organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second polymorph of 2,4,6-tris­­(3,5-di­methyl-1H-pyrazol-1-yl)-1,3,5-triazine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 October 2012; accepted 17 October 2012; online 24 October 2012)

The mol­ecule of the title compound, C18H21N9, is nearly planar, with the three pyrazole rings aligned at 2.40 (5), 9.27 (5) and 9.71 (5)° with respect to the triazine ring. The triazine ring is planar (r.m.s. deviation = 0.005 Å), the distortion from a hexa­gonal arrangement arising from the angles at the N [112.4 (1)–113.1 (1)°] and C [127.1 (1)–127.6 (1)°] atoms deviating from 120°. The crystal studied was an inversion twin.

Related literature

For another Pna21 polymorph, see: Guerrero et al. (2003[Guerrero, A., Jalón, F. A., Manzano, B. R., Claramunt, R. M., Cabildo, P., Infantes, L., Cano, F. H. & Elguero, J. (2003). Chem. Heterocycl. Compd, pp. 1584-1591.]). For a discussion of the determination of the absolute parameter, see: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N9

  • Mr = 363.44

  • Orthorhombic, P n a 21

  • a = 7.1840 (1) Å

  • b = 12.5079 (1) Å

  • c = 19.9527 (1) Å

  • V = 1792.89 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.815, Tmax = 0.871

  • 33189 measured reflections

  • 3744 independent reflections

  • 3740 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.06

  • 3744 reflections

  • 250 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1813 Friedel pairs

  • Flack parameter: 0.51 (19)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tris(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (Scheme I) was reported as being orthorhombic in the Pna21 space group [7.941 (1), 12.555 (1), 18.901 (1) Å] (Guerrero et al., 2003). For organic compounds belonging to noncentrosymmetric space groups, Friedel pairs are generally merged so that the absolute structure is not determined, particularly if the diffractometer measurements are of average quality.

A different polymorph that belongs to the same space group has been found in the present study. Because the diffraction measurements are of exceptionally high quality, the Flack parameter (Flack, 1983) could be refined. As this parameter refined to 0.5 (2), the structure (Fig. 1) is then interpreted as being a racemic twin. The somewhat more reliable Hooft value of 0.48 (3), with the smaller standard uncertainty, indicates that the absolute structure had probably been determined correctly.

The molecule of the title compound is nearly planar with the three pyrazole rings aligned at 2.40 (5), 9.27 (5) and 9.71 (5)° with respect to the triazine ring. The triazine ring is planar (r.m.s. deviation 0.005Å), the distortion from a hexagonal arrangement arising from the angles at the nitrogen [112.4 (1) to 113.1 (1) °] and carbon [127.1 (1) to 127.6 (1)°] atoms deviating from 120°.

Related literature top

For another Pna21 polymorph, see: Guerrero et al. (2003). For a discussion of the determination of the absolute parameter, see: Flack & Bernardinelli (2000); Hooft et al. (2008); Spek (2009).

Experimental top

3,5-Dimethylpyrazole (0.77 g, 8 mmol) and sodium hydride (0.38 g, 16 mmol) were added to a solution of cyanuric chloride (0.74 g, 4 mmol) dissolved in dry THF (40 ml). The mixture was stirred for 20 h. The THF was removed under reduced pressure and water was added. The organic compound was extracted with dichloromethane (3 × 15 ml). The organic layer was dried over magnesium sulfate. The solvent was evaporated and the product purified on silica gel. Colorless crystals were obtained upon recrystalization from a hexane-dichloromethane (1:1) mixture in 60% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5 Ueq(C)] and were included in the refinement in the riding model approximation. The absolute structure parameter y was calculated from Bayesian statistics (Hooft et al., 2008) by using PLATON (Spek, 2009). The Friedel coverage was 99%; the Hooft value of 0.48 (3) indicates that the absolute structure had probably been determined correctly. The uncertainty in the absolute structure parameter was based on set criteria (Flack & Bernardinelli, 2000).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C18H21N9 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2,4,6-Tris(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine top
Crystal data top
C18H21N9F(000) = 768
Mr = 363.44Dx = 1.347 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 23687 reflections
a = 7.1840 (1) Åθ = 3.5–76.5°
b = 12.5079 (1) ŵ = 0.71 mm1
c = 19.9527 (1) ÅT = 100 K
V = 1792.89 (3) Å3Prism, colorless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas CCD detector
3744 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3740 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 4.2°
ω scansh = 97
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.815, Tmax = 0.871l = 2525
33189 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1472P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3744 reflectionsΔρmax = 0.17 e Å3
250 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1813 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.51 (19)
Crystal data top
C18H21N9V = 1792.89 (3) Å3
Mr = 363.44Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 7.1840 (1) ŵ = 0.71 mm1
b = 12.5079 (1) ÅT = 100 K
c = 19.9527 (1) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas CCD detector
3744 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3740 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.871Rint = 0.016
33189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.23 e Å3
3744 reflectionsAbsolute structure: Flack (1983), 1813 Friedel pairs
250 parametersAbsolute structure parameter: 0.51 (19)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64690 (14)0.33516 (7)0.49998 (4)0.01670 (18)
N20.76115 (13)0.35089 (7)0.61216 (5)0.01684 (18)
N30.70433 (13)0.50706 (7)0.54716 (5)0.01692 (19)
N40.70786 (13)0.18485 (7)0.56534 (4)0.01575 (19)
N50.65449 (13)0.12198 (8)0.51162 (5)0.01787 (19)
N60.58836 (13)0.49074 (7)0.43969 (4)0.01651 (19)
N70.60689 (13)0.60069 (7)0.43401 (5)0.01858 (19)
N80.81077 (13)0.52146 (7)0.65568 (4)0.01588 (18)
N90.89652 (12)0.47659 (7)0.71095 (5)0.01760 (19)
C10.70516 (15)0.29617 (8)0.55866 (6)0.0150 (2)
C20.75663 (14)0.45598 (9)0.60231 (5)0.0154 (2)
C30.64950 (15)0.44148 (8)0.49846 (5)0.0153 (2)
C40.82309 (17)0.16382 (9)0.68709 (5)0.0204 (2)
H4A0.85860.10330.71550.031*
H4B0.71980.20260.70800.031*
H4C0.92970.21190.68180.031*
C50.76404 (15)0.12363 (9)0.62003 (6)0.0170 (2)
C60.74711 (16)0.01995 (9)0.59952 (6)0.0194 (2)
H60.77560.04210.62500.023*
C70.67861 (14)0.02291 (9)0.53266 (6)0.0176 (2)
C80.63441 (17)0.07007 (9)0.48831 (6)0.0212 (2)
H8A0.60410.04420.44320.032*
H8B0.52770.10920.50660.032*
H8C0.74240.11780.48600.032*
C90.44991 (16)0.33159 (9)0.37583 (6)0.0205 (2)
H9A0.38800.32150.33250.031*
H9B0.36690.30820.41190.031*
H9C0.56460.28920.37700.031*
C100.49607 (15)0.44699 (9)0.38503 (5)0.0170 (2)
C110.45694 (16)0.53202 (9)0.34406 (6)0.0194 (2)
H110.39470.52950.30210.023*
C120.52746 (15)0.62463 (9)0.37652 (6)0.0191 (2)
C130.51606 (18)0.73881 (10)0.35422 (7)0.0257 (2)
H13A0.63400.77500.36400.039*
H13B0.41470.77480.37820.039*
H13C0.49200.74140.30590.039*
C140.71358 (17)0.70472 (9)0.60992 (6)0.0230 (2)
H14A0.71020.77760.62800.035*
H14B0.58640.68050.60070.035*
H14C0.78620.70390.56830.035*
C150.80173 (15)0.63183 (8)0.65987 (6)0.0179 (2)
C160.88424 (16)0.65728 (9)0.71970 (6)0.0204 (2)
H160.90010.72690.73790.024*
C170.94152 (15)0.55897 (9)0.74920 (5)0.0180 (2)
C181.03930 (18)0.54346 (9)0.81452 (6)0.0236 (2)
H18A1.05440.46680.82320.035*
H18B0.96570.57580.85060.035*
H18C1.16200.57760.81260.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0178 (4)0.0167 (4)0.0155 (4)0.0006 (3)0.0008 (3)0.0003 (3)
N20.0178 (4)0.0169 (4)0.0158 (4)0.0008 (3)0.0006 (3)0.0006 (3)
N30.0182 (4)0.0165 (4)0.0160 (5)0.0006 (3)0.0001 (3)0.0009 (3)
N40.0180 (4)0.0157 (4)0.0136 (4)0.0008 (3)0.0008 (3)0.0003 (3)
N50.0201 (4)0.0171 (4)0.0164 (4)0.0021 (3)0.0009 (3)0.0022 (3)
N60.0182 (4)0.0155 (4)0.0158 (4)0.0013 (3)0.0010 (4)0.0012 (4)
N70.0214 (4)0.0147 (4)0.0197 (4)0.0003 (3)0.0001 (4)0.0027 (3)
N80.0181 (4)0.0148 (4)0.0147 (4)0.0004 (3)0.0004 (3)0.0007 (3)
N90.0193 (4)0.0204 (4)0.0131 (4)0.0001 (3)0.0001 (3)0.0004 (3)
C10.0140 (4)0.0154 (5)0.0156 (4)0.0014 (4)0.0021 (3)0.0006 (4)
C20.0135 (5)0.0183 (5)0.0144 (5)0.0017 (4)0.0017 (4)0.0012 (4)
C30.0139 (4)0.0173 (5)0.0146 (5)0.0013 (4)0.0006 (3)0.0008 (4)
C40.0241 (5)0.0214 (5)0.0157 (5)0.0016 (4)0.0032 (4)0.0014 (4)
C50.0163 (5)0.0176 (5)0.0171 (5)0.0007 (4)0.0023 (4)0.0022 (4)
C60.0216 (5)0.0170 (5)0.0195 (5)0.0008 (4)0.0015 (4)0.0022 (4)
C70.0171 (4)0.0181 (5)0.0178 (5)0.0013 (4)0.0037 (4)0.0009 (4)
C80.0273 (6)0.0170 (5)0.0193 (5)0.0016 (4)0.0035 (4)0.0027 (4)
C90.0238 (5)0.0212 (5)0.0166 (5)0.0024 (4)0.0019 (4)0.0013 (4)
C100.0149 (5)0.0222 (5)0.0138 (5)0.0001 (4)0.0004 (4)0.0003 (4)
C110.0168 (5)0.0250 (5)0.0164 (5)0.0004 (4)0.0002 (4)0.0020 (4)
C120.0161 (5)0.0200 (5)0.0212 (5)0.0007 (4)0.0019 (4)0.0049 (4)
C130.0241 (6)0.0219 (5)0.0313 (6)0.0020 (4)0.0015 (5)0.0098 (4)
C140.0300 (6)0.0173 (5)0.0219 (5)0.0023 (4)0.0041 (5)0.0005 (4)
C150.0196 (5)0.0171 (5)0.0168 (5)0.0014 (4)0.0019 (4)0.0009 (4)
C160.0246 (5)0.0191 (5)0.0176 (5)0.0019 (4)0.0004 (4)0.0031 (4)
C170.0176 (5)0.0213 (5)0.0151 (5)0.0020 (4)0.0014 (4)0.0012 (4)
C180.0285 (6)0.0250 (5)0.0175 (5)0.0007 (5)0.0052 (5)0.0018 (4)
Geometric parameters (Å, º) top
N1—C31.3303 (13)C8—H8A0.9800
N1—C11.3356 (14)C8—H8B0.9800
N2—C21.3295 (14)C8—H8C0.9800
N2—C11.3302 (14)C9—C101.4923 (15)
N3—C21.3268 (14)C9—H9A0.9800
N3—C31.3312 (14)C9—H9B0.9800
N4—N51.3836 (13)C9—H9C0.9800
N4—C51.3929 (14)C10—C111.3705 (15)
N4—C11.3989 (13)C11—C121.4206 (16)
N5—C71.3197 (14)C11—H110.9500
N6—N71.3863 (11)C12—C131.4980 (14)
N6—C101.3887 (14)C13—H13A0.9800
N6—C31.3957 (13)C13—H13B0.9800
N7—C121.3157 (15)C13—H13C0.9800
N8—N91.3822 (12)C14—C151.4918 (15)
N8—C151.3846 (13)C14—H14A0.9800
N8—C21.3985 (13)C14—H14B0.9800
N9—C171.3225 (14)C14—H14C0.9800
C4—C51.4909 (15)C15—C161.3703 (15)
C4—H4A0.9800C16—C171.4240 (15)
C4—H4B0.9800C16—H160.9500
C4—H4C0.9800C17—C181.4931 (15)
C5—C61.3653 (15)C18—H18A0.9800
C6—C71.4225 (16)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.4954 (15)
C3—N1—C1112.37 (9)H8B—C8—H8C109.5
C2—N2—C1112.51 (9)C10—C9—H9A109.5
C2—N3—C3113.11 (9)C10—C9—H9B109.5
N5—N4—C5112.01 (9)H9A—C9—H9B109.5
N5—N4—C1119.22 (9)C10—C9—H9C109.5
C5—N4—C1128.74 (10)H9A—C9—H9C109.5
C7—N5—N4104.53 (9)H9B—C9—H9C109.5
N7—N6—C10111.88 (8)C11—C10—N6105.10 (9)
N7—N6—C3118.44 (9)C11—C10—C9129.18 (11)
C10—N6—C3129.51 (9)N6—C10—C9125.72 (9)
C12—N7—N6104.79 (9)C10—C11—C12106.73 (10)
N9—N8—C15112.18 (8)C10—C11—H11126.6
N9—N8—C2119.58 (8)C12—C11—H11126.6
C15—N8—C2128.08 (9)N7—C12—C11111.50 (10)
C17—N9—N8104.65 (9)N7—C12—C13119.98 (10)
N2—C1—N1127.61 (10)C11—C12—C13128.49 (11)
N2—C1—N4115.56 (10)C12—C13—H13A109.5
N1—C1—N4116.83 (9)C12—C13—H13B109.5
N3—C2—N2127.27 (10)H13A—C13—H13B109.5
N3—C2—N8115.36 (9)C12—C13—H13C109.5
N2—C2—N8117.37 (9)H13A—C13—H13C109.5
N1—C3—N3127.12 (10)H13B—C13—H13C109.5
N1—C3—N6117.13 (9)C15—C14—H14A109.5
N3—C3—N6115.75 (9)C15—C14—H14B109.5
C5—C4—H4A109.5H14A—C14—H14B109.5
C5—C4—H4B109.5C15—C14—H14C109.5
H4A—C4—H4B109.5H14A—C14—H14C109.5
C5—C4—H4C109.5H14B—C14—H14C109.5
H4A—C4—H4C109.5C16—C15—N8105.30 (9)
H4B—C4—H4C109.5C16—C15—C14128.59 (10)
C6—C5—N4105.16 (10)N8—C15—C14126.08 (10)
C6—C5—C4127.92 (11)C15—C16—C17106.53 (10)
N4—C5—C4126.89 (10)C15—C16—H16126.7
C5—C6—C7106.69 (10)C17—C16—H16126.7
C5—C6—H6126.7N9—C17—C16111.33 (10)
C7—C6—H6126.7N9—C17—C18121.16 (10)
N5—C7—C6111.60 (10)C16—C17—C18127.51 (10)
N5—C7—C8120.94 (10)C17—C18—H18A109.5
C6—C7—C8127.46 (10)C17—C18—H18B109.5
C7—C8—H8A109.5H18A—C18—H18B109.5
C7—C8—H8B109.5C17—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
C7—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8C109.5
C5—N4—N5—C70.42 (12)N5—N4—C5—C60.66 (12)
C1—N4—N5—C7177.77 (9)C1—N4—C5—C6177.31 (10)
C10—N6—N7—C120.13 (11)N5—N4—C5—C4177.36 (10)
C3—N6—N7—C12175.89 (9)C1—N4—C5—C44.66 (18)
C15—N8—N9—C170.33 (11)N4—C5—C6—C70.62 (11)
C2—N8—N9—C17175.53 (9)C4—C5—C6—C7177.38 (11)
C2—N2—C1—N10.66 (16)N4—N5—C7—C60.01 (11)
C2—N2—C1—N4179.50 (9)N4—N5—C7—C8179.63 (9)
C3—N1—C1—N20.23 (16)C5—C6—C7—N50.40 (12)
C3—N1—C1—N4179.92 (9)C5—C6—C7—C8179.20 (11)
N5—N4—C1—N2178.99 (9)N7—N6—C10—C110.30 (12)
C5—N4—C1—N21.14 (16)C3—N6—C10—C11175.47 (10)
N5—N4—C1—N11.15 (14)N7—N6—C10—C9178.78 (10)
C5—N4—C1—N1179.00 (10)C3—N6—C10—C93.62 (18)
C3—N3—C2—N20.98 (15)N6—C10—C11—C120.34 (12)
C3—N3—C2—N8178.34 (9)C9—C10—C11—C12178.70 (11)
C1—N2—C2—N30.01 (15)N6—N7—C12—C110.09 (12)
C1—N2—C2—N8179.29 (9)N6—N7—C12—C13178.25 (10)
N9—N8—C2—N3169.23 (9)C10—C11—C12—N70.28 (13)
C15—N8—C2—N35.90 (15)C10—C11—C12—C13177.89 (11)
N9—N8—C2—N211.38 (14)N9—N8—C15—C160.05 (11)
C15—N8—C2—N2173.49 (10)C2—N8—C15—C16175.48 (10)
C1—N1—C3—N30.97 (15)N9—N8—C15—C14178.12 (10)
C1—N1—C3—N6179.01 (9)C2—N8—C15—C146.46 (17)
C2—N3—C3—N11.51 (15)N8—C15—C16—C170.39 (12)
C2—N3—C3—N6178.46 (9)C14—C15—C16—C17178.39 (11)
N7—N6—C3—N1173.61 (9)N8—N9—C17—C160.58 (11)
C10—N6—C3—N111.49 (16)N8—N9—C17—C18179.66 (10)
N7—N6—C3—N36.41 (14)C15—C16—C17—N90.64 (13)
C10—N6—C3—N3168.49 (10)C15—C16—C17—C18179.63 (11)

Experimental details

Crystal data
Chemical formulaC18H21N9
Mr363.44
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)7.1840 (1), 12.5079 (1), 19.9527 (1)
V3)1792.89 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.815, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
33189, 3744, 3740
Rint0.016
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.06
No. of reflections3744
No. of parameters250
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23
Absolute structureFlack (1983), 1813 Friedel pairs
Absolute structure parameter0.51 (19)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The author thanks the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuerrero, A., Jalón, F. A., Manzano, B. R., Claramunt, R. M., Cabildo, P., Infantes, L., Cano, F. H. & Elguero, J. (2003). Chem. Heterocycl. Compd, pp. 1584–1591.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds