organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-3-meth­­oxy­methyl-5-methyl­benzaldehyde

aDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India, bDepartment of Chemistry, DDE, Alagappa University, Karaikudi 630 003, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 27 January 2013; accepted 28 January 2013; online 31 January 2013)

In the title mol­ecule, C10H12O3, all non-H atoms lie in a common plane (r.m.s deviation = 0.010 Å). The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond.

Related literature

For the biological activity of methyl­benzene derivatives, see: Anbarasan et al. (2011[Anbarasan, P. M., Subramanian, M. K., Senthilkumar, P., Mohanasundaram, C., Ilangovan, V. & Sundaraganesan, N. (2011). J. Chem. Pharm. Res. 3, 597-612.]); Chan & Daniels (2007[Chan, L. & Daniels, L. (2007). Acta Cryst. E63, o2435.]). For related structures see: Wang et al. (2011[Wang, J., Duan, E., Zhou, E., Yao, Q. & Zhang, W. (2011). Acta Cryst. E67, o1414.]); Kılıç et al. (2009[Kılıç, I., Işık, Ş., Ağar, E. & Erşahin, F. (2009). Acta Cryst. E65, o1347.]); For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O3

  • Mr = 180.20

  • Monoclinic, P 21 /c

  • a = 13.899 (3) Å

  • b = 8.9184 (19) Å

  • c = 7.5043 (16) Å

  • β = 94.098 (6)°

  • V = 927.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.981

  • 10089 measured reflections

  • 2329 independent reflections

  • 1213 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.181

  • S = 1.03

  • 2329 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.91 2.628 (3) 146

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent days methylbenzene (toluene) and substituted methylbenzene have become very important on account of their wide range of applications in medicine and industry (Anbarasan et al., 2011). For example 3-chloro-2-methylbenzene-1-sulfonylchloride shows the biological activity of hydroxysteriod dehydrogenase inhibitors (Chan & Daniels, 2007).

The geometric parameters of the compound (I), (Fig. 1) agree well with those of a reported similar structure (Wang et al., 2011; Kılıç et al., 2009) The molecular structure is stabilized by an intramolecular O-H..O interaction generating a six-membered ring S(6) graph-set motif (Bernstein et al., 1995).

Related literature top

For the biological activity of methylbenzene derivatives, see: Anbarasan et al. (2011); Chan & Daniels (2007). For related structures see: Wang et al. (2011); Kılıç et al. (2009); For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995);

Experimental top

To a methanolic solution of 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde (1g, 6mmol) decarborane (0.37, 3 mmol) was added slowly with constant stirring at room temperature in nitrogen atmosphere for 24 hours. A pale yellow solution formed after 24h and was concentrated to get the crude product. The crude product was washed well with methanol and dried in vacuum. The product was recrystallized in chloroform to get pale yellow coloured crystals suitable for single crystal XRD. yield 0.96g, 80% .

Refinement top

H atoms were positioned geometrically and refined using riding model with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C-H, C-H = 0.97Å and Uiso(H) = 1.2Ueq(C) for CH2, C-H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3 and O-H = 0.82Å and Uiso(H) = 1.2Ueq(C) for OH.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
2-Hydroxy-3-methoxymethyl-5-methylbenzaldehyde top
Crystal data top
C10H12O3F(000) = 384
Mr = 180.20Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3221 reflections
a = 13.899 (3) Åθ = 2.7–24.8°
b = 8.9184 (19) ŵ = 0.10 mm1
c = 7.5043 (16) ÅT = 295 K
β = 94.098 (6)°Block, yellow
V = 927.8 (3) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
2329 independent reflections
Radiation source: fine-focus sealed tube1213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 28.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.972, Tmax = 0.981k = 1112
10089 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.4641P]
where P = (Fo2 + 2Fc2)/3
2329 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H12O3V = 927.8 (3) Å3
Mr = 180.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.899 (3) ŵ = 0.10 mm1
b = 8.9184 (19) ÅT = 295 K
c = 7.5043 (16) Å0.30 × 0.24 × 0.20 mm
β = 94.098 (6)°
Data collection top
Bruker Kappa APEXII
diffractometer
2329 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1213 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.050
10089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2329 reflectionsΔρmin = 0.22 e Å3
121 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.92734 (18)1.0908 (3)0.1482 (4)0.0617 (7)
H80.98421.13450.19590.074*
C10.85176 (16)1.1898 (2)0.0792 (3)0.0459 (6)
C60.86550 (16)1.3446 (3)0.0868 (3)0.0497 (6)
H60.92411.38250.13490.060*
C50.79476 (17)1.4420 (2)0.0250 (3)0.0479 (6)
C40.70806 (16)1.3801 (2)0.0467 (3)0.0457 (6)
H40.65951.44490.09060.055*
C30.69089 (16)1.2288 (2)0.0558 (3)0.0426 (5)
C20.76424 (16)1.1324 (2)0.0081 (3)0.0438 (5)
C90.59741 (17)1.1631 (3)0.1290 (3)0.0536 (6)
H9A0.60881.09650.22750.064*
H9B0.56901.10490.03700.064*
C100.4451 (2)1.2195 (3)0.2637 (4)0.0741 (9)
H10A0.45691.15790.36480.111*
H10B0.40301.30060.30120.111*
H10C0.41551.16020.17590.111*
C70.8079 (2)1.6091 (3)0.0330 (4)0.0687 (8)
H7A0.79291.64510.14830.103*
H7B0.76571.65560.05760.103*
H7C0.87361.63360.01320.103*
O10.92264 (14)0.9535 (2)0.1490 (3)0.0772 (6)
O20.74664 (13)0.98329 (17)0.0006 (3)0.0618 (5)
H20.79460.93760.04100.093*
O30.53348 (12)1.27783 (19)0.1888 (3)0.0638 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0507 (15)0.0628 (17)0.0718 (19)0.0088 (12)0.0061 (12)0.0047 (13)
C10.0469 (13)0.0412 (12)0.0500 (14)0.0053 (10)0.0060 (10)0.0027 (9)
C60.0463 (13)0.0475 (14)0.0549 (15)0.0047 (10)0.0020 (10)0.0034 (11)
C50.0530 (14)0.0374 (11)0.0532 (14)0.0033 (10)0.0039 (10)0.0027 (10)
C40.0475 (13)0.0361 (11)0.0535 (14)0.0042 (9)0.0028 (10)0.0029 (10)
C30.0475 (12)0.0357 (11)0.0449 (13)0.0051 (9)0.0059 (9)0.0007 (9)
C20.0515 (13)0.0319 (11)0.0487 (13)0.0005 (9)0.0086 (10)0.0017 (9)
C90.0560 (14)0.0406 (12)0.0638 (16)0.0052 (11)0.0027 (12)0.0040 (11)
C100.0586 (17)0.0758 (19)0.085 (2)0.0147 (14)0.0139 (14)0.0095 (16)
C70.0728 (18)0.0374 (13)0.095 (2)0.0071 (12)0.0003 (15)0.0078 (13)
O10.0704 (13)0.0538 (12)0.1080 (18)0.0216 (9)0.0109 (11)0.0142 (11)
O20.0665 (12)0.0333 (9)0.0858 (14)0.0009 (7)0.0063 (10)0.0045 (8)
O30.0500 (10)0.0528 (10)0.0858 (13)0.0075 (8)0.0136 (9)0.0087 (9)
Geometric parameters (Å, º) top
C8—O11.227 (3)C2—O21.352 (2)
C8—C11.440 (3)C9—O31.407 (3)
C8—H80.9300C9—H9A0.9700
C1—C21.391 (3)C9—H9B0.9700
C1—C61.394 (3)C10—O31.413 (3)
C6—C51.368 (3)C10—H10A0.9600
C6—H60.9300C10—H10B0.9600
C5—C41.398 (3)C10—H10C0.9600
C5—C71.503 (3)C7—H7A0.9600
C4—C31.372 (3)C7—H7B0.9600
C4—H40.9300C7—H7C0.9600
C3—C21.392 (3)O2—H20.8200
C3—C91.494 (3)
O1—C8—C1125.2 (3)O3—C9—C3110.18 (18)
O1—C8—H8117.4O3—C9—H9A109.6
C1—C8—H8117.4C3—C9—H9A109.6
C2—C1—C6119.6 (2)O3—C9—H9B109.6
C2—C1—C8120.5 (2)C3—C9—H9B109.6
C6—C1—C8119.9 (2)H9A—C9—H9B108.1
C5—C6—C1121.5 (2)O3—C10—H10A109.5
C5—C6—H6119.3O3—C10—H10B109.5
C1—C6—H6119.3H10A—C10—H10B109.5
C6—C5—C4117.3 (2)O3—C10—H10C109.5
C6—C5—C7122.3 (2)H10A—C10—H10C109.5
C4—C5—C7120.4 (2)H10B—C10—H10C109.5
C3—C4—C5123.3 (2)C5—C7—H7A109.5
C3—C4—H4118.3C5—C7—H7B109.5
C5—C4—H4118.3H7A—C7—H7B109.5
C4—C3—C2118.0 (2)C5—C7—H7C109.5
C4—C3—C9123.2 (2)H7A—C7—H7C109.5
C2—C3—C9118.74 (19)H7B—C7—H7C109.5
O2—C2—C1121.9 (2)C2—O2—H2109.5
O2—C2—C3117.8 (2)C9—O3—C10111.7 (2)
C1—C2—C3120.25 (19)
O1—C8—C1—C20.9 (4)C8—C1—C2—O20.1 (3)
O1—C8—C1—C6179.6 (2)C6—C1—C2—C30.2 (3)
C2—C1—C6—C50.3 (3)C8—C1—C2—C3179.0 (2)
C8—C1—C6—C5179.0 (2)C4—C3—C2—O2179.3 (2)
C1—C6—C5—C40.2 (3)C9—C3—C2—O20.1 (3)
C1—C6—C5—C7179.6 (2)C4—C3—C2—C10.2 (3)
C6—C5—C4—C30.7 (3)C9—C3—C2—C1179.2 (2)
C7—C5—C4—C3179.1 (2)C4—C3—C9—O31.4 (3)
C5—C4—C3—C20.8 (3)C2—C3—C9—O3179.2 (2)
C5—C4—C3—C9178.7 (2)C3—C9—O3—C10178.3 (2)
C6—C1—C2—O2178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.912.628 (3)146
C4—H4···O30.932.382.736 (3)103

Experimental details

Crystal data
Chemical formulaC10H12O3
Mr180.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.899 (3), 8.9184 (19), 7.5043 (16)
β (°) 94.098 (6)
V3)927.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10089, 2329, 1213
Rint0.050
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.181, 1.03
No. of reflections2329
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.912.628 (3)146
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationAnbarasan, P. M., Subramanian, M. K., Senthilkumar, P., Mohanasundaram, C., Ilangovan, V. & Sundaraganesan, N. (2011). J. Chem. Pharm. Res. 3, 597–612.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, L. & Daniels, L. (2007). Acta Cryst. E63, o2435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKılıç, I., Işık, Ş., Ağar, E. & Erşahin, F. (2009). Acta Cryst. E65, o1347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Duan, E., Zhou, E., Yao, Q. & Zhang, W. (2011). Acta Cryst. E67, o1414.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds