organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-6-methyl-4-(3-methyl­phen­yl)quinoline

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 13 October 2012; accepted 23 October 2012; online 31 October 2012)

In the title compound, C23H18ClN, the dihedral angles between the quinoline unit and the chloro­benzene and methyl­benzene rings are 2.57 (9) and 56.06 (9)°, respectively. The crystal structure is stabilized by ππ inter­actions [minimum ring centroid separation = 3.733 (2) Å].

Related literature

For quinolines, see: Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Balasubramanian et al. (1996[Balasubramanian, M., Keay, J. G., Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 5, p. 245. Oxford: Pergamon Press.]). For a related structure, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Badahdah, K. O. & Ng, S. W. (2011). Acta Cryst. E67, o2596.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18ClN

  • Mr = 343.83

  • Monoclinic, P 21 /c

  • a = 7.982 (3) Å

  • b = 17.921 (6) Å

  • c = 12.478 (4) Å

  • β = 92.581 (6)°

  • V = 1783.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • 16998 measured reflections

  • 3392 independent reflections

  • 2508 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.168

  • S = 1.04

  • 3392 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolines and their derivatives occur in numerous natural products (Michael, 1997) and may exhibit interesting physiochemical activities, finding applications as pharmaceuticals and agrochemicals as well as being general synthetic platforms (Balasubramanian et al., 1996).

In the title molecule, C23 H18 Cl N, (Fig. 1), dihedral angles between the quinoline moiety and the chlorobenzene and methylbenzene rings are 2.57 (9) and 56.06 (9)°, respectively, with the conformation of the chlorobenzene ring influenced by the presence of an intramolecular C5—H···N1 interaction [2.764 (3) Å]. The overall geometry of the title compound is similar to 4-(4-chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline -3-carbonitrile (Asiri et al., 2011).

The crystal structure (Fig. 2) is stabilized by aromatic ring π··· π interactions with the ring centroids defined as follows: Cg(1), N1/C7/C8/C9/C10/C15; Cg(2), C1/C2/C3/C4/C5/C6 and Cg(3), C10/C11/C12/C13/C14/C15. The distance between Cg(1) and Cg(1) is 3.7427 (18) Å [-x+3, -y+2, -z+1], Cg(1) and Cg(2) is 3.7679 (19) Å [-x+2,-y+2,1 -z], Cg(1) and Cg(3) is 3.7635 (18) Å [-x+3, -y+2, -z+1], Cg(2) and Cg(3) is 3.733 (2) Å [-x+2, -y+2, -z+1].

Related literature top

For quinolines, see: Michael (1997); Balasubramanian et al. (1996). For a related structure, see: Asiri et al. (2011).

Experimental top

The enaminone [3-(4-chlorophenyl)-1-m-tolyl-3-(p-tolyamino)prop-2-en-1-one] (5 mmol) was taken in polyphosphoric acid (5 mL) and heated at 140 °C for 5 h. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with water (50 mL). The aqueous layer was extracted with ethyl acetate (3 x 20 mL), the combined ethyl acetate layer was washed with 0.1 N NaOH (2 x 25 mL), followed by brine solution (25 mL). The organic layer was then dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford the crude product which was purified by column chromatography over silica gel (60–120 mesh) using a hexane:ethyl acetate mixture (9.5:0.5) as eluent. The pure title compound was crystallized in an ethyl acetate–hexane mixture to obtain pale yellow single crystals. 1H NMR (CDCl3, 300 MHz): 8.49 (d, 2H, J=8.4 Hz), 7.92 (d, 1H, J=7.2 Hz), 7.79 (s, 1H), 7.55–7.66 (m, 5H), 7.19 (d, 1H), 2.34 (s, 3H), 2.35 (s, 3H). Mass: Calc. 343.2 found 344.2 (M++1): m.p. 98–100 °C (uncorrected).

Refinement top

All hydrogen atoms were located geometrically with C—H = 0.93–0.97) Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound showing 50% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the crystallographic a axis.
2-(4-Chlorophenyl)-6-methyl-4-(3-methylphenyl)quinoline top
Crystal data top
C23H18ClNF(000) = 720
Mr = 343.83Dx = 1.281 Mg m3
Monoclinic, P21/cMelting point = 371–373 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.982 (3) ÅCell parameters from 3392 reflections
b = 17.921 (6) Åθ = 2.0–25.7°
c = 12.478 (4) ŵ = 0.22 mm1
β = 92.581 (6)°T = 293 K
V = 1783.1 (11) Å3Block, yellow
Z = 40.23 × 0.22 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2508 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.7°, θmin = 2.0°
Detector resolution: 16.0839 pixels mm-1h = 99
ω scansk = 2121
16998 measured reflectionsl = 1515
3392 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0922P)2 + 0.5751P] P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H18ClNV = 1783.1 (11) Å3
Mr = 343.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.982 (3) ŵ = 0.22 mm1
b = 17.921 (6) ÅT = 293 K
c = 12.478 (4) Å0.23 × 0.22 × 0.22 mm
β = 92.581 (6)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2508 reflections with I > 2σ(I)
16998 measured reflectionsRint = 0.044
3392 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
3392 reflectionsΔρmin = 0.45 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89231 (10)1.22893 (5)0.85463 (6)0.0816 (3)
N11.2557 (2)0.97450 (10)0.55301 (13)0.0406 (6)
C10.9786 (3)1.17421 (15)0.7563 (2)0.0542 (8)
C20.9969 (4)1.20263 (15)0.6569 (2)0.0640 (9)
C31.0682 (4)1.15951 (14)0.5796 (2)0.0607 (9)
C41.1224 (3)1.08789 (12)0.60147 (17)0.0404 (7)
C51.0989 (3)1.06052 (14)0.70260 (18)0.0510 (8)
C61.0278 (3)1.10238 (15)0.7802 (2)0.0590 (9)
C71.2017 (2)1.04084 (11)0.52008 (17)0.0387 (6)
C81.2226 (3)1.06583 (11)0.41476 (17)0.0411 (6)
C91.2984 (3)1.02293 (11)0.34173 (16)0.0380 (6)
C101.3536 (2)0.95017 (11)0.37377 (16)0.0369 (6)
C111.4245 (3)0.89791 (11)0.30488 (18)0.0413 (7)
C121.4739 (3)0.82860 (11)0.33979 (19)0.0451 (7)
C131.4533 (3)0.81027 (12)0.44755 (19)0.0512 (8)
C141.3836 (3)0.85844 (12)0.51636 (19)0.0486 (7)
C151.3289 (2)0.92982 (11)0.48076 (16)0.0379 (6)
C161.3247 (3)1.05256 (11)0.23256 (16)0.0417 (7)
C171.1911 (3)1.08107 (13)0.17090 (18)0.0523 (8)
C181.2162 (4)1.10960 (14)0.0705 (2)0.0630 (10)
C191.3729 (4)1.11009 (13)0.03096 (19)0.0639 (9)
C201.5098 (4)1.08379 (13)0.0910 (2)0.0555 (8)
C211.4827 (3)1.05492 (11)0.19201 (18)0.0467 (7)
C221.6837 (4)1.08762 (18)0.0504 (3)0.0827 (11)
C231.5477 (4)0.77324 (13)0.2648 (2)0.0612 (9)
H20.961501.251000.640900.0770*
H31.079901.179100.511300.0730*
H51.132401.012000.718800.0610*
H61.013101.082600.848000.0710*
H81.183501.112900.394700.0490*
H111.438200.910800.233600.0500*
H131.488500.763700.472600.0610*
H141.371500.844600.587400.0580*
H171.084001.080900.197400.0630*
H181.126001.128600.029400.0750*
H191.387601.128500.037700.0770*
H211.573401.036700.233500.0560*
H22A1.750301.047900.081600.1240*
H22B1.733401.134700.069800.1240*
H22C1.678501.082600.026300.1240*
H23A1.476000.730300.258200.0920*
H23B1.656600.758200.292800.0920*
H23C1.557800.795800.195600.0920*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0855 (6)0.0839 (6)0.0764 (5)0.0060 (4)0.0149 (4)0.0363 (4)
N10.0447 (10)0.0354 (9)0.0415 (10)0.0025 (8)0.0002 (8)0.0039 (7)
C10.0449 (13)0.0615 (16)0.0562 (14)0.0035 (11)0.0027 (11)0.0205 (12)
C20.0766 (18)0.0471 (14)0.0690 (17)0.0126 (13)0.0111 (14)0.0059 (13)
C30.0819 (19)0.0481 (14)0.0527 (14)0.0151 (13)0.0097 (13)0.0048 (11)
C40.0347 (11)0.0415 (12)0.0448 (12)0.0022 (9)0.0009 (9)0.0023 (9)
C50.0576 (14)0.0497 (13)0.0457 (13)0.0044 (11)0.0039 (10)0.0013 (10)
C60.0653 (16)0.0642 (16)0.0477 (13)0.0006 (13)0.0060 (12)0.0022 (11)
C70.0359 (11)0.0364 (11)0.0433 (11)0.0029 (8)0.0032 (9)0.0012 (9)
C80.0463 (12)0.0325 (10)0.0441 (11)0.0039 (9)0.0012 (9)0.0032 (9)
C90.0396 (11)0.0340 (10)0.0401 (11)0.0022 (9)0.0026 (9)0.0023 (8)
C100.0356 (11)0.0307 (10)0.0438 (11)0.0037 (8)0.0036 (8)0.0026 (8)
C110.0454 (12)0.0345 (11)0.0440 (11)0.0031 (9)0.0015 (9)0.0000 (9)
C120.0448 (13)0.0326 (11)0.0576 (13)0.0005 (9)0.0018 (10)0.0033 (10)
C130.0620 (15)0.0300 (11)0.0612 (15)0.0031 (10)0.0007 (12)0.0081 (10)
C140.0601 (14)0.0359 (11)0.0496 (13)0.0009 (10)0.0005 (11)0.0109 (9)
C150.0370 (11)0.0322 (10)0.0441 (11)0.0042 (8)0.0016 (9)0.0030 (8)
C160.0567 (13)0.0268 (10)0.0415 (11)0.0019 (9)0.0021 (10)0.0002 (8)
C170.0626 (16)0.0441 (13)0.0495 (13)0.0051 (11)0.0037 (11)0.0025 (10)
C180.089 (2)0.0514 (15)0.0472 (14)0.0086 (13)0.0120 (14)0.0055 (11)
C190.112 (2)0.0409 (13)0.0391 (12)0.0041 (14)0.0070 (14)0.0062 (10)
C200.0813 (18)0.0334 (11)0.0529 (14)0.0071 (11)0.0155 (13)0.0022 (10)
C210.0614 (14)0.0315 (11)0.0476 (12)0.0009 (10)0.0061 (10)0.0026 (9)
C220.102 (2)0.0675 (18)0.082 (2)0.0143 (17)0.0404 (18)0.0048 (16)
C230.0752 (18)0.0396 (13)0.0686 (17)0.0096 (12)0.0006 (14)0.0068 (11)
Geometric parameters (Å, º) top
Cl1—C11.737 (3)C17—C181.376 (3)
N1—C71.324 (3)C18—C191.365 (4)
N1—C151.358 (3)C19—C201.380 (4)
C1—C21.355 (4)C20—C211.388 (3)
C1—C61.375 (4)C20—C221.501 (5)
C2—C31.379 (4)C2—H20.9300
C3—C41.378 (3)C3—H30.9300
C4—C51.375 (3)C5—H50.9300
C4—C71.484 (3)C6—H60.9300
C5—C61.368 (3)C8—H80.9300
C7—C81.405 (3)C11—H110.9300
C8—C91.355 (3)C13—H130.9300
C9—C101.428 (3)C14—H140.9300
C9—C161.486 (3)C17—H170.9300
C10—C111.407 (3)C18—H180.9300
C10—C151.406 (3)C19—H190.9300
C11—C121.368 (3)C21—H210.9300
C12—C131.401 (3)C22—H22A0.9600
C12—C231.502 (3)C22—H22B0.9600
C13—C141.355 (3)C22—H22C0.9600
C14—C151.417 (3)C23—H23A0.9600
C16—C171.384 (3)C23—H23B0.9600
C16—C211.381 (3)C23—H23C0.9600
C7—N1—C15117.87 (17)C21—C20—C22120.5 (3)
Cl1—C1—C2119.8 (2)C16—C21—C20121.8 (2)
Cl1—C1—C6119.60 (19)C1—C2—H2120.00
C2—C1—C6120.6 (2)C3—C2—H2120.00
C1—C2—C3119.7 (2)C2—C3—H3119.00
C2—C3—C4121.3 (2)C4—C3—H3119.00
C3—C4—C5117.4 (2)C4—C5—H5119.00
C3—C4—C7122.3 (2)C6—C5—H5119.00
C5—C4—C7120.4 (2)C1—C6—H6121.00
C4—C5—C6122.2 (2)C5—C6—H6121.00
C1—C6—C5118.9 (2)C7—C8—H8119.00
N1—C7—C4116.17 (18)C9—C8—H8119.00
N1—C7—C8121.72 (18)C10—C11—H11119.00
C4—C7—C8122.09 (18)C12—C11—H11119.00
C7—C8—C9121.55 (19)C12—C13—H13119.00
C8—C9—C10118.12 (18)C14—C13—H13119.00
C8—C9—C16119.97 (18)C13—C14—H14120.00
C10—C9—C16121.91 (18)C15—C14—H14120.00
C9—C10—C11124.36 (19)C16—C17—H17120.00
C9—C10—C15116.61 (17)C18—C17—H17120.00
C11—C10—C15119.00 (18)C17—C18—H18120.00
C10—C11—C12121.9 (2)C19—C18—H18120.00
C11—C12—C13118.3 (2)C18—C19—H19119.00
C11—C12—C23121.1 (2)C20—C19—H19119.00
C13—C12—C23120.61 (19)C16—C21—H21119.00
C12—C13—C14121.9 (2)C20—C21—H21119.00
C13—C14—C15120.4 (2)C20—C22—H22A109.00
N1—C15—C10124.08 (18)C20—C22—H22B109.00
N1—C15—C14117.40 (18)C20—C22—H22C109.00
C10—C15—C14118.52 (18)H22A—C22—H22B110.00
C9—C16—C17120.3 (2)H22A—C22—H22C109.00
C9—C16—C21121.1 (2)H22B—C22—H22C109.00
C17—C16—C21118.6 (2)C12—C23—H23A109.00
C16—C17—C18120.2 (2)C12—C23—H23B109.00
C17—C18—C19120.3 (3)C12—C23—H23C109.00
C18—C19—C20121.2 (2)H23A—C23—H23B109.00
C19—C20—C21117.9 (3)H23A—C23—H23C110.00
C19—C20—C22121.5 (2)H23B—C23—H23C110.00
C15—N1—C7—C81.7 (3)C8—C9—C10—C11175.9 (2)
C7—N1—C15—C14178.93 (18)C10—C9—C16—C2154.9 (3)
C7—N1—C15—C101.2 (3)C10—C9—C16—C17127.5 (2)
C15—N1—C7—C4179.95 (17)C15—C10—C11—C121.7 (3)
Cl1—C1—C6—C5178.59 (19)C9—C10—C15—N10.6 (3)
Cl1—C1—C2—C3178.8 (2)C11—C10—C15—N1177.30 (18)
C6—C1—C2—C31.1 (4)C11—C10—C15—C142.8 (3)
C2—C1—C6—C51.4 (4)C9—C10—C15—C14179.27 (19)
C1—C2—C3—C40.4 (5)C9—C10—C11—C12179.4 (2)
C2—C3—C4—C7179.1 (2)C10—C11—C12—C23179.4 (2)
C2—C3—C4—C51.5 (4)C10—C11—C12—C130.4 (3)
C3—C4—C7—N1176.7 (2)C23—C12—C13—C14178.5 (2)
C5—C4—C7—C8177.7 (2)C11—C12—C13—C141.3 (4)
C5—C4—C7—N13.9 (3)C12—C13—C14—C150.1 (4)
C3—C4—C5—C61.3 (4)C13—C14—C15—C102.0 (3)
C7—C4—C5—C6179.3 (2)C13—C14—C15—N1178.1 (2)
C3—C4—C7—C81.6 (3)C9—C16—C17—C18178.9 (2)
C4—C5—C6—C10.1 (4)C21—C16—C17—C181.3 (3)
N1—C7—C8—C90.3 (3)C9—C16—C21—C20178.7 (2)
C4—C7—C8—C9178.6 (2)C17—C16—C21—C201.1 (3)
C7—C8—C9—C101.5 (3)C16—C17—C18—C190.1 (4)
C7—C8—C9—C16177.4 (2)C17—C18—C19—C201.5 (4)
C8—C9—C10—C151.9 (3)C18—C19—C20—C211.7 (4)
C16—C9—C10—C115.3 (3)C18—C19—C20—C22176.9 (2)
C8—C9—C16—C1753.6 (3)C19—C20—C21—C160.4 (3)
C8—C9—C16—C21123.9 (2)C22—C20—C21—C16178.2 (2)
C16—C9—C10—C15176.97 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N10.932.432.764 (3)101

Experimental details

Crystal data
Chemical formulaC23H18ClN
Mr343.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.982 (3), 17.921 (6), 12.478 (4)
β (°) 92.581 (6)
V3)1783.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.22 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16998, 3392, 2508
Rint0.044
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.168, 1.04
No. of reflections3392
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.45

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

 

Acknowledgements

SMK thanks the UGC–BRS and the University of Mysore for the award of a fellowship.

References

First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Badahdah, K. O. & Ng, S. W. (2011). Acta Cryst. E67, o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalasubramanian, M., Keay, J. G., Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 5, p. 245. Oxford: Pergamon Press.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds