metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1508-m1509

trans-Di­chloridobis{tris­­[4-(tri­fluoro­methyl)phen­yl]phosphane-κP}palla­dium(II) di­chloro­methane monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 13 November 2012; accepted 15 November 2012; online 24 November 2012)

The title compound, [PdCl2(C21H12F9P)2]·CH2Cl2, crystallizes with two independent complex molecules (each having the PdII atom situated on an inversion centre) and a dichloro­methane molecule in the asymmetric unit. The independent PdII atoms are in perfectly linear orientations of the ligands in mutually trans positions, but distortions of the Cl—Pd—P angles ranging from 86.151 (19) to 93.849 (19)° are evident. The effective cone angles for the tris­[4-(trifluoro­meth­yl)phen­yl]phosphane ligand were calculated to be 159 and 161°. In the crystal, weak C—H⋯Cl/F inter­actions create a three-dimensional supramolecular network. Loose packing at two of the –CF3 groups resulted in large thermal vibrations which were treated as two-component disorders [occupancy ratios 0.50:0.50 and 0.628 (15):0.372 (15)].

Related literature

For background to catalysis of palladium compounds, see: Bedford et al. (2004[Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283-2321.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]). For details of the conformational fit between mol­ecules using Mercury, see: Macrae et al. (2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); Weng et al. (2008a[Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348-362.],b[Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955-957.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H12F9P)2]·CH2Cl2

  • Mr = 1194.78

  • Triclinic, [P \overline 1]

  • a = 12.1491 (10) Å

  • b = 14.0203 (13) Å

  • c = 14.4334 (13) Å

  • α = 72.764 (2)°

  • β = 78.362 (2)°

  • γ = 75.545 (2)°

  • V = 2252.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 100 K

  • 0.34 × 0.31 × 0.25 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.820

  • 48517 measured reflections

  • 11209 independent reflections

  • 9475 reflections with I > 2σ(I)

  • Rint = 0.03

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.02

  • 11209 reflections

  • 680 parameters

  • 116 restraints

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl3 0.95 2.78 3.468 (2) 130
C7—H7B⋯Cl4 0.99 2.54 3.510 (4) 165
C65—H65⋯F6i 0.95 2.55 3.457 (3) 160
C7—H7A⋯Cl3ii 0.99 2.57 3.550 (5) 169
C15—H15⋯F17Aiii 0.95 2.52 3.341 (6) 144
C33—H33⋯F10B 0.95 2.53 3.435 (4) 159
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z+1; (iii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Complexes involving palladium metal centres are amongst some of the most popular catalytic precursors in organic synthesis due to their catalytic abilities. They are used in carbon-carbon bond formation reactions, e.g. the Heck, Stille and Suzuki reactions (Bedford et al., 2004). [PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. Reported here is the product of the reaction with tris[4-(trifluoromethyl)phenyl]phosphane ligand.

The title compound (Fig.1 and 2) crystallizes in the triclinic space group P1 (Z = 2), with the independent Pd atoms on inversion centres and each accompanied by a dichloromethane solvate molecule. Each pair of equivalent ligands is in a mutually trans orientation and the geometry is, therefore, perfectly linear with only slight distortions in P1—Pd1—Cl3, P2—Pd2—Cl4 angles of 87.299 (19), 92.701 (19), 93.849 (19) and 86.151 (19)°, respectively. The Pd1—P1, Pd2—P2, Pd1—Cl3 and Pd2—Cl4 bond distances of 2.3174 (5), 2.3130 (6), 2.2897 (6) and 2.2871 (6) Å, respectively fit well into the typical range for complexes of this kind (Allen, 2002). The difference between the two Pd molecules in the asymmetric unit can be illustrated by superimposing their coordination sphere coordinates (see Fig.3) using Mercury (Macrae et al., 2006; Weng et al., 2008a; Weng et al., 2008b). This shows good fit between the two palladium molecules except in some of the CF3 regions.

To describe the steric demand of the phosphane ligands the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained from the title compound (and adjusting the Pd—P bond distance to 2.28 Å) we calculated effective cone angles (Otto, 2001) of 161° and 159° for P1 and P2, respectively. These values are marginally larger than the average cone angle obtained from structures of this phosphane ligand in literature. Data extracted from the Cambridge Structural Database (Allen, 2002) shows an average cone angle of 154° for the phosphane from 16 hits, containing 17 useable observations with a standard deviation of ±4° and a spread from 149° to 165°. In the crystal, weak C—H···Cl/F interactions are observed with some of the CF3 groups showing disorder due to loose packing in these regions.

Related literature top

For background to catalysis of palladium compounds, see: Bedford et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002). For background to cone angles, see: Tolman (1977); Otto (2001). For details of the conformational fit between molecules using Mercury, see: Macrae et al. (2006); Weng et al. (2008a,b).

Experimental top

Tris[4-(trifluoromethyl)phenyl]phosphane (10 mg, 0.021 mmol) was dissolved in CH2Cl2 (5 cm3). A solution of [Pd(COD)Cl2] (3.10 mg, 0.011 mmol) in CH2Cl2 (5 cm3) was added to the phosphane solution. The mixture was stirred for 2hr at room temperature, after which the solution was left to crystallize. Orange crystals of the title compound suitable for X-ray diffraction studies were obtained in 60% yield.

1H NMR (CDCl3, 400 MHz): δ (p.p.m.) 7.67 - 7.72 (m, 12H); 7.74 - 7.81 (m, 12 H).

31P NMR (CDCl3, 162.0 MHz): δ (p.p.m.) 23.11 (s, 1P).

FTIR (cm-1): 2360, 1610, 1398, 1321, 1168, 1121, 1060, 1015, 955, 828, 706, 696, 633.

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95 and 0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). Two of the CF3 groups for molecule 2 showed large thermal vibrations and were treated to disorder refinement. The disorder models for these two CF3 groups were significantly different with one of the carbon atoms (C6) also modeled disordered. To keep refinement stable ellipsoid restraints (SIMU and DELU) were employed and their default refinement parameters adjusted (see _iucr_refine_instructions_details). Initially the occupancies of the two components of both CF3 groups were linked to free variables to refine to unity. The CF3 containing C4 showed an almost 50:50 distribution and in the final cycles was constrained to this. The CF3 containing C6 refined to a ratio of 0.628 (15):0.372 (15).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of molecule 1 of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Accented lettering indicate atoms generated by symmetry code (i) = -x,-y,-z. H atoms omitted for clarity.
[Figure 2] Fig. 2. A view of molecule 2 and the dichloromethane solvate of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Accented lettering indicate atoms generated by symmetry code (ii) = 1 - x,-y,1 - z. H atoms and B component of disordered atoms omitted for clarity.
[Figure 3] Fig. 3. Conformational similarity between molecule 1 (blue) and molecule 2 (red) of the title complex. The root mean squared deviation; RMSD = 0.0279 Å.
trans-Dichloridobis{tris[4-(trifluoromethyl)phenyl]phosphane- κP}palladium(II) dichloromethane monosolvate top
Crystal data top
[PdCl2(C21H12F9P)2]·CH2Cl2Z = 2
Mr = 1194.78F(000) = 1180
Triclinic, P1Dx = 1.762 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1491 (10) ÅCell parameters from 9887 reflections
b = 14.0203 (13) Åθ = 2.9–28.3°
c = 14.4334 (13) ŵ = 0.83 mm1
α = 72.764 (2)°T = 100 K
β = 78.362 (2)°Cuboid, yellow
γ = 75.545 (2)°0.34 × 0.31 × 0.25 mm
V = 2252.0 (3) Å3
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
11209 independent reflections
Radiation source: sealed tube9475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.03
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 1.5°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1818
Tmin = 0.766, Tmax = 0.820l = 1919
48517 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0273P)2 + 3.2668P]
where P = (Fo2 + 2Fc2)/3
11209 reflections(Δ/σ)max = 0.001
680 parametersΔρmax = 1.14 e Å3
116 restraintsΔρmin = 0.85 e Å3
Crystal data top
[PdCl2(C21H12F9P)2]·CH2Cl2γ = 75.545 (2)°
Mr = 1194.78V = 2252.0 (3) Å3
Triclinic, P1Z = 2
a = 12.1491 (10) ÅMo Kα radiation
b = 14.0203 (13) ŵ = 0.83 mm1
c = 14.4334 (13) ÅT = 100 K
α = 72.764 (2)°0.34 × 0.31 × 0.25 mm
β = 78.362 (2)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
11209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
9475 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.820Rint = 0.03
48517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032116 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.02Δρmax = 1.14 e Å3
11209 reflectionsΔρmin = 0.85 e Å3
680 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 2 s/frame. A total of 2216 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6245 (2)0.0991 (2)0.0983 (2)0.0318 (6)
C20.1366 (2)0.4058 (2)0.46255 (19)0.0303 (6)
C30.0591 (2)0.4411 (2)0.18078 (19)0.0284 (5)
C40.3291 (2)0.4352 (2)0.10003 (18)0.0267 (4)
C51.0812 (2)0.0902 (2)0.34731 (18)0.0281 (5)
C70.2146 (5)0.1811 (3)0.7105 (2)0.0708 (13)
H7A0.1590.13630.74290.085*
H7B0.29120.13630.70320.085*
C6A0.4634 (7)0.4207 (7)0.7336 (6)0.0304 (8)0.628 (15)
F16A0.5626 (4)0.4237 (5)0.7608 (7)0.0519 (17)0.628 (15)
F17A0.3961 (7)0.3874 (3)0.8166 (3)0.0458 (12)0.628 (15)
F18A0.4156 (7)0.5196 (12)0.6939 (14)0.0361 (14)0.628 (15)
C6B0.4798 (11)0.4328 (12)0.7194 (9)0.0276 (11)0.372 (15)
F16B0.5757 (5)0.4637 (8)0.7107 (9)0.0412 (19)0.372 (15)
F17B0.4512 (12)0.3887 (6)0.8140 (5)0.0447 (18)0.372 (15)
F18B0.3952 (12)0.514 (2)0.700 (2)0.0319 (18)0.372 (15)
C110.27757 (17)0.13693 (16)0.00228 (15)0.0157 (4)
C120.30036 (19)0.04677 (17)0.06399 (16)0.0198 (4)
H120.23870.00580.08810.024*
C130.4131 (2)0.03313 (19)0.09514 (17)0.0231 (5)
H130.42820.02830.14070.028*
C140.50253 (19)0.10928 (19)0.05941 (17)0.0226 (5)
C150.48108 (19)0.19894 (18)0.00889 (18)0.0233 (5)
H150.54290.25060.0340.028*
C160.36857 (19)0.21229 (17)0.03999 (17)0.0204 (4)
H160.35350.27290.08710.024*
C210.12624 (17)0.22880 (16)0.16527 (15)0.0149 (4)
C220.15437 (18)0.18948 (16)0.23388 (16)0.0173 (4)
H220.17220.12350.21430.021*
C230.15639 (18)0.24660 (17)0.33047 (16)0.0187 (4)
H230.1750.21970.37720.022*
C240.13104 (19)0.34358 (17)0.35855 (16)0.0198 (4)
C250.1002 (2)0.38204 (18)0.29173 (17)0.0238 (5)
H250.08090.44750.31180.029*
C260.0975 (2)0.32466 (17)0.19515 (17)0.0207 (4)
H260.0760.35090.14930.025*
C310.11086 (18)0.24085 (16)0.02702 (15)0.0153 (4)
C320.00019 (19)0.24363 (18)0.03740 (18)0.0228 (5)
H320.06390.20070.01050.027*
C330.0168 (2)0.30858 (19)0.08666 (18)0.0251 (5)
H330.09240.31070.0930.03*
C340.0771 (2)0.37070 (17)0.12684 (16)0.0195 (4)
C350.18652 (19)0.36912 (18)0.11652 (17)0.0207 (4)
H350.25040.41250.14320.025*
C360.20374 (18)0.30376 (17)0.06670 (17)0.0197 (4)
H360.27950.30240.060.024*
C410.49547 (18)0.23512 (16)0.34096 (15)0.0156 (4)
C420.37650 (19)0.25054 (18)0.34546 (17)0.0220 (5)
H420.33280.21640.40230.026*
C430.32186 (19)0.31526 (19)0.26759 (17)0.0229 (5)
H430.24090.32650.27130.027*
C440.38674 (19)0.36354 (17)0.18416 (16)0.0185 (4)
C450.50467 (19)0.34654 (17)0.17821 (16)0.0203 (4)
H450.54840.37910.12050.024*
C460.55962 (18)0.28196 (17)0.25635 (16)0.0194 (4)
H460.64080.26990.25180.023*
C510.71490 (17)0.13601 (16)0.41710 (15)0.0147 (4)
C520.77923 (18)0.04078 (17)0.40947 (16)0.0180 (4)
H520.74160.01390.4190.022*
C530.89861 (19)0.02496 (18)0.38793 (16)0.0201 (4)
H530.94210.04020.38270.024*
C540.95330 (18)0.10452 (18)0.37429 (16)0.0200 (4)
C550.8901 (2)0.20013 (19)0.38200 (17)0.0234 (5)
H550.92810.25450.37260.028*
C560.77117 (19)0.21581 (17)0.40352 (17)0.0205 (4)
H560.7280.28090.4090.025*
C610.52760 (17)0.23591 (16)0.53204 (15)0.0153 (4)
C620.57533 (18)0.20004 (17)0.61943 (16)0.0181 (4)
H620.62220.13370.63480.022*
C630.55443 (19)0.26092 (18)0.68380 (17)0.0212 (4)
H630.58610.23620.74360.025*
C640.4868 (2)0.35857 (18)0.66035 (18)0.0225 (4)
C650.4378 (2)0.39403 (18)0.57491 (19)0.0265 (5)
H650.39020.46010.56020.032*
C660.4581 (2)0.33302 (18)0.51059 (18)0.0233 (5)
H660.42450.35750.45180.028*
F10.69349 (13)0.13989 (14)0.02873 (14)0.0442 (4)
F20.63601 (13)0.00201 (13)0.13737 (12)0.0388 (4)
F30.66742 (15)0.14722 (18)0.16893 (16)0.0619 (6)
F40.1467 (2)0.50458 (13)0.47281 (13)0.0570 (6)
F50.04432 (16)0.37665 (16)0.52398 (12)0.0494 (5)
F60.22635 (15)0.39581 (12)0.49792 (12)0.0378 (4)
F70.15025 (15)0.46546 (15)0.24452 (14)0.0475 (5)
F80.02798 (14)0.39949 (14)0.23403 (12)0.0388 (4)
F90.0348 (2)0.52766 (14)0.12020 (14)0.0581 (6)
F131.12727 (13)0.13753 (13)0.39375 (13)0.0395 (4)
F141.13493 (12)0.00744 (13)0.36863 (13)0.0370 (4)
F151.11021 (14)0.12869 (19)0.25188 (12)0.0627 (7)
P10.12923 (4)0.15375 (4)0.03807 (4)0.01399 (10)
P20.55964 (4)0.15397 (4)0.44843 (4)0.01338 (10)
Cl10.18015 (7)0.24502 (7)0.59502 (6)0.0509 (2)
Cl20.21710 (9)0.25246 (9)0.78749 (8)0.0671 (3)
Cl30.04796 (5)0.00495 (4)0.16053 (4)0.02532 (12)
Cl40.46271 (5)0.00177 (4)0.66133 (4)0.02431 (12)
Pd10000.01447 (5)
Pd20.500.50.01233 (5)
F10A0.3811 (5)0.4275 (4)0.0137 (3)0.0651 (14)0.5
F11A0.3409 (4)0.5371 (3)0.0914 (3)0.0521 (9)0.5
F12A0.2217 (3)0.4472 (4)0.1057 (4)0.0647 (13)0.5
F10B0.2741 (4)0.3792 (3)0.0638 (3)0.0485 (9)0.5
F11B0.2484 (5)0.5026 (4)0.1261 (3)0.0696 (13)0.5
F12B0.3964 (4)0.4703 (4)0.0266 (4)0.0546 (12)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (12)0.0436 (15)0.0402 (15)0.0142 (11)0.0053 (10)0.0261 (13)
C20.0418 (15)0.0267 (13)0.0249 (13)0.0135 (11)0.0113 (11)0.0006 (10)
C30.0343 (13)0.0273 (12)0.0287 (13)0.0119 (10)0.0062 (11)0.0085 (10)
C40.0243 (9)0.0319 (11)0.0202 (9)0.0003 (8)0.0044 (8)0.0049 (9)
C50.0177 (11)0.0429 (15)0.0210 (12)0.0082 (10)0.0016 (9)0.0032 (11)
C70.130 (4)0.0336 (17)0.0309 (17)0.007 (2)0.004 (2)0.0063 (14)
C6A0.0347 (19)0.0256 (18)0.036 (2)0.0015 (17)0.0091 (14)0.0192 (14)
F16A0.0510 (17)0.049 (3)0.076 (4)0.0070 (16)0.033 (2)0.045 (3)
F17A0.071 (3)0.0403 (17)0.0263 (12)0.002 (2)0.0015 (16)0.0193 (11)
F18A0.045 (3)0.0232 (16)0.044 (3)0.002 (3)0.009 (3)0.0198 (12)
C6B0.030 (2)0.026 (3)0.031 (2)0.0021 (17)0.005 (2)0.0170 (18)
F16B0.035 (2)0.042 (4)0.062 (5)0.0056 (19)0.013 (2)0.035 (3)
F17B0.070 (5)0.038 (3)0.0276 (16)0.004 (3)0.006 (3)0.0173 (16)
F18B0.033 (3)0.027 (3)0.039 (4)0.001 (3)0.003 (4)0.021 (2)
C110.0152 (9)0.0195 (10)0.0146 (10)0.0041 (8)0.0008 (7)0.0081 (8)
C120.0218 (10)0.0209 (11)0.0158 (10)0.0040 (9)0.0019 (8)0.0040 (8)
C130.0274 (12)0.0268 (12)0.0172 (11)0.0129 (10)0.0031 (9)0.0068 (9)
C140.0190 (10)0.0316 (12)0.0239 (11)0.0094 (9)0.0036 (9)0.0181 (10)
C150.0162 (10)0.0251 (12)0.0307 (13)0.0012 (9)0.0023 (9)0.0133 (10)
C160.0192 (10)0.0179 (10)0.0247 (11)0.0037 (8)0.0025 (9)0.0069 (9)
C210.0126 (9)0.0153 (9)0.0155 (10)0.0004 (7)0.0017 (7)0.0041 (8)
C220.0168 (10)0.0157 (10)0.0203 (10)0.0041 (8)0.0043 (8)0.0040 (8)
C230.0192 (10)0.0210 (11)0.0183 (10)0.0055 (8)0.0056 (8)0.0054 (9)
C240.0209 (10)0.0190 (10)0.0189 (11)0.0051 (8)0.0046 (8)0.0020 (9)
C250.0333 (13)0.0188 (11)0.0213 (11)0.0119 (9)0.0036 (10)0.0027 (9)
C260.0257 (11)0.0207 (11)0.0190 (11)0.0082 (9)0.0033 (9)0.0068 (9)
C310.0170 (9)0.0153 (9)0.0136 (9)0.0030 (8)0.0026 (8)0.0036 (8)
C320.0158 (10)0.0266 (12)0.0277 (12)0.0016 (9)0.0026 (9)0.0120 (10)
C330.0179 (10)0.0302 (13)0.0313 (13)0.0071 (9)0.0064 (9)0.0104 (10)
C340.0257 (11)0.0188 (10)0.0158 (10)0.0093 (9)0.0022 (8)0.0037 (8)
C350.0196 (10)0.0227 (11)0.0220 (11)0.0039 (9)0.0004 (8)0.0115 (9)
C360.0147 (9)0.0235 (11)0.0239 (11)0.0025 (8)0.0022 (8)0.0121 (9)
C410.0182 (10)0.0136 (9)0.0152 (10)0.0037 (8)0.0027 (8)0.0035 (8)
C420.0188 (10)0.0282 (12)0.0180 (11)0.0096 (9)0.0006 (8)0.0018 (9)
C430.0166 (10)0.0290 (12)0.0232 (11)0.0067 (9)0.0038 (9)0.0047 (10)
C440.0220 (10)0.0181 (10)0.0162 (10)0.0030 (8)0.0038 (8)0.0059 (8)
C450.0187 (10)0.0218 (11)0.0159 (10)0.0029 (8)0.0011 (8)0.0017 (9)
C460.0158 (10)0.0218 (11)0.0185 (10)0.0038 (8)0.0001 (8)0.0035 (9)
C510.0145 (9)0.0174 (10)0.0116 (9)0.0057 (8)0.0002 (7)0.0020 (8)
C520.0186 (10)0.0184 (10)0.0169 (10)0.0055 (8)0.0001 (8)0.0045 (8)
C530.0184 (10)0.0223 (11)0.0173 (10)0.0014 (8)0.0001 (8)0.0054 (9)
C540.0148 (10)0.0301 (12)0.0136 (10)0.0064 (9)0.0005 (8)0.0028 (9)
C550.0217 (11)0.0265 (12)0.0235 (11)0.0123 (9)0.0019 (9)0.0035 (9)
C560.0206 (10)0.0177 (10)0.0234 (11)0.0055 (8)0.0024 (9)0.0048 (9)
C610.0151 (9)0.0159 (10)0.0166 (10)0.0058 (8)0.0001 (8)0.0061 (8)
C620.0165 (10)0.0171 (10)0.0218 (11)0.0023 (8)0.0037 (8)0.0066 (8)
C630.0206 (10)0.0247 (11)0.0215 (11)0.0025 (9)0.0058 (9)0.0104 (9)
C640.0215 (10)0.0222 (9)0.0278 (10)0.0024 (8)0.0033 (8)0.0141 (8)
C650.0288 (12)0.0183 (11)0.0334 (13)0.0040 (9)0.0100 (10)0.0117 (10)
C660.0260 (11)0.0201 (11)0.0240 (12)0.0001 (9)0.0082 (9)0.0070 (9)
F10.0203 (7)0.0501 (10)0.0642 (12)0.0100 (7)0.0067 (8)0.0149 (9)
F20.0314 (8)0.0481 (10)0.0433 (9)0.0260 (7)0.0036 (7)0.0121 (8)
F30.0365 (10)0.0993 (17)0.0772 (14)0.0365 (10)0.0311 (9)0.0708 (13)
F40.1168 (18)0.0246 (8)0.0369 (10)0.0290 (10)0.0353 (11)0.0097 (7)
F50.0493 (10)0.0729 (13)0.0185 (8)0.0178 (10)0.0010 (7)0.0010 (8)
F60.0475 (9)0.0352 (9)0.0324 (8)0.0108 (7)0.0241 (7)0.0032 (7)
F70.0410 (9)0.0617 (12)0.0588 (12)0.0089 (9)0.0033 (8)0.0473 (10)
F80.0395 (9)0.0510 (10)0.0386 (9)0.0146 (8)0.0154 (7)0.0194 (8)
F90.1088 (17)0.0348 (10)0.0461 (11)0.0419 (11)0.0261 (11)0.0006 (8)
F130.0216 (7)0.0422 (9)0.0590 (11)0.0112 (7)0.0112 (7)0.0119 (8)
F140.0181 (7)0.0436 (9)0.0507 (10)0.0020 (6)0.0041 (7)0.0215 (8)
F150.0218 (8)0.1211 (19)0.0235 (8)0.0156 (10)0.0034 (7)0.0101 (10)
P10.0127 (2)0.0144 (2)0.0142 (2)0.00056 (19)0.00135 (19)0.0049 (2)
P20.0141 (2)0.0137 (2)0.0128 (2)0.00480 (19)0.00022 (19)0.00356 (19)
Cl10.0465 (4)0.0494 (5)0.0441 (4)0.0040 (4)0.0071 (3)0.0042 (4)
Cl20.0607 (6)0.0907 (8)0.0635 (6)0.0249 (5)0.0045 (5)0.0351 (6)
Cl30.0308 (3)0.0253 (3)0.0136 (2)0.0078 (2)0.0033 (2)0.0067 (2)
Cl40.0412 (3)0.0232 (3)0.0120 (2)0.0157 (2)0.0024 (2)0.0062 (2)
Pd10.01427 (10)0.01495 (11)0.01231 (10)0.00138 (8)0.00132 (8)0.00470 (8)
Pd20.01413 (10)0.01324 (10)0.01027 (10)0.00574 (8)0.00068 (8)0.00314 (8)
F10A0.082 (3)0.067 (3)0.0178 (14)0.042 (2)0.0129 (17)0.013 (2)
F11A0.077 (3)0.0268 (13)0.054 (2)0.0044 (15)0.040 (2)0.0026 (14)
F12A0.0296 (12)0.088 (3)0.052 (2)0.0220 (18)0.0237 (14)0.039 (2)
F10B0.055 (2)0.050 (2)0.046 (2)0.0195 (15)0.0381 (17)0.0079 (15)
F11B0.081 (3)0.062 (3)0.039 (2)0.051 (2)0.0252 (18)0.0162 (19)
F12B0.0292 (16)0.076 (3)0.037 (2)0.0215 (18)0.0146 (12)0.033 (2)
Geometric parameters (Å, º) top
C1—F31.336 (3)C25—H250.95
C1—F11.340 (3)C26—H260.95
C1—F21.341 (3)C31—C361.386 (3)
C1—C141.501 (3)C31—C321.394 (3)
C2—F41.325 (3)C31—P11.823 (2)
C2—F51.340 (3)C32—C331.383 (3)
C2—F61.346 (3)C32—H320.95
C2—C241.501 (3)C33—C341.390 (3)
C3—F91.330 (3)C33—H330.95
C3—F71.333 (3)C34—C351.374 (3)
C3—F81.343 (3)C35—C361.396 (3)
C3—C341.504 (3)C35—H350.95
C4—F12B1.255 (5)C36—H360.95
C4—F12A1.262 (4)C41—C461.388 (3)
C4—F11B1.263 (4)C41—C421.398 (3)
C4—F10A1.301 (5)C41—P21.819 (2)
C4—F10B1.408 (4)C42—C431.387 (3)
C4—F11A1.437 (4)C42—H420.95
C4—C441.498 (3)C43—C441.389 (3)
C5—F151.331 (3)C43—H430.95
C5—F141.334 (3)C44—C451.382 (3)
C5—F131.343 (3)C45—C461.391 (3)
C5—C541.501 (3)C45—H450.95
C7—Cl21.710 (4)C46—H460.95
C7—Cl11.722 (4)C51—C521.392 (3)
C7—H7A0.99C51—C561.398 (3)
C7—H7B0.99C51—P21.820 (2)
C6A—F17A1.336 (7)C52—C531.396 (3)
C6A—F16A1.356 (8)C52—H520.95
C6A—F18A1.359 (15)C53—C541.383 (3)
C6A—C641.503 (10)C53—H530.95
C6B—F16B1.312 (13)C54—C551.392 (3)
C6B—F17B1.336 (12)C55—C561.390 (3)
C6B—F18B1.34 (2)C55—H550.95
C6B—C641.506 (17)C56—H560.95
C11—C121.393 (3)C61—C661.394 (3)
C11—C161.398 (3)C61—C621.398 (3)
C11—P11.826 (2)C61—P21.827 (2)
C12—C131.395 (3)C62—C631.387 (3)
C12—H120.95C62—H620.95
C13—C141.381 (3)C63—C641.393 (3)
C13—H130.95C63—H630.95
C14—C151.395 (3)C64—C651.381 (3)
C15—C161.391 (3)C65—C661.388 (3)
C15—H150.95C65—H650.95
C16—H160.95C66—H660.95
C21—C261.394 (3)P1—Pd12.3174 (5)
C21—C221.398 (3)P2—Pd22.3130 (6)
C21—P11.824 (2)Cl3—Pd12.2897 (6)
C22—C231.388 (3)Cl4—Pd22.2871 (6)
C22—H220.95Pd1—Cl3i2.2897 (6)
C23—C241.393 (3)Pd1—P1i2.3174 (5)
C23—H230.95Pd2—Cl4ii2.2871 (6)
C24—C251.384 (3)Pd2—P2ii2.3130 (6)
C25—C261.390 (3)
F3—C1—F1106.6 (2)C36—C31—C32119.3 (2)
F3—C1—F2106.3 (2)C36—C31—P1121.84 (16)
F1—C1—F2107.1 (2)C32—C31—P1118.88 (17)
F3—C1—C14111.1 (2)C33—C32—C31120.4 (2)
F1—C1—C14112.1 (2)C33—C32—H32119.8
F2—C1—C14113.2 (2)C31—C32—H32119.8
F4—C2—F5107.4 (2)C32—C33—C34119.8 (2)
F4—C2—F6106.8 (2)C32—C33—H33120.1
F5—C2—F6104.9 (2)C34—C33—H33120.1
F4—C2—C24112.9 (2)C35—C34—C33120.3 (2)
F5—C2—C24112.7 (2)C35—C34—C3119.6 (2)
F6—C2—C24111.8 (2)C33—C34—C3120.0 (2)
F9—C3—F7107.6 (2)C34—C35—C36119.9 (2)
F9—C3—F8106.4 (2)C34—C35—H35120.1
F7—C3—F8105.2 (2)C36—C35—H35120.1
F9—C3—C34112.1 (2)C31—C36—C35120.3 (2)
F7—C3—C34112.6 (2)C31—C36—H36119.8
F8—C3—C34112.5 (2)C35—C36—H36119.8
F12B—C4—F12A126.7 (3)C46—C41—C42119.59 (19)
F12B—C4—F11B113.5 (4)C46—C41—P2122.65 (16)
F12A—C4—F11B49.0 (3)C42—C41—P2117.75 (16)
F12A—C4—F10A111.8 (4)C43—C42—C41120.5 (2)
F11B—C4—F10A131.2 (4)C43—C42—H42119.8
F12B—C4—F10B102.9 (4)C41—C42—H42119.8
F12A—C4—F10B55.6 (3)C42—C43—C44119.3 (2)
F11B—C4—F10B104.1 (4)C42—C43—H43120.3
F10A—C4—F10B70.3 (4)C44—C43—H43120.3
F12B—C4—F11A65.7 (3)C45—C44—C43120.4 (2)
F12A—C4—F11A101.2 (4)C45—C44—C4119.4 (2)
F11B—C4—F11A56.3 (4)C43—C44—C4120.1 (2)
F10A—C4—F11A98.1 (4)C44—C45—C46120.3 (2)
F10B—C4—F11A142.7 (3)C44—C45—H45119.8
F12B—C4—C44114.6 (3)C46—C45—H45119.8
F12A—C4—C44118.4 (3)C41—C46—C45119.8 (2)
F11B—C4—C44112.6 (3)C41—C46—H46120.1
F10A—C4—C44115.1 (3)C45—C46—H46120.1
F10B—C4—C44107.9 (2)C52—C51—C56119.31 (19)
F11A—C4—C44109.1 (2)C52—C51—P2119.73 (16)
F15—C5—F14106.9 (2)C56—C51—P2120.94 (16)
F15—C5—F13106.4 (2)C51—C52—C53120.5 (2)
F14—C5—F13106.46 (19)C51—C52—H52119.7
F15—C5—C54111.37 (19)C53—C52—H52119.7
F14—C5—C54113.3 (2)C54—C53—C52119.7 (2)
F13—C5—C54112.0 (2)C54—C53—H53120.2
Cl2—C7—Cl1117.7 (2)C52—C53—H53120.2
Cl2—C7—H7A107.9C53—C54—C55120.4 (2)
Cl1—C7—H7A107.9C53—C54—C5120.5 (2)
Cl2—C7—H7B107.9C55—C54—C5119.0 (2)
Cl1—C7—H7B107.9C56—C55—C54119.8 (2)
H7A—C7—H7B107.2C56—C55—H55120.1
F17A—C6A—F16A105.9 (6)C54—C55—H55120.1
F17A—C6A—F18A107.6 (10)C55—C56—C51120.2 (2)
F16A—C6A—F18A105.3 (8)C55—C56—H56119.9
F17A—C6A—C64115.6 (6)C51—C56—H56119.9
F16A—C6A—C64110.6 (6)C66—C61—C62119.4 (2)
F18A—C6A—C64111.2 (12)C66—C61—P2121.87 (17)
F16B—C6B—F17B107.7 (11)C62—C61—P2118.68 (16)
F16B—C6B—F18B108.8 (15)C63—C62—C61120.2 (2)
F17B—C6B—F18B103.9 (16)C63—C62—H62119.9
F16B—C6B—C64114.2 (10)C61—C62—H62119.9
F17B—C6B—C64109.0 (10)C62—C63—C64119.6 (2)
F18B—C6B—C64113 (2)C62—C63—H63120.2
C12—C11—C16119.3 (2)C64—C63—H63120.2
C12—C11—P1119.15 (16)C65—C64—C63120.5 (2)
C16—C11—P1121.52 (17)C65—C64—C6A121.5 (4)
C11—C12—C13120.4 (2)C63—C64—C6A117.9 (4)
C11—C12—H12119.8C65—C64—C6B118.2 (6)
C13—C12—H12119.8C63—C64—C6B120.7 (6)
C14—C13—C12119.7 (2)C64—C65—C66119.9 (2)
C14—C13—H13120.1C64—C65—H65120
C12—C13—H13120.1C66—C65—H65120
C13—C14—C15120.6 (2)C65—C66—C61120.2 (2)
C13—C14—C1120.2 (2)C65—C66—H66119.9
C15—C14—C1119.1 (2)C61—C66—H66119.9
C16—C15—C14119.6 (2)C31—P1—C21104.08 (10)
C16—C15—H15120.2C31—P1—C11106.84 (10)
C14—C15—H15120.2C21—P1—C11103.49 (9)
C15—C16—C11120.3 (2)C31—P1—Pd1110.60 (7)
C15—C16—H16119.9C21—P1—Pd1119.18 (7)
C11—C16—H16119.9C11—P1—Pd1111.70 (7)
C26—C21—C22119.5 (2)C41—P2—C51108.07 (9)
C26—C21—P1121.38 (17)C41—P2—C61103.66 (10)
C22—C21—P1119.12 (16)C51—P2—C61103.09 (10)
C23—C22—C21120.2 (2)C41—P2—Pd2110.58 (7)
C23—C22—H22119.9C51—P2—Pd2111.57 (7)
C21—C22—H22119.9C61—P2—Pd2119.04 (7)
C22—C23—C24119.7 (2)Cl3—Pd1—Cl3i180
C22—C23—H23120.2Cl3—Pd1—P187.299 (19)
C24—C23—H23120.2Cl3i—Pd1—P192.701 (19)
C25—C24—C23120.5 (2)Cl3—Pd1—P1i92.701 (19)
C25—C24—C2120.3 (2)Cl3i—Pd1—P1i87.299 (19)
C23—C24—C2119.2 (2)P1—Pd1—P1i180.00 (4)
C24—C25—C26119.8 (2)Cl4—Pd2—Cl4ii180
C24—C25—H25120.1Cl4—Pd2—P2ii86.151 (19)
C26—C25—H25120.1Cl4ii—Pd2—P2ii93.849 (19)
C25—C26—C21120.3 (2)Cl4—Pd2—P293.849 (19)
C25—C26—H26119.9Cl4ii—Pd2—P286.151 (19)
C21—C26—H26119.9P2ii—Pd2—P2180
C16—C11—C12—C132.2 (3)C5—C54—C55—C56177.7 (2)
P1—C11—C12—C13177.89 (17)C54—C55—C56—C510.2 (3)
C11—C12—C13—C140.5 (3)C52—C51—C56—C550.4 (3)
C12—C13—C14—C151.2 (4)P2—C51—C56—C55178.40 (18)
C12—C13—C14—C1175.1 (2)C66—C61—C62—C630.5 (3)
F3—C1—C14—C1396.0 (3)P2—C61—C62—C63178.88 (17)
F1—C1—C14—C13144.9 (2)C61—C62—C63—C640.8 (3)
F2—C1—C14—C1323.5 (3)C62—C63—C64—C651.9 (4)
F3—C1—C14—C1580.4 (3)C62—C63—C64—C6A178.2 (4)
F1—C1—C14—C1538.8 (3)C62—C63—C64—C6B169.1 (5)
F2—C1—C14—C15160.1 (2)F17A—C6A—C64—C65107.7 (7)
C13—C14—C15—C161.0 (4)F16A—C6A—C64—C65132.0 (6)
C1—C14—C15—C16175.3 (2)F18A—C6A—C64—C6515.3 (9)
C14—C15—C16—C110.7 (3)F17A—C6A—C64—C6368.5 (7)
C12—C11—C16—C152.4 (3)F16A—C6A—C64—C6351.8 (6)
P1—C11—C16—C15177.77 (18)F18A—C6A—C64—C63168.4 (6)
C26—C21—C22—C231.6 (3)F17A—C6A—C64—C6B176 (5)
P1—C21—C22—C23177.88 (16)F16A—C6A—C64—C6B55 (4)
C21—C22—C23—C240.5 (3)F18A—C6A—C64—C6B61 (4)
C22—C23—C24—C252.1 (3)F16B—C6B—C64—C65103.6 (11)
C22—C23—C24—C2178.4 (2)F17B—C6B—C64—C65135.9 (9)
F4—C2—C24—C2520.5 (3)F18B—C6B—C64—C6521.1 (14)
F5—C2—C24—C25101.3 (3)F16B—C6B—C64—C6367.5 (11)
F6—C2—C24—C25140.9 (2)F17B—C6B—C64—C6353.0 (10)
F4—C2—C24—C23160.0 (2)F18B—C6B—C64—C63167.7 (11)
F5—C2—C24—C2378.2 (3)F16B—C6B—C64—C6A147 (5)
F6—C2—C24—C2339.6 (3)F17B—C6B—C64—C6A26 (3)
C23—C24—C25—C261.8 (4)F18B—C6B—C64—C6A89 (4)
C2—C24—C25—C26178.7 (2)C63—C64—C65—C661.5 (4)
C24—C25—C26—C210.3 (4)C6A—C64—C65—C66177.7 (4)
C22—C21—C26—C252.0 (3)C6B—C64—C65—C66169.6 (5)
P1—C21—C26—C25177.48 (18)C64—C65—C66—C610.2 (4)
C36—C31—C32—C330.1 (3)C62—C61—C66—C650.9 (3)
P1—C31—C32—C33179.78 (19)P2—C61—C66—C65178.52 (19)
C31—C32—C33—C340.6 (4)C36—C31—P1—C2190.20 (19)
C32—C33—C34—C351.1 (4)C32—C31—P1—C2190.12 (19)
C32—C33—C34—C3179.8 (2)C36—C31—P1—C1118.9 (2)
F9—C3—C34—C3596.9 (3)C32—C31—P1—C11160.78 (17)
F7—C3—C34—C3524.6 (3)C36—C31—P1—Pd1140.65 (17)
F8—C3—C34—C35143.3 (2)C32—C31—P1—Pd139.02 (19)
F9—C3—C34—C3382.3 (3)C26—C21—P1—C318.4 (2)
F7—C3—C34—C33156.2 (2)C22—C21—P1—C31171.03 (16)
F8—C3—C34—C3337.5 (3)C26—C21—P1—C11119.96 (18)
C33—C34—C35—C361.0 (3)C22—C21—P1—C1159.48 (18)
C3—C34—C35—C36179.9 (2)C26—C21—P1—Pd1115.33 (17)
C32—C31—C36—C350.0 (3)C22—C21—P1—Pd165.23 (18)
P1—C31—C36—C35179.66 (17)C12—C11—P1—C31104.14 (18)
C34—C35—C36—C310.4 (3)C16—C11—P1—C3176.0 (2)
C46—C41—C42—C432.5 (4)C12—C11—P1—C21146.35 (17)
P2—C41—C42—C43177.08 (19)C16—C11—P1—C2133.5 (2)
C41—C42—C43—C441.0 (4)C12—C11—P1—Pd116.93 (19)
C42—C43—C44—C450.7 (4)C16—C11—P1—Pd1162.93 (16)
C42—C43—C44—C4178.8 (2)C46—C41—P2—C516.8 (2)
F12B—C4—C44—C454.0 (5)C42—C41—P2—C51173.62 (18)
F12A—C4—C44—C45177.8 (4)C46—C41—P2—C61102.1 (2)
F11B—C4—C44—C45127.8 (4)C42—C41—P2—C6177.44 (19)
F10A—C4—C44—C4541.8 (5)C46—C41—P2—Pd2129.21 (17)
F10B—C4—C44—C45117.9 (3)C42—C41—P2—Pd251.23 (19)
F11A—C4—C44—C4567.3 (3)C52—C51—P2—C41110.65 (18)
F12B—C4—C44—C43176.5 (4)C56—C51—P2—C4171.37 (19)
F12A—C4—C44—C432.6 (5)C52—C51—P2—C61140.02 (17)
F11B—C4—C44—C4351.7 (5)C56—C51—P2—C6138.0 (2)
F10A—C4—C44—C43138.7 (4)C52—C51—P2—Pd211.13 (19)
F10B—C4—C44—C4362.5 (3)C56—C51—P2—Pd2166.86 (15)
F11A—C4—C44—C43112.3 (3)C66—C61—P2—C415.8 (2)
C43—C44—C45—C460.9 (4)C62—C61—P2—C41173.60 (17)
C4—C44—C45—C46178.6 (2)C66—C61—P2—C51118.38 (19)
C42—C41—C46—C452.2 (3)C62—C61—P2—C5161.00 (18)
P2—C41—C46—C45177.30 (18)C66—C61—P2—Pd2117.50 (18)
C44—C45—C46—C410.6 (4)C62—C61—P2—Pd263.12 (18)
C56—C51—C52—C530.4 (3)C31—P1—Pd1—Cl345.42 (7)
P2—C51—C52—C53178.39 (17)C21—P1—Pd1—Cl3165.92 (8)
C51—C52—C53—C540.1 (3)C11—P1—Pd1—Cl373.43 (7)
C52—C53—C54—C550.1 (3)C31—P1—Pd1—Cl3i134.58 (7)
C52—C53—C54—C5177.7 (2)C21—P1—Pd1—Cl3i14.08 (8)
F15—C5—C54—C53100.5 (3)C11—P1—Pd1—Cl3i106.57 (7)
F14—C5—C54—C5320.0 (3)C41—P2—Pd2—Cl4134.36 (8)
F13—C5—C54—C53140.5 (2)C51—P2—Pd2—Cl4105.32 (7)
F15—C5—C54—C5577.2 (3)C61—P2—Pd2—Cl414.56 (8)
F14—C5—C54—C55162.2 (2)C41—P2—Pd2—Cl4ii45.64 (8)
F13—C5—C54—C5541.8 (3)C51—P2—Pd2—Cl4ii74.68 (7)
C53—C54—C55—C560.0 (3)C61—P2—Pd2—Cl4ii165.44 (8)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl30.952.783.468 (2)130
C7—H7B···Cl40.992.543.510 (4)165
C65—H65···F6iii0.952.553.457 (3)160
C7—H7A···Cl3iv0.992.573.550 (5)169
C15—H15···F17Av0.952.523.341 (6)144
C33—H33···F10B0.952.533.435 (4)159
Symmetry codes: (iii) x, y+1, z; (iv) x, y, z+1; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formula[PdCl2(C21H12F9P)2]·CH2Cl2
Mr1194.78
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)12.1491 (10), 14.0203 (13), 14.4334 (13)
α, β, γ (°)72.764 (2), 78.362 (2), 75.545 (2)
V3)2252.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.34 × 0.31 × 0.25
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.766, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
48517, 11209, 9475
Rint0.03
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.02
No. of reflections11209
No. of parameters680
No. of restraints116
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.85

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl30.952.783.468 (2)130.0
C7—H7B···Cl40.992.543.510 (4)165.4
C65—H65···F6i0.952.553.457 (3)160.2
C7—H7A···Cl3ii0.992.573.550 (5)169.1
C15—H15···F17Aiii0.952.523.341 (6)144.3
C33—H33···F10B0.952.533.435 (4)158.6
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x1, y, z1.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1508-m1509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds