organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o260-o261

4-[Bis(4-fluoro­phen­yl)meth­yl]-1-[(2E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium 3-carb­­oxy­propano­ate

aUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 9 November 2012; accepted 8 January 2013; online 19 January 2013)

In the title salt, C26H27F2N2+·C4H5O4, the piperazine N atom bearing the vinylic substituent is protonated. The piperazine ring adopts a chair conformation. In ther crystal, the succinate monoanions are connected via short O—H⋯O hydrogen bonds between the carb­oxy­lic acid and carboxyl­ate groups into undulating chains extending along [001] and the flunarizinium monocations are attached to these chains via N+—H⋯O hydrogen bonds. C—H⋯O inter­actions connect these chains into a three-dimensional network. The shortest centroid–centroid distance of 3.7256 (10) Å was found between one of the fluorinated benzene rings and the non-fluorinated phenyl ring in the neighbouring mol­ecule related by a glide plane.

Related literature

For pharmaceutical properties of flunarizine, see: Holmes et al. (1984[Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs, 27, 6-44.]); Amery (1983[Amery, W. K. (1983). Headache, 23, 70-74.]) and of piperazine derivatives, see: Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Elliott (2011[Elliott, S. (2011). Drug. Test. Anal. 3, 430-438.]). For related structures, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o2783-o2784.],b[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2587-o2588.]); Dayananda et al. (2012a[Dayananda, A. S., Dutkiewicz, G., Yathirajan, H. S., Ramesha, A. R. & Kubicki, M. (2012a). Acta Cryst. E68, o2817.],b[Dayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012b). Acta Cryst. E68, o2237.]); Fillers & Hawkinson (1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 3041-3045.]); Vanier & Brisse (1983[Vanier, M. & Brisse, F. (1983). Acta Cryst. C39, 912-914.]). For puckering analysis of six-membered rings, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27F2N2+·C4H5O4

  • Mr = 522.58

  • Monoclinic, P c

  • a = 10.7824 (2) Å

  • b = 10.6270 (2) Å

  • c = 11.2364 (2) Å

  • β = 91.678 (1)°

  • V = 1286.97 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.56 × 0.29 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS . Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.985

  • 16870 measured reflections

  • 3619 independent reflections

  • 3524 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.03

  • 3619 reflections

  • 348 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H72⋯O1 0.96 (2) 1.73 (2) 2.6795 (16) 174 (2)
O3—H3⋯O1i 0.84 1.84 2.6564 (16) 162
C4—H4A⋯O4ii 0.99 2.58 3.287 (3) 128
C4—H4B⋯O2iii 0.99 2.39 3.3167 (19) 155
C25—H25⋯O2iv 0.95 2.53 3.4168 (19) 155
C12—H12⋯Cgv 0.95 2.81 3.7511 (17) 170
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x+1, -y+1, z-{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Flunarizine is a drug classified as a calcium channel blocker (Amery, 1983). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use has been published (Holmes et al., 1984). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds in a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006), and a review about the current pharmacological and toxicological information for piperazine derivatives is available (Elliott, 2011). The crystal structures of several related compounds are apparent in the literature (Fillers & Hawkinson, 1982; Vanier & Brisse, 1983; Betz et al., 2011a,b; Dayananda et al., 2012a,b). In continuation of our research about the salts of pharmacologically active compounds the title compound was synthesized and its crystal structure was determined.

Protonation of the flunarizine scaffold occurred on the nitrogen atom bearing the vinylic substituent. According to a puckering analysis (Cremer & Pople, 1975; Boeyens, 1978), the central 1,4-diazacyclohexane ring adopts a 4C1 conformation with both nitrogen atoms acting as the flap atoms (N2CN1). The C=C bond in the vinylic substituent is (E)-configured. The least-squares planes defined by the individual carbon atoms of the fluorinated phenyl moieties enclose an angle of 78.09 (8) °. The plane defined by the carbon atoms of the non-halogenated phenyl ring intersects at angles of 11.08 (8) ° and 87.51 (8) ° with the two aforementioned planes. The succinate monoanion is essentially flat (r.m.s. of all fitted non-hydrogen atoms = 0.0955 Å) with one of the carbon atoms of a methylene group deviating most from the common plane by 0.160 (1) Å (Fig. 1). The succinate monoanion adopts a zigzag conformation.

In the crystal, C–H···O contacts whose range falls by up to more than 0.3 Å below the sum of van-der-Waals radii of the atoms participating are observed next to classical hydrogen bonds of the O–H···O and N–H···O type. The C–H···O contacts are supported by both hydrogen atoms of an intracyclic methylene group bonded to the protonated nitrogen atom as well as one hydrogen atom in ortho-position to a fluorine atom in one of the fluorophenyl moieties as donors. The protonated carboxyl group forms a hydrogen bond to the deprotonated carboxyl group, the latter one also serving as acceptor for the N–H···O type hydrogen bonds. In addition, a C–H···π interaction involving one of the hydrogen atoms in meta-position to the fluorine atoms on the fluorophenyl moiety that does not contribute to the C–H···O contacts as described above as the donor and the aromtic system of the non-halogenated phenyl ring as the acceptor is apparent. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the entities of the title compound are connected to a three-dimensional network. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is DC11(7) for the classical hydrogen bonds on the unary level. The C–H···O contacts necessitate a DDD descriptor on the same level. The shortest intercentroid distance between twomoiety aromatic systems was found at 3.7256 (10) Å and is apparent between one of the fluorinated and the non-halogenated phenyl moiety in neighbouring cations.

The packing of the title compound in the crystal structure is shown in Figure 2.

Related literature top

For pharmaceutical properties of flunarizine, see: Holmes et al. (1984); Amery (1983) and of piperazine derivatives, see: Brockunier et al. (2004); Bogatcheva et al. (2006); Elliott (2011). For related structures, see: Betz et al. (2011a,b); Dayananda et al. (2012a,b); Fillers & Hawkinson (1982); Vanier & Brisse (1983). For puckering analysis of six-membered rings, see: Cremer & Pople (1975); Boeyens (1978). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

Flunarizine (4.05 g, 0.01 mol) and succinic acid (1.18 g, 0.01 mol) were dissolved in hot N,N-dimethylformamide and reacted for 30 minutes. The resulting solution was allowed to cool slowly at room temperature upon which crystals of the title compound appeared in the course of several days. The latter were of sufficient quality for the X-ray diffraction studies.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms, C–H 0.99 Å for methylene groups and C–H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C–O bond to best fit the experimental electron density [HFIX 147 in the SHELX program suite (Sheldrick, 2008)] with U(H) set to 1.5Ueq(O). The nitrogen-bound H atom was located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along [0 0 1] (anisotropic displacement ellipsoids drawn at the 50% probability level).
4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1- yl]piperazin-1-ium 3-carboxypropanoate top
Crystal data top
C26H27F2N2+·C4H5O4F(000) = 552
Mr = 522.58Dx = 1.349 Mg m3
Monoclinic, PcMelting point = 383–378 K
Hall symbol: P -2ycMo Kα radiation, λ = 0.71073 Å
a = 10.7824 (2) ÅCell parameters from 9972 reflections
b = 10.6270 (2) Åθ = 2.6–29.6°
c = 11.2364 (2) ŵ = 0.10 mm1
β = 91.678 (1)°T = 200 K
V = 1286.97 (4) Å3Rectangular, yellow
Z = 20.56 × 0.29 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3619 independent reflections
Radiation source: fine-focus sealed tube3524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 29.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.947, Tmax = 0.985k = 1414
16870 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.1548P]
where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max < 0.001
348 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H27F2N2+·C4H5O4V = 1286.97 (4) Å3
Mr = 522.58Z = 2
Monoclinic, PcMo Kα radiation
a = 10.7824 (2) ŵ = 0.10 mm1
b = 10.6270 (2) ÅT = 200 K
c = 11.2364 (2) Å0.56 × 0.29 × 0.16 mm
β = 91.678 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3524 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.985Rint = 0.014
16870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
3619 reflectionsΔρmin = 0.15 e Å3
348 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (3016 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.60945 (15)0.00547 (14)0.96672 (13)0.0575 (3)
F20.76769 (12)0.30206 (12)0.22338 (10)0.0453 (3)
N10.39495 (10)0.42901 (11)0.63218 (10)0.0199 (2)
N20.16828 (10)0.57409 (11)0.64797 (10)0.0205 (2)
H720.192 (2)0.640 (2)0.7023 (19)0.028 (5)*
C10.52807 (12)0.40104 (13)0.65297 (11)0.0204 (2)
H10.56810.47680.69030.024*
C20.32435 (13)0.43027 (13)0.74174 (12)0.0223 (2)
H2A0.35580.49800.79500.027*
H2B0.33510.34900.78390.027*
C30.18784 (13)0.45191 (13)0.71164 (12)0.0222 (2)
H3A0.15600.38220.66090.027*
H3B0.14060.45210.78590.027*
C40.24729 (12)0.57850 (13)0.54108 (11)0.0214 (2)
H4A0.24000.66230.50310.026*
H4B0.21810.51460.48250.026*
C50.38119 (13)0.55330 (13)0.57621 (12)0.0220 (2)
H5A0.43250.55720.50470.026*
H5B0.41110.61900.63250.026*
C60.03255 (13)0.58877 (15)0.61516 (13)0.0268 (3)
H6A0.00470.51550.56690.032*
H6B0.01590.59000.68860.032*
C70.00768 (14)0.70704 (15)0.54620 (14)0.0282 (3)
H70.02280.78600.58360.034*
C80.03506 (14)0.70463 (14)0.43376 (14)0.0268 (3)
H80.04670.62370.39930.032*
C110.54868 (12)0.29049 (13)0.73680 (12)0.0216 (2)
C120.60202 (14)0.31075 (15)0.84953 (13)0.0274 (3)
H120.62460.39360.87330.033*
C130.62266 (16)0.21099 (19)0.92779 (14)0.0351 (3)
H130.65910.22481.00470.042*
C140.58933 (17)0.09282 (18)0.89143 (16)0.0365 (4)
C150.53618 (18)0.06793 (16)0.78097 (16)0.0364 (3)
H150.51390.01540.75840.044*
C160.51610 (15)0.16833 (14)0.70341 (14)0.0291 (3)
H160.47970.15340.62670.035*
C210.58957 (12)0.37651 (12)0.53494 (12)0.0212 (2)
C220.52566 (13)0.32091 (13)0.43931 (13)0.0243 (2)
H220.44020.30100.44600.029*
C230.58533 (15)0.29394 (14)0.33373 (13)0.0279 (3)
H230.54180.25590.26840.033*
C240.70925 (15)0.32415 (15)0.32721 (14)0.0301 (3)
C250.77684 (14)0.37818 (16)0.41996 (15)0.0317 (3)
H250.86260.39640.41320.038*
C260.71468 (13)0.40504 (15)0.52386 (13)0.0269 (3)
H260.75860.44370.58860.032*
C310.06628 (13)0.81225 (14)0.35691 (13)0.0257 (3)
C320.05674 (15)0.93704 (15)0.39524 (15)0.0310 (3)
H320.02490.95500.47310.037*
C330.09348 (17)1.03489 (17)0.32034 (17)0.0369 (3)
H330.08611.11940.34710.044*
C340.14092 (17)1.00983 (18)0.20662 (17)0.0379 (4)
H340.16751.07690.15620.046*
C350.14940 (18)0.88675 (19)0.16704 (15)0.0378 (4)
H350.18100.86930.08900.045*
C360.11186 (16)0.78902 (16)0.24134 (14)0.0326 (3)
H360.11720.70480.21320.039*
O10.21803 (11)0.76463 (10)0.79808 (9)0.0295 (2)
O20.09155 (11)0.65696 (11)0.91333 (10)0.0310 (2)
O30.20616 (15)1.03647 (13)1.15502 (12)0.0423 (3)
H30.22291.09131.20690.063*
O40.35531 (19)1.13282 (17)1.06159 (18)0.0694 (6)
C410.16219 (13)0.74667 (13)0.89574 (12)0.0226 (2)
C420.18904 (14)0.83825 (13)0.99780 (12)0.0254 (3)
H42A0.10930.86231.03280.030*
H42B0.23870.79391.06020.030*
C430.25742 (15)0.95766 (14)0.96455 (13)0.0279 (3)
H43A0.33860.93370.93250.034*
H43B0.20941.00030.89990.034*
C440.27975 (16)1.05070 (14)1.06472 (14)0.0296 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0687 (8)0.0515 (7)0.0524 (7)0.0115 (6)0.0015 (6)0.0322 (6)
F20.0511 (6)0.0496 (6)0.0364 (5)0.0085 (5)0.0228 (5)0.0009 (5)
N10.0200 (5)0.0214 (5)0.0185 (5)0.0035 (4)0.0028 (4)0.0027 (4)
N20.0216 (5)0.0220 (5)0.0178 (5)0.0036 (4)0.0005 (4)0.0015 (4)
C10.0204 (5)0.0204 (5)0.0203 (5)0.0017 (4)0.0001 (4)0.0002 (4)
C20.0239 (6)0.0246 (6)0.0184 (5)0.0038 (5)0.0023 (4)0.0026 (4)
C30.0246 (6)0.0226 (6)0.0197 (5)0.0025 (5)0.0035 (4)0.0017 (4)
C40.0234 (6)0.0248 (6)0.0160 (5)0.0035 (5)0.0021 (4)0.0011 (4)
C50.0228 (6)0.0212 (6)0.0221 (6)0.0020 (5)0.0017 (4)0.0033 (4)
C60.0204 (6)0.0346 (7)0.0253 (6)0.0044 (5)0.0001 (5)0.0004 (5)
C70.0267 (6)0.0290 (7)0.0288 (7)0.0081 (5)0.0017 (5)0.0033 (5)
C80.0254 (6)0.0271 (6)0.0277 (6)0.0009 (5)0.0005 (5)0.0010 (5)
C110.0207 (5)0.0235 (6)0.0205 (6)0.0036 (5)0.0010 (4)0.0019 (5)
C120.0264 (6)0.0332 (7)0.0226 (6)0.0017 (5)0.0002 (5)0.0007 (5)
C130.0315 (7)0.0496 (9)0.0242 (7)0.0048 (7)0.0009 (5)0.0089 (6)
C140.0359 (8)0.0392 (8)0.0348 (8)0.0085 (7)0.0061 (6)0.0178 (7)
C150.0461 (9)0.0245 (7)0.0388 (8)0.0033 (6)0.0047 (7)0.0073 (6)
C160.0361 (7)0.0233 (6)0.0278 (7)0.0015 (5)0.0005 (5)0.0017 (5)
C210.0223 (6)0.0198 (6)0.0215 (5)0.0031 (4)0.0027 (4)0.0029 (4)
C220.0238 (6)0.0236 (6)0.0257 (6)0.0004 (5)0.0018 (5)0.0004 (5)
C230.0353 (7)0.0244 (6)0.0240 (6)0.0043 (5)0.0027 (5)0.0003 (5)
C240.0353 (8)0.0272 (7)0.0285 (7)0.0082 (6)0.0118 (6)0.0054 (5)
C250.0251 (6)0.0320 (8)0.0383 (8)0.0043 (5)0.0082 (6)0.0072 (6)
C260.0221 (6)0.0281 (7)0.0304 (7)0.0012 (5)0.0006 (5)0.0041 (5)
C310.0217 (6)0.0297 (7)0.0258 (6)0.0004 (5)0.0000 (5)0.0006 (5)
C320.0303 (7)0.0314 (7)0.0311 (7)0.0006 (6)0.0012 (6)0.0020 (6)
C330.0388 (8)0.0285 (7)0.0434 (9)0.0013 (6)0.0005 (7)0.0014 (6)
C340.0354 (8)0.0396 (9)0.0387 (8)0.0021 (7)0.0011 (6)0.0096 (7)
C350.0412 (8)0.0432 (9)0.0286 (7)0.0014 (7)0.0055 (6)0.0041 (6)
C360.0358 (8)0.0339 (8)0.0280 (7)0.0027 (6)0.0029 (6)0.0013 (6)
O10.0443 (6)0.0237 (5)0.0207 (4)0.0016 (4)0.0052 (4)0.0010 (4)
O20.0343 (5)0.0262 (5)0.0328 (5)0.0049 (4)0.0033 (4)0.0012 (4)
O30.0591 (8)0.0372 (6)0.0314 (6)0.0147 (6)0.0143 (5)0.0140 (5)
O40.0814 (12)0.0525 (9)0.0770 (11)0.0382 (9)0.0448 (10)0.0354 (9)
C410.0273 (6)0.0185 (5)0.0219 (5)0.0044 (5)0.0009 (4)0.0002 (4)
C420.0345 (7)0.0219 (6)0.0200 (5)0.0021 (5)0.0049 (5)0.0017 (4)
C430.0377 (7)0.0217 (6)0.0248 (6)0.0033 (5)0.0075 (5)0.0025 (5)
C440.0356 (7)0.0221 (6)0.0312 (7)0.0006 (5)0.0061 (6)0.0041 (5)
Geometric parameters (Å, º) top
F1—C141.3576 (18)C15—C161.391 (2)
F2—C241.3625 (17)C15—H150.9500
N1—C21.4663 (16)C16—H160.9500
N1—C51.4686 (17)C21—C221.3911 (19)
N1—C11.4776 (16)C21—C261.3918 (19)
N2—C41.4934 (16)C22—C231.3957 (19)
N2—C31.4944 (17)C22—H220.9500
N2—C61.5069 (17)C23—C241.378 (2)
N2—H720.96 (2)C23—H230.9500
C1—C111.5181 (18)C24—C251.379 (2)
C1—C211.5225 (18)C25—C261.393 (2)
C1—H11.0000C25—H250.9500
C2—C31.5182 (19)C26—H260.9500
C2—H2A0.9900C31—C361.397 (2)
C2—H2B0.9900C31—C321.397 (2)
C3—H3A0.9900C32—C331.388 (2)
C3—H3B0.9900C32—H320.9500
C4—C51.5094 (19)C33—C341.388 (3)
C4—H4A0.9900C33—H330.9500
C4—H4B0.9900C34—C351.384 (3)
C5—H5A0.9900C34—H340.9500
C5—H5B0.9900C35—C361.385 (2)
C6—C71.497 (2)C35—H350.9500
C6—H6A0.9900C36—H360.9500
C6—H6B0.9900O1—C411.2813 (17)
C7—C81.332 (2)O2—C411.2398 (19)
C7—H70.9500O3—C441.3150 (19)
C8—C311.466 (2)O3—H30.8400
C8—H80.9500O4—C441.195 (2)
C11—C121.3924 (19)C41—C421.5254 (19)
C11—C161.394 (2)C42—C431.520 (2)
C12—C131.391 (2)C42—H42A0.9900
C12—H120.9500C42—H42B0.9900
C13—C141.366 (3)C43—C441.512 (2)
C13—H130.9500C43—H43A0.9900
C14—C151.377 (3)C43—H43B0.9900
C2—N1—C5107.63 (10)C13—C14—C15123.04 (14)
C2—N1—C1113.26 (10)C14—C15—C16118.06 (16)
C5—N1—C1109.52 (10)C14—C15—H15121.0
C4—N2—C3109.66 (10)C16—C15—H15121.0
C4—N2—C6111.89 (10)C15—C16—C11120.84 (15)
C3—N2—C6109.24 (11)C15—C16—H16119.6
C4—N2—H72110.2 (13)C11—C16—H16119.6
C3—N2—H72107.3 (13)C22—C21—C26118.88 (12)
C6—N2—H72108.5 (13)C22—C21—C1121.80 (12)
N1—C1—C11112.18 (11)C26—C21—C1119.25 (12)
N1—C1—C21110.04 (10)C21—C22—C23120.90 (13)
C11—C1—C21110.39 (11)C21—C22—H22119.6
N1—C1—H1108.0C23—C22—H22119.6
C11—C1—H1108.0C24—C23—C22117.97 (14)
C21—C1—H1108.0C24—C23—H23121.0
N1—C2—C3109.77 (10)C22—C23—H23121.0
N1—C2—H2A109.7F2—C24—C23118.61 (15)
C3—C2—H2A109.7F2—C24—C25118.12 (14)
N1—C2—H2B109.7C23—C24—C25123.26 (13)
C3—C2—H2B109.7C24—C25—C26117.53 (14)
H2A—C2—H2B108.2C24—C25—H25121.2
N2—C3—C2111.13 (11)C26—C25—H25121.2
N2—C3—H3A109.4C21—C26—C25121.46 (14)
C2—C3—H3A109.4C21—C26—H26119.3
N2—C3—H3B109.4C25—C26—H26119.3
C2—C3—H3B109.4C36—C31—C32118.35 (14)
H3A—C3—H3B108.0C36—C31—C8118.57 (14)
N2—C4—C5110.36 (10)C32—C31—C8123.04 (13)
N2—C4—H4A109.6C33—C32—C31120.47 (15)
C5—C4—H4A109.6C33—C32—H32119.8
N2—C4—H4B109.6C31—C32—H32119.8
C5—C4—H4B109.6C32—C33—C34120.35 (17)
H4A—C4—H4B108.1C32—C33—H33119.8
N1—C5—C4110.82 (11)C34—C33—H33119.8
N1—C5—H5A109.5C35—C34—C33119.75 (16)
C4—C5—H5A109.5C35—C34—H34120.1
N1—C5—H5B109.5C33—C34—H34120.1
C4—C5—H5B109.5C34—C35—C36119.97 (16)
H5A—C5—H5B108.1C34—C35—H35120.0
C7—C6—N2111.81 (12)C36—C35—H35120.0
C7—C6—H6A109.3C35—C36—C31121.09 (16)
N2—C6—H6A109.3C35—C36—H36119.5
C7—C6—H6B109.3C31—C36—H36119.5
N2—C6—H6B109.3C44—O3—H3109.5
H6A—C6—H6B107.9O2—C41—O1123.88 (13)
C8—C7—C6121.77 (14)O2—C41—C42118.34 (12)
C8—C7—H7119.1O1—C41—C42117.73 (12)
C6—C7—H7119.1C43—C42—C41115.51 (11)
C7—C8—C31127.63 (14)C43—C42—H42A108.4
C7—C8—H8116.2C41—C42—H42A108.4
C31—C8—H8116.2C43—C42—H42B108.4
C12—C11—C16118.89 (13)C41—C42—H42B108.4
C12—C11—C1119.60 (13)H42A—C42—H42B107.5
C16—C11—C1121.51 (12)C44—C43—C42115.52 (12)
C13—C12—C11120.76 (15)C44—C43—H43A108.4
C13—C12—H12119.6C42—C43—H43A108.4
C11—C12—H12119.6C44—C43—H43B108.4
C14—C13—C12118.41 (15)C42—C43—H43B108.4
C14—C13—H13120.8H43A—C43—H43B107.5
C12—C13—H13120.8O4—C44—O3122.28 (15)
F1—C14—C13119.03 (17)O4—C44—C43123.32 (15)
F1—C14—C15117.93 (18)O3—C44—C43114.37 (13)
C2—N1—C1—C1145.82 (15)C1—C11—C16—C15179.64 (15)
C5—N1—C1—C11165.97 (11)N1—C1—C21—C2232.40 (17)
C2—N1—C1—C21169.14 (11)C11—C1—C21—C2291.95 (15)
C5—N1—C1—C2170.72 (13)N1—C1—C21—C26150.61 (12)
C5—N1—C2—C362.13 (13)C11—C1—C21—C2685.03 (15)
C1—N1—C2—C3176.65 (11)C26—C21—C22—C230.0 (2)
C4—N2—C3—C254.54 (14)C1—C21—C22—C23177.01 (12)
C6—N2—C3—C2177.49 (11)C21—C22—C23—C240.1 (2)
N1—C2—C3—N259.43 (14)C22—C23—C24—F2177.93 (13)
C3—N2—C4—C554.17 (14)C22—C23—C24—C250.7 (2)
C6—N2—C4—C5175.54 (11)F2—C24—C25—C26177.40 (13)
C2—N1—C5—C462.90 (13)C23—C24—C25—C261.3 (2)
C1—N1—C5—C4173.58 (10)C22—C21—C26—C250.5 (2)
N2—C4—C5—N159.60 (14)C1—C21—C26—C25176.52 (13)
C4—N2—C6—C755.86 (15)C24—C25—C26—C211.2 (2)
C3—N2—C6—C7177.48 (11)C7—C8—C31—C36179.03 (16)
N2—C6—C7—C8115.58 (16)C7—C8—C31—C321.4 (2)
C6—C7—C8—C31178.37 (14)C36—C31—C32—C330.9 (2)
N1—C1—C11—C12111.85 (14)C8—C31—C32—C33176.78 (15)
C21—C1—C11—C12125.03 (13)C31—C32—C33—C340.4 (3)
N1—C1—C11—C1668.57 (17)C32—C33—C34—C351.2 (3)
C21—C1—C11—C1654.55 (17)C33—C34—C35—C360.7 (3)
C16—C11—C12—C130.0 (2)C34—C35—C36—C310.6 (3)
C1—C11—C12—C13179.58 (13)C32—C31—C36—C351.4 (2)
C11—C12—C13—C140.0 (2)C8—C31—C36—C35176.36 (15)
C12—C13—C14—F1179.71 (16)O2—C41—C42—C43169.74 (14)
C12—C13—C14—C150.1 (3)O1—C41—C42—C4312.88 (19)
F1—C14—C15—C16179.64 (16)C41—C42—C43—C44177.78 (13)
C13—C14—C15—C160.1 (3)C42—C43—C44—O4161.8 (2)
C14—C15—C16—C110.1 (3)C42—C43—C44—O320.2 (2)
C12—C11—C16—C150.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H72···O10.96 (2)1.73 (2)2.6795 (16)174 (2)
O3—H3···O1i0.841.842.6564 (16)162
C4—H4A···O4ii0.992.583.287 (3)128
C4—H4B···O2iii0.992.393.3167 (19)155
C25—H25···O2iv0.952.533.4168 (19)155
C12—H12···Cgv0.952.813.7511 (17)170
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+2, z1/2; (iii) x, y+1, z1/2; (iv) x+1, y+1, z1/2; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H27F2N2+·C4H5O4
Mr522.58
Crystal system, space groupMonoclinic, Pc
Temperature (K)200
a, b, c (Å)10.7824 (2), 10.6270 (2), 11.2364 (2)
β (°) 91.678 (1)
V3)1286.97 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.29 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.947, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16870, 3619, 3524
Rint0.014
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.03
No. of reflections3619
No. of parameters348
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.15

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H72···O10.96 (2)1.73 (2)2.6795 (16)174 (2)
O3—H3···O1i0.841.842.6564 (16)162
C4—H4A···O4ii0.992.583.287 (3)128
C4—H4B···O2iii0.992.393.3167 (19)155
C25—H25···O2iv0.952.533.4168 (19)155
C12—H12···Cgv0.952.813.7511 (17)170
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+2, z1/2; (iii) x, y+1, z1/2; (iv) x+1, y+1, z1/2; (v) x, y+1, z+1/2.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and the Principal of Maharani's Science College for Women for permission to do research.

References

First citationAmery, W. K. (1983). Headache, 23, 70–74.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o2783–o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2587–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). SADABS . Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Dutkiewicz, G., Yathirajan, H. S., Ramesha, A. R. & Kubicki, M. (2012a). Acta Cryst. E68, o2817.  CSD CrossRef IUCr Journals Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012b). Acta Cryst. E68, o2237.  CSD CrossRef IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug. Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 3041–3045.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs, 27, 6–44.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanier, M. & Brisse, F. (1983). Acta Cryst. C39, 912–914.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o260-o261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds