organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzoyl-1-(2-meth­­oxy­phen­yl)thio­urea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 October 2012; accepted 28 October 2012; online 3 November 2012)

In the title compound, C15H14N2O2S, the central C2N2OS moiety is planar (r.m.s. deviation of fitted atoms = 0.0336 Å). This is ascribed to the formation of an S(6) loop stabilized by an intra­molecular N—H⋯O hydrogen bond; additional intramolecular N—H⋯O and C—H⋯S contacts are also noted. The dihedral angles between the central unit and the phenyl and benzene rings are 23.79 (7) and 29.52 (5)°, respectively. The thione S and ketone O atoms are mutually anti, as are the N—H H atoms; the O atoms lie to the same side of the mol­ecule. Centrosymmetric eight-membered {⋯HNC=S}2 synthons feature in the crystal packing. The resulting inversion dimers stack along the a axis and are connected into a three-dimensional structure by C—H⋯O and C—H⋯π inter­actions.

Related literature

For complexation of N-benzoyl-N′-aryl­thio­urea derivatives to transition metals, see: Selvakumaran et al. (2011[Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.]). For the structure of the unsubstituted parent compound, see: Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2S

  • Mr = 286.34

  • Monoclinic, P 21 /c

  • a = 5.9358 (1) Å

  • b = 25.6916 (4) Å

  • c = 9.0535 (1) Å

  • β = 92.065 (1)°

  • V = 1379.76 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.11 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.467, Tmax = 1.000

  • 5143 measured reflections

  • 2721 independent reflections

  • 2505 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.04

  • 2721 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1 0.905 (18) 1.867 (18) 2.6316 (15) 141.0 (16)
C10—H10⋯S1 0.95 2.68 3.2241 (13) 117
N2—H2n⋯O2 0.90 (2) 2.231 (19) 2.5819 (15) 102.5 (14)
N1—H1n⋯S1i 0.902 (18) 2.636 (18) 3.4976 (12) 160.1 (15)
C15—H15B⋯O1ii 0.98 2.57 3.4273 (19) 146
C15—H15CCg1iii 0.98 2.81 3.6248 (17) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

N-Benzoyl-N'-arylthiourea derivatives, of which the title compound is an example are versatile ligands with coordination possible via the S, O or N atom, and various combinations of these. The title compound was prepared in connection with on-going studies involving complexation of N-benzoyl-N'-arylthiourea derivatives to transition metals, e.g. PdII (Selvakumaran et al., 2011).

In the title compound, Fig. 1, the thione and ketone atoms are anti with respect to each other. Similarly, the N—H H-atoms are anti to each other, and the oxygen atoms lie to the same side of the molecule. The central chromophore is planar with a r.m.s. deviation of 0.0336 Å [maximum deviations of 0.0449 (5) Å for S1, and -0.0460 (9) Å for N1] owing to the presence of an intramolecular N—H···O hydrogen bond which closes an S(6) loop (Table 1). Weaker intramolecular N—H···O and C—H···S contacts are also noted (Table 1). Despite this, a significant twist is evident in the molecule as manifested in the dihedral angle of 53.06 (5)° between the six-membered rings. The relative orientation of the atoms and deviations from planarity described above mimic those reported for the unsubstituted parent compound, PhC( O)N(H)C( S)N(H)Ph where the dihedral angle between the phenyl rings is 33.26 (6)° (Yamin & Yusof, 2003).

The most significant interaction in the crystal packing is the formation of centrosymmetric eight-membered {···HNC=S}2 synthons owing to the presence of N—H···S hydrogen bonds (Table ). These inversion dimers stack along the a axis and are connected into a three-dimensional architecture by C—H···O and C—H···π interactions (Fig. 2 and Table 1).

Related literature top

For complexation of N-benzoyl-N'-arylthiourea derivatives to transition metals, see: Selvakumaran et al. (2011). For the structure of the unsubstituted parent compound, see: Yamin & Yusof (2003).

Experimental top

A solution of benzoyl chloride (0.005 mol, 0.7029 g) in acetone (30 ml) was added drop wise to a suspension of potassium thiocyanate (0.005 mol, 0.4859 g) in anhydrous acetone (30 ml). The reaction mixture was heated under reflux for 45 minutes and then cooled to room temperature. A solution of substituted 2-methoxyaniline (0.005 mol, 0.6158 g). in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and resulting solid was filtered, washed with water and dried in vacuo. The resulting solid product was recrystallized from ethanol/dichloromethane (1:2 ratio) solution. Yield: 87%, M. pt: 409 K. Anal. Calcd. for C15H14N2O2S (%): C, 62.9; H, 4.9; N, 9.8; Found: C, 63.1; H, 5.1; N, 9.6. Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule, showing the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title compound in projection down the a axis. The N—H···S, C—H···O and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
3-Benzoyl-1-(2-methoxyphenyl)thiourea top
Crystal data top
C15H14N2O2SF(000) = 600
Mr = 286.34Dx = 1.378 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3350 reflections
a = 5.9358 (1) Åθ = 3.4–74.2°
b = 25.6916 (4) ŵ = 2.11 mm1
c = 9.0535 (1) ÅT = 100 K
β = 92.065 (1)°Block, colourless
V = 1379.76 (4) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2721 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2505 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.4°
ω scanh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 3112
Tmin = 0.467, Tmax = 1.000l = 1110
5143 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.2141P]
where P = (Fo2 + 2Fc2)/3
2721 reflections(Δ/σ)max = 0.002
189 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C15H14N2O2SV = 1379.76 (4) Å3
Mr = 286.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.9358 (1) ŵ = 2.11 mm1
b = 25.6916 (4) ÅT = 100 K
c = 9.0535 (1) Å0.30 × 0.25 × 0.20 mm
β = 92.065 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2721 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2505 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 1.000Rint = 0.016
5143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
2721 reflectionsΔρmin = 0.40 e Å3
189 parameters
Special details top

Experimental. Spectroscopic data for the title compound:

1H NMR (400 MHz, CDCl3, p.p.m.): 3.96 (s, 3H, OCH3); 6.96–7.91 (m, 8H); 8.76 (dd, J = 8.0 Hz & 1.6 Hz, 1H); 9.11 (s, 1H, thiourea NH); 12.85 (s, 1H, amide NH). 13C NMR (400 MHz, CDCl3, p.p.m.): 56.1; 110.6; 120.2; 123.0; 126.8; 127.2; 127.5; 129.1; 131.1; 133.1; 150.7; 166.5; 176.7. F T—IR (KBr, cm-1): 3270 ν(amide N—H), 3014 ν(thiourea N—H), 1672 ν(CO), 1240 ν(CS).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34254 (5)0.553335 (12)0.63331 (3)0.02037 (13)
O10.58134 (17)0.65291 (4)0.25290 (11)0.0228 (2)
O20.30344 (16)0.74084 (4)0.46245 (11)0.0221 (2)
N10.56616 (18)0.58059 (4)0.39976 (12)0.0168 (2)
H1n0.617 (3)0.5477 (7)0.410 (2)0.025 (4)*
N20.29972 (18)0.64037 (4)0.46801 (12)0.0173 (2)
H2n0.361 (3)0.6586 (7)0.394 (2)0.034 (5)*
C10.8406 (2)0.58513 (5)0.20667 (14)0.0176 (3)
C20.9874 (2)0.54873 (5)0.27253 (15)0.0190 (3)
H20.96540.53740.37090.023*
C31.1658 (2)0.52905 (5)0.19390 (16)0.0217 (3)
H31.26540.50420.23850.026*
C41.1982 (2)0.54569 (5)0.05014 (16)0.0236 (3)
H41.32040.53230.00320.028*
C51.0521 (2)0.58180 (5)0.01569 (15)0.0231 (3)
H51.07400.59290.11420.028*
C60.8744 (2)0.60160 (5)0.06219 (15)0.0210 (3)
H60.77540.62650.01710.025*
C70.6527 (2)0.60957 (5)0.28644 (14)0.0178 (3)
C80.3977 (2)0.59455 (5)0.49537 (14)0.0165 (3)
C90.1267 (2)0.66553 (5)0.54421 (14)0.0173 (3)
C100.0476 (2)0.64063 (5)0.61365 (14)0.0191 (3)
H100.05340.60370.61580.023*
C110.2144 (2)0.66955 (6)0.68032 (15)0.0213 (3)
H110.33360.65230.72760.026*
C120.2069 (2)0.72356 (6)0.67787 (16)0.0228 (3)
H120.31920.74310.72530.027*
C130.0354 (2)0.74907 (5)0.60610 (15)0.0218 (3)
H130.03160.78600.60370.026*
C140.1304 (2)0.72054 (5)0.53793 (14)0.0185 (3)
C150.3081 (3)0.79620 (5)0.44578 (17)0.0250 (3)
H15A0.43930.80620.38950.037*
H15B0.31810.81260.54350.037*
H15C0.17000.80770.39290.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (2)0.01710 (19)0.01949 (19)0.00449 (11)0.00439 (13)0.00361 (11)
O10.0270 (5)0.0183 (5)0.0235 (5)0.0047 (4)0.0039 (4)0.0040 (4)
O20.0211 (5)0.0165 (5)0.0290 (5)0.0017 (4)0.0044 (4)0.0024 (4)
N10.0179 (5)0.0138 (5)0.0186 (5)0.0023 (4)0.0007 (4)0.0008 (4)
N20.0173 (5)0.0167 (5)0.0180 (5)0.0011 (4)0.0004 (4)0.0010 (4)
C10.0177 (6)0.0159 (6)0.0190 (6)0.0019 (5)0.0008 (5)0.0014 (5)
C20.0175 (6)0.0186 (6)0.0207 (6)0.0025 (5)0.0018 (5)0.0000 (5)
C30.0170 (6)0.0200 (7)0.0281 (7)0.0000 (5)0.0026 (5)0.0029 (5)
C40.0199 (6)0.0226 (7)0.0287 (7)0.0019 (5)0.0051 (5)0.0067 (6)
C50.0288 (7)0.0197 (6)0.0209 (6)0.0029 (5)0.0048 (5)0.0008 (5)
C60.0245 (7)0.0174 (6)0.0210 (6)0.0001 (5)0.0003 (5)0.0009 (5)
C70.0180 (6)0.0181 (6)0.0172 (6)0.0001 (5)0.0023 (5)0.0003 (5)
C80.0158 (6)0.0161 (6)0.0174 (6)0.0004 (5)0.0025 (5)0.0009 (5)
C90.0170 (6)0.0178 (6)0.0168 (6)0.0031 (5)0.0034 (5)0.0014 (5)
C100.0179 (6)0.0185 (6)0.0206 (6)0.0002 (5)0.0026 (5)0.0010 (5)
C110.0177 (6)0.0236 (7)0.0227 (6)0.0003 (5)0.0002 (5)0.0006 (5)
C120.0193 (6)0.0236 (7)0.0253 (7)0.0047 (5)0.0007 (5)0.0013 (5)
C130.0223 (7)0.0170 (6)0.0260 (7)0.0034 (5)0.0012 (5)0.0004 (5)
C140.0172 (6)0.0185 (6)0.0196 (6)0.0006 (5)0.0026 (5)0.0015 (5)
C150.0279 (7)0.0166 (7)0.0307 (7)0.0013 (5)0.0048 (6)0.0015 (6)
Geometric parameters (Å, º) top
S1—C81.6786 (13)C4—H40.9500
O1—C71.2257 (16)C5—C61.3862 (19)
O2—C141.3582 (16)C5—H50.9500
O2—C151.4306 (16)C6—H60.9500
N1—C71.3817 (17)C9—C101.3865 (18)
N1—C81.3931 (16)C9—C141.4147 (18)
N1—H1n0.902 (18)C10—C111.3925 (18)
N2—C81.3322 (17)C10—H100.9500
N2—C91.4140 (16)C11—C121.388 (2)
N2—H2n0.90 (2)C11—H110.9500
C1—C61.3961 (18)C12—C131.391 (2)
C1—C21.3969 (18)C12—H120.9500
C1—C71.4893 (18)C13—C141.3893 (18)
C2—C31.3921 (18)C13—H130.9500
C2—H20.9500C15—H15A0.9800
C3—C41.390 (2)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.390 (2)
C14—O2—C15116.92 (10)N2—C8—N1115.49 (11)
C7—N1—C8128.10 (11)N2—C8—S1126.89 (10)
C7—N1—H1n116.5 (12)N1—C8—S1117.61 (9)
C8—N1—H1n115.2 (12)C10—C9—N2125.27 (12)
C8—N2—C9129.27 (11)C10—C9—C14119.48 (12)
C8—N2—H2n114.2 (12)N2—C9—C14115.12 (11)
C9—N2—H2n116.4 (12)C9—C10—C11120.27 (12)
C6—C1—C2119.63 (12)C9—C10—H10119.9
C6—C1—C7117.51 (12)C11—C10—H10119.9
C2—C1—C7122.80 (12)C12—C11—C10120.18 (13)
C3—C2—C1119.93 (13)C12—C11—H11119.9
C3—C2—H2120.0C10—C11—H11119.9
C1—C2—H2120.0C11—C12—C13120.18 (12)
C4—C3—C2120.04 (13)C11—C12—H12119.9
C4—C3—H3120.0C13—C12—H12119.9
C2—C3—H3120.0C14—C13—C12120.05 (13)
C3—C4—C5120.12 (13)C14—C13—H13120.0
C3—C4—H4119.9C12—C13—H13120.0
C5—C4—H4119.9O2—C14—C13125.55 (12)
C6—C5—C4120.08 (13)O2—C14—C9114.64 (11)
C6—C5—H5120.0C13—C14—C9119.80 (12)
C4—C5—H5120.0O2—C15—H15A109.5
C5—C6—C1120.20 (13)O2—C15—H15B109.5
C5—C6—H6119.9H15A—C15—H15B109.5
C1—C6—H6119.9O2—C15—H15C109.5
O1—C7—N1122.62 (12)H15A—C15—H15C109.5
O1—C7—C1121.41 (12)H15B—C15—H15C109.5
N1—C7—C1115.96 (11)
C6—C1—C2—C30.12 (19)C7—N1—C8—S1174.57 (10)
C7—C1—C2—C3177.16 (12)C8—N2—C9—C1033.1 (2)
C1—C2—C3—C40.15 (19)C8—N2—C9—C14151.20 (13)
C2—C3—C4—C50.3 (2)N2—C9—C10—C11177.34 (12)
C3—C4—C5—C60.4 (2)C14—C9—C10—C111.80 (18)
C4—C5—C6—C10.4 (2)C9—C10—C11—C120.1 (2)
C2—C1—C6—C50.2 (2)C10—C11—C12—C131.4 (2)
C7—C1—C6—C5177.44 (12)C11—C12—C13—C140.7 (2)
C8—N1—C7—O12.4 (2)C15—O2—C14—C133.32 (19)
C8—N1—C7—C1177.36 (12)C15—O2—C14—C9176.66 (12)
C6—C1—C7—O124.61 (19)C12—C13—C14—O2178.76 (12)
C2—C1—C7—O1152.49 (13)C12—C13—C14—C91.23 (19)
C6—C1—C7—N1155.68 (12)C10—C9—C14—O2177.52 (11)
C2—C1—C7—N127.22 (18)N2—C9—C14—O21.55 (16)
C9—N2—C8—N1179.50 (11)C10—C9—C14—C132.46 (19)
C9—N2—C8—S10.8 (2)N2—C9—C14—C13178.44 (11)
C7—N1—C8—N24.25 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.905 (18)1.867 (18)2.6316 (15)141.0 (16)
C10—H10···S10.952.683.2241 (13)117
N2—H2n···O20.90 (2)2.231 (19)2.5819 (15)102.5 (14)
N1—H1n···S1i0.902 (18)2.636 (18)3.4976 (12)160.1 (15)
C15—H15B···O1ii0.982.573.4273 (19)146
C15—H15C···Cg1iii0.982.813.6248 (17)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O2S
Mr286.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.9358 (1), 25.6916 (4), 9.0535 (1)
β (°) 92.065 (1)
V3)1379.76 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.467, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5143, 2721, 2505
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.04
No. of reflections2721
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.40

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.905 (18)1.867 (18)2.6316 (15)141.0 (16)
C10—H10···S10.952.683.2241 (13)117
N2—H2n···O20.90 (2)2.231 (19)2.5819 (15)102.5 (14)
N1—H1n···S1i0.902 (18)2.636 (18)3.4976 (12)160.1 (15)
C15—H15B···O1ii0.982.573.4273 (19)146
C15—H15C···Cg1iii0.982.813.6248 (17)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks NITT for a fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSelvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds