resolution: 14.222 pixels mm-1θmax = 29.1°, θmin = 1.9°
ω scansh = 1213
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1313
Tmin = 0.939, Tmax = 0.956l = 1515
13891 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0266P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.001
5290 reflectionsΔρmax = 0.33 e Å3
279 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0101 (11)
Crystal data top
C17H21F3N2O6Sγ = 79.743 (15)°
Mr = 438.42V = 990.89 (19) Å3
Triclinic, P1Z = 2
a = 9.5070 (8) ÅMo Kα radiation
b = 9.9040 (8) ŵ = 0.23 mm1
c = 11.4710 (13) ÅT = 113 K
α = 71.582 (13)°0.28 × 0.22 × 0.20 mm
β = 76.740 (16)°
Data collection top
Rigaku Saturn724 CCD-detector
diffractometer
5290 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3175 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.956Rint = 0.049
13891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.33 e Å3
5290 reflectionsΔρmin = 0.26 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92027 (4)0.42289 (4)0.38162 (3)0.02116 (10)
F10.81454 (9)0.32810 (9)0.86049 (8)0.0272 (2)
F20.79020 (9)0.55959 (9)0.79756 (8)0.0284 (2)
F30.61189 (9)0.44824 (10)0.91797 (8)0.0276 (2)
O10.56858 (11)0.56726 (10)0.67450 (10)0.0200 (2)
O20.35960 (10)0.39204 (11)0.83456 (10)0.0237 (2)
O30.46465 (10)0.17323 (11)0.92763 (9)0.0221 (2)
O40.72397 (10)0.03795 (10)0.63698 (9)0.0195 (2)
O50.31176 (10)0.21345 (10)0.69741 (9)0.0183 (2)
O60.13106 (10)0.03586 (10)0.68092 (10)0.0196 (2)
N10.78623 (12)0.44308 (13)0.60651 (11)0.0160 (3)
N20.67147 (12)0.33257 (13)0.51166 (11)0.0148 (3)
C10.78416 (14)0.39765 (14)0.50737 (12)0.0144 (3)
C20.66487 (14)0.44157 (14)0.70770 (13)0.0154 (3)
C30.59354 (14)0.30412 (14)0.73587 (12)0.0143 (3)
H30.66530.21860.76170.017*
C40.54789 (14)0.30384 (14)0.61551 (12)0.0139 (3)
H40.46820.38380.59700.017*
C50.72143 (15)0.44432 (16)0.82155 (13)0.0194 (3)
C60.45866 (15)0.29678 (15)0.83747 (13)0.0177 (3)
C70.34010 (16)0.15335 (18)1.03094 (14)0.0295 (4)
H7A0.30110.24661.04720.035*
H7B0.37220.08741.10750.035*
C80.22227 (18)0.0932 (2)1.00195 (17)0.0471 (5)
H8A0.18330.16280.93150.057*
H8B0.14410.07321.07540.057*
H8C0.26240.00430.98010.057*
C90.48928 (14)0.16512 (14)0.63245 (12)0.0139 (3)
C100.57798 (14)0.03450 (15)0.64410 (12)0.0148 (3)
C110.51657 (14)0.09063 (14)0.66579 (12)0.0156 (3)
H110.57700.17900.67170.019*
C120.36760 (14)0.08670 (14)0.67880 (13)0.0154 (3)
C130.27734 (14)0.04244 (15)0.66821 (12)0.0150 (3)
C140.33970 (14)0.16737 (15)0.64445 (12)0.0152 (3)
H140.27920.25600.63620.018*
C150.81956 (14)0.09137 (15)0.63483 (14)0.0202 (3)
H15A0.79760.16430.71520.024*
H15B0.92070.07190.62010.024*
H15C0.80570.12610.56770.024*
C160.21996 (16)0.26397 (16)0.81787 (13)0.0259 (4)
H16A0.27550.27990.88410.031*
H16B0.18590.35400.82360.031*
H16C0.13610.19220.82760.031*
C170.03752 (14)0.16588 (16)0.68146 (15)0.0240 (4)
H17A0.05320.20220.74710.029*
H17B0.06410.14730.69760.029*
H17C0.05940.23720.60010.029*
H10.4866 (17)0.5528 (17)0.7147 (15)0.037 (6)*
H1A0.8556 (17)0.4884 (18)0.5985 (16)0.040 (5)*
H20.6770 (15)0.2958 (16)0.4553 (14)0.025 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0211 (2)0.0299 (2)0.01504 (19)0.01212 (17)0.00076 (15)0.00803 (16)
F10.0276 (5)0.0317 (5)0.0234 (5)0.0066 (4)0.0116 (4)0.0100 (4)
F20.0321 (5)0.0333 (5)0.0273 (5)0.0162 (4)0.0006 (4)0.0159 (4)
F30.0227 (5)0.0429 (6)0.0209 (5)0.0075 (4)0.0038 (4)0.0179 (4)
O10.0177 (6)0.0143 (5)0.0266 (6)0.0009 (4)0.0044 (5)0.0052 (4)
O20.0185 (6)0.0235 (6)0.0266 (6)0.0010 (5)0.0002 (5)0.0084 (5)
O30.0244 (6)0.0220 (6)0.0160 (5)0.0049 (5)0.0024 (4)0.0030 (4)
O40.0115 (5)0.0170 (5)0.0301 (6)0.0007 (4)0.0038 (4)0.0077 (5)
O50.0183 (5)0.0175 (5)0.0205 (6)0.0078 (4)0.0026 (4)0.0088 (4)
O60.0119 (5)0.0169 (5)0.0300 (6)0.0012 (4)0.0047 (4)0.0062 (5)
N10.0140 (6)0.0199 (7)0.0161 (6)0.0065 (5)0.0006 (5)0.0072 (5)
N20.0160 (6)0.0169 (6)0.0127 (6)0.0054 (5)0.0009 (5)0.0053 (5)
C10.0166 (7)0.0116 (7)0.0157 (7)0.0017 (6)0.0060 (6)0.0027 (6)
C20.0160 (7)0.0155 (7)0.0151 (7)0.0025 (6)0.0016 (6)0.0053 (6)
C30.0134 (7)0.0143 (7)0.0157 (7)0.0011 (6)0.0026 (6)0.0052 (6)
C40.0123 (7)0.0135 (7)0.0155 (7)0.0001 (6)0.0022 (6)0.0043 (6)
C50.0174 (7)0.0210 (8)0.0201 (8)0.0030 (6)0.0004 (6)0.0086 (6)
C60.0197 (8)0.0185 (8)0.0173 (7)0.0047 (6)0.0030 (6)0.0077 (6)
C70.0302 (9)0.0356 (10)0.0165 (8)0.0071 (8)0.0065 (7)0.0050 (7)
C80.0394 (11)0.0665 (14)0.0341 (11)0.0269 (10)0.0071 (9)0.0112 (10)
C90.0158 (7)0.0144 (7)0.0114 (7)0.0033 (6)0.0014 (5)0.0034 (6)
C100.0117 (7)0.0191 (8)0.0140 (7)0.0027 (6)0.0012 (6)0.0055 (6)
C110.0159 (7)0.0142 (7)0.0165 (7)0.0016 (6)0.0026 (6)0.0062 (6)
C120.0173 (7)0.0162 (7)0.0142 (7)0.0059 (6)0.0006 (6)0.0059 (6)
C130.0116 (7)0.0187 (7)0.0151 (7)0.0032 (6)0.0014 (5)0.0055 (6)
C140.0158 (7)0.0149 (7)0.0149 (7)0.0000 (6)0.0031 (6)0.0049 (6)
C150.0148 (7)0.0203 (8)0.0245 (8)0.0015 (6)0.0027 (6)0.0078 (6)
C160.0362 (9)0.0217 (8)0.0180 (8)0.0105 (7)0.0011 (7)0.0035 (6)
C170.0134 (7)0.0235 (9)0.0345 (9)0.0012 (6)0.0035 (7)0.0102 (7)
Geometric parameters (Å, º) top
S1—C11.6878 (14)C4—C91.5133 (18)
F1—C51.3422 (16)C4—H41.0000
F2—C51.3384 (16)C7—C81.501 (2)
F3—C51.3392 (15)C7—H7A0.9900
O1—C21.4096 (16)C7—H7B0.9900
O1—H10.820 (15)C8—H8A0.9800
O2—C61.2068 (16)C8—H8B0.9800
O3—C61.3314 (17)C8—H8C0.9800
O3—C71.4619 (16)C9—C141.3937 (17)
O4—C101.3775 (15)C9—C101.3988 (19)
O4—C151.4360 (15)C10—C111.3910 (18)
O5—C121.3854 (15)C11—C121.3844 (17)
O5—C161.4445 (16)C11—H110.9500
O6—C131.3758 (15)C12—C131.3949 (19)
O6—C171.4296 (16)C13—C141.3895 (19)
N1—C11.3538 (17)C14—H140.9500
N1—C21.4352 (17)C15—H15A0.9800
N1—H1A0.834 (15)C15—H15B0.9800
N2—C11.3295 (16)C15—H15C0.9800
N2—C41.4640 (16)C16—H16A0.9800
N2—H20.824 (15)C16—H16B0.9800
C2—C51.5315 (19)C16—H16C0.9800
C2—C31.5388 (18)C17—H17A0.9800
C3—C61.5172 (18)C17—H17B0.9800
C3—C41.5403 (18)C17—H17C0.9800
C3—H31.0000
C2—O1—H1109.2 (12)C8—C7—H7B109.4
C6—O3—C7116.46 (11)H7A—C7—H7B108.0
C10—O4—C15117.60 (10)C7—C8—H8A109.5
C12—O5—C16114.69 (11)C7—C8—H8B109.5
C13—O6—C17116.33 (10)H8A—C8—H8B109.5
C1—N1—C2123.14 (12)C7—C8—H8C109.5
C1—N1—H1A115.4 (12)H8A—C8—H8C109.5
C2—N1—H1A120.3 (12)H8B—C8—H8C109.5
C1—N2—C4125.74 (12)C14—C9—C10119.20 (12)
C1—N2—H2116.9 (10)C14—C9—C4118.14 (12)
C4—N2—H2116.8 (10)C10—C9—C4122.54 (12)
N2—C1—N1118.08 (12)O4—C10—C11123.52 (12)
N2—C1—S1120.77 (11)O4—C10—C9116.59 (12)
N1—C1—S1121.16 (10)C11—C10—C9119.86 (12)
O1—C2—N1108.97 (11)C12—C11—C10120.18 (13)
O1—C2—C5107.58 (11)C12—C11—H11119.9
N1—C2—C5108.28 (11)C10—C11—H11119.9
O1—C2—C3112.87 (11)C11—C12—O5118.11 (12)
N1—C2—C3108.27 (11)C11—C12—C13120.75 (12)
C5—C2—C3110.77 (12)O5—C12—C13121.09 (12)
C6—C3—C2112.14 (11)O6—C13—C14124.72 (12)
C6—C3—C4108.08 (11)O6—C13—C12116.52 (12)
C2—C3—C4108.03 (11)C14—C13—C12118.76 (12)
C6—C3—H3109.5C13—C14—C9121.24 (13)
C2—C3—H3109.5C13—C14—H14119.4
C4—C3—H3109.5C9—C14—H14119.4
N2—C4—C9112.66 (11)O4—C15—H15A109.5
N2—C4—C3109.02 (10)O4—C15—H15B109.5
C9—C4—C3111.13 (11)H15A—C15—H15B109.5
N2—C4—H4108.0O4—C15—H15C109.5
C9—C4—H4108.0H15A—C15—H15C109.5
C3—C4—H4108.0H15B—C15—H15C109.5
F2—C5—F3106.90 (11)O5—C16—H16A109.5
F2—C5—F1107.50 (11)O5—C16—H16B109.5
F3—C5—F1107.21 (11)H16A—C16—H16B109.5
F2—C5—C2111.95 (12)O5—C16—H16C109.5
F3—C5—C2110.97 (12)H16A—C16—H16C109.5
F1—C5—C2112.04 (11)H16B—C16—H16C109.5
O2—C6—O3125.39 (13)O6—C17—H17A109.5
O2—C6—C3123.22 (13)O6—C17—H17B109.5
O3—C6—C3111.39 (12)H17A—C17—H17B109.5
O3—C7—C8111.32 (13)O6—C17—H17C109.5
O3—C7—H7A109.4H17A—C17—H17C109.5
C8—C7—H7A109.4H17B—C17—H17C109.5
O3—C7—H7B109.4
C4—N2—C1—N10.5 (2)C4—C3—C6—O266.66 (17)
C4—N2—C1—S1179.59 (10)C2—C3—C6—O3127.98 (12)
C2—N1—C1—N28.5 (2)C4—C3—C6—O3113.05 (13)
C2—N1—C1—S1171.37 (10)C6—O3—C7—C886.53 (17)
C1—N1—C2—O184.44 (15)N2—C4—C9—C14131.29 (13)
C1—N1—C2—C5158.83 (13)C3—C4—C9—C14106.04 (14)
C1—N1—C2—C338.67 (17)N2—C4—C9—C1052.74 (18)
O1—C2—C3—C656.23 (15)C3—C4—C9—C1069.94 (16)
N1—C2—C3—C6176.95 (11)C15—O4—C10—C118.80 (19)
C5—C2—C3—C664.47 (15)C15—O4—C10—C9173.30 (12)
O1—C2—C3—C462.77 (14)C14—C9—C10—O4177.16 (12)
N1—C2—C3—C457.94 (14)C4—C9—C10—O41.23 (19)
C5—C2—C3—C4176.53 (11)C14—C9—C10—C110.8 (2)
C1—N2—C4—C9146.08 (13)C4—C9—C10—C11176.76 (12)
C1—N2—C4—C322.23 (18)O4—C10—C11—C12176.31 (12)
C6—C3—C4—N2171.55 (11)C9—C10—C11—C121.5 (2)
C2—C3—C4—N250.00 (14)C10—C11—C12—O5178.53 (12)
C6—C3—C4—C963.69 (14)C10—C11—C12—C131.2 (2)
C2—C3—C4—C9174.76 (10)C16—O5—C12—C11114.47 (14)
O1—C2—C5—F259.19 (14)C16—O5—C12—C1368.16 (17)
N1—C2—C5—F258.44 (15)C17—O6—C13—C146.35 (19)
C3—C2—C5—F2177.02 (11)C17—O6—C13—C12174.47 (12)
O1—C2—C5—F360.15 (14)C11—C12—C13—O6179.16 (12)
N1—C2—C5—F3177.78 (11)O5—C12—C13—O61.86 (19)
C3—C2—C5—F363.64 (15)C11—C12—C13—C140.1 (2)
O1—C2—C5—F1179.96 (10)O5—C12—C13—C14177.37 (12)
N1—C2—C5—F162.42 (14)O6—C13—C14—C9179.80 (13)
C3—C2—C5—F156.17 (15)C12—C13—C14—C90.6 (2)
C7—O3—C6—O20.1 (2)C10—C9—C14—C130.3 (2)
C7—O3—C6—C3179.80 (11)C4—C9—C14—C13175.86 (12)
C2—C3—C6—O252.32 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.820 (15)2.103 (16)2.8055 (15)143.5 (15)
O1—H1···O5i0.820 (15)2.579 (16)2.9876 (15)112.2 (13)
N2—H2···O5ii0.824 (15)2.129 (15)2.9521 (15)176.6 (15)
N1—H1A···S1iii0.834 (15)2.526 (16)3.3427 (13)166.3 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H21F3N2O6S
Mr438.42
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.5070 (8), 9.9040 (8), 11.4710 (13)
α, β, γ (°)71.582 (13), 76.740 (16), 79.743 (15)
V3)990.89 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.939, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
13891, 5290, 3175
Rint0.049
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 0.90
No. of reflections5290
No. of parameters279
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.820 (15)2.103 (16)2.8055 (15)143.5 (15)
N2—H2···O5i0.824 (15)2.129 (15)2.9521 (15)176.6 (15)
N1—H1A···S1ii0.834 (15)2.526 (16)3.3427 (13)166.3 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Technology Research and Development Program of Henan Province, China (grant No. 122102210426).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiginelli, P. (1893). Gazz. Chim. Ital. 23, 360–413.  Google Scholar
First citationBrier, S., Lemaire, D., Debonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHermann, B., Erwin, H. & Hansjorg, K. (2003). US patent No. 2 003 176 284.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, G.-C., Wu, C.-Z., Guo, L.-L. & Yang, F.-L. (2011). Acta Cryst. E67, o1704–o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoran, M. M., Fanger, C., Chong, J. A., Mcnamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.  Google Scholar
First citationRigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, H. (2004). US patent No. 2 004 033 897.  Google Scholar
First citationZorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3092-o3093
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds