organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Naphthalene-2-sulfonamido)-3-phenyl­propanoic acid

aDepartment of Chemistry, Materials Chemistry Laboratory, GC University, Lahore 54000, Pakistan, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and dDepartment of Chemistry, University of Engineering & Technology, Lahore 54000, Pakistan
*Correspondence e-mail: malikg781@yahoo.com, mnachemist@hotmail.com

(Received 23 December 2012; accepted 2 January 2013; online 9 January 2013)

In the title compound, C19H17NO4S, the phenyl ring and the naphthalene ring system are oriented at a dihedral angle of 4.12 (2)° and the mol­ecule adopts a U-shaped conformation. The Cc—C—N—S (c = carb­oxy) torsion angle is 90.98 (15)°. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, resulting in (100) chains incorporating centrosymmetric R22(14) and R22(10) loops. Weak aromatic ππ stacking is also observed [centroid–centroid separations = 3.963 (2) and 3.932 (2) Å].

Related literature

For the synthesis and related structures, see: Arshad et al. (2012[Arshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.]); Khan et al. (2012[Khan, I. U., Mubashar-ur-Rehman, H., Aziz, S. & Harrison, W. T. A. (2012). Acta Cryst. E68, o2019.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO4S

  • Mr = 355.40

  • Monoclinic, P 21 /n

  • a = 8.0694 (2) Å

  • b = 15.2168 (4) Å

  • c = 14.0996 (3) Å

  • β = 92.505 (2)°

  • V = 1729.64 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.87 mm−1

  • T = 296 K

  • 0.29 × 0.10 × 0.09 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.784, Tmax = 1.000

  • 13588 measured reflections

  • 3486 independent reflections

  • 2813 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.03

  • 3486 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.80 (2) 2.18 (2) 2.964 (2) 164 (2)
O4—H1O⋯O2ii 0.88 (3) 1.90 (3) 2.772 (2) 174 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

In countinuation of our studies of the synthesis of sulfonamide derivatives of amino acids (Khan et al., 2012) & (Arshad et al., 2012) we now report the crystal structure of title compound.

In the structure of molecule the naphthalene and benzene rings are almost parallel, since the dihedral angle is as small as 4.12 (2)°. The sulfur (S1) atom as usual adopted the distorted tetrahedral geometry with O1-S1-O2 angle of 118.96 (9)°. The O—H···O type intermolecular hudrogen bonding connects the molecules to form inversion dimers and resulting in fourteen R22(14) membered ring motifs. On the othe other hand, these dimers connected through another N—H···O type link to give ten R22(10) membered ring motif and generates a long chain along the a axis direction (Table. 1, Fig. 2). The presence of π-π stacking interactions between aromatic rings is also observed: Cg1-Cg2 (Cg1: C1-C6; Cg2: C5-C10) with distances of 3.963 (2) Å (1 - x, 1 - y, 2 - z) and Cg2-Cg2 with distances of 3.932 (2) Å (1 - x, 1 -y , 2 - z).

Related literature top

For the synthesis and related structures, see: Arshad et al. (2012); Khan et al. (2012).

Experimental top

The title compound was synthesised following the literature method (Arshad et al., 2012) and recrystallized from methanol solution as colourless prisms by slow evaporation at room temperature.

Refinement top

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene & C—H = 0.98 Å for C11. H-atoms were refined as riding with Uiso(H) = 1.2 Ueq(C) for all H-atoms.

The N—H = 0.80 (2) & O—H = 0.88 (3) H-atoms were located with difference map Uiso(H) = 1.2 Ueq(N) and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of C19H17NO4S with 50% probability of thermal ellipsoids.
[Figure 2] Fig. 2. A perspective view showing O—H···O and N—H···O hydrogen bonds, drawn using dashed lines.
2-(Naphthalene-2-sulfonamido)-3-phenylpropanoic acid top
Crystal data top
C19H17NO4SF(000) = 744
Mr = 355.40Dx = 1.365 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 5975 reflections
a = 8.0694 (2) Åθ = 3.1–74.6°
b = 15.2168 (4) ŵ = 1.87 mm1
c = 14.0996 (3) ÅT = 296 K
β = 92.505 (2)°Prismatic, colorless
V = 1729.64 (7) Å30.29 × 0.10 × 0.09 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
3486 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2813 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
ω scansθmax = 74.7°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 99
Tmin = 0.784, Tmax = 1.000k = 1818
13588 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.4657P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C19H17NO4SV = 1729.64 (7) Å3
Mr = 355.40Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.0694 (2) ŵ = 1.87 mm1
b = 15.2168 (4) ÅT = 296 K
c = 14.0996 (3) Å0.29 × 0.10 × 0.09 mm
β = 92.505 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2813 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 1.000Rint = 0.026
13588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
3486 reflectionsΔρmin = 0.37 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31495 (6)0.52701 (3)0.68873 (3)0.05113 (16)
O10.4041 (2)0.60690 (9)0.70303 (11)0.0687 (4)
O20.14144 (17)0.53082 (11)0.66184 (11)0.0707 (4)
O30.24930 (18)0.47490 (10)0.41829 (10)0.0647 (4)
O40.05674 (17)0.39149 (11)0.48022 (11)0.0671 (4)
N10.40035 (19)0.47399 (10)0.60505 (10)0.0470 (4)
C10.3324 (2)0.46054 (13)0.79139 (13)0.0521 (4)
C20.1937 (3)0.41529 (18)0.81402 (16)0.0749 (6)
H20.09550.42230.77780.090*
C30.1997 (4)0.3582 (2)0.8920 (2)0.1020 (10)
H30.10580.32630.90660.122*
C40.3406 (4)0.3492 (2)0.9463 (2)0.0980 (9)
H40.34160.31190.99850.118*
C50.4860 (3)0.39491 (16)0.92563 (15)0.0706 (6)
C60.4857 (2)0.45189 (13)0.84526 (13)0.0524 (4)
C70.6347 (3)0.49537 (16)0.82581 (15)0.0623 (5)
H70.63870.53190.77310.075*
C80.7732 (3)0.4843 (2)0.88355 (19)0.0839 (8)
H80.87050.51350.86970.101*
C90.7708 (4)0.4296 (2)0.9636 (2)0.0969 (9)
H90.86560.42341.00300.116*
C100.6320 (4)0.3866 (2)0.98330 (18)0.0909 (9)
H100.63200.35021.03630.109*
C110.3160 (2)0.39725 (12)0.56401 (12)0.0454 (4)
H110.24720.37040.61170.054*
C120.4398 (2)0.32926 (13)0.53018 (13)0.0535 (4)
H12A0.37930.28120.49960.064*
H12B0.50840.35610.48340.064*
C130.5497 (2)0.29330 (12)0.61016 (13)0.0516 (4)
C140.4856 (4)0.23896 (18)0.6765 (2)0.0874 (8)
H140.37410.22340.67130.105*
C150.5838 (5)0.2070 (2)0.7509 (2)0.1202 (12)
H150.53740.17120.79610.144*
C160.7457 (5)0.2268 (2)0.7590 (2)0.1056 (11)
H160.81130.20410.80910.127*
C170.8139 (3)0.28037 (19)0.6937 (2)0.0895 (9)
H170.92620.29430.69920.107*
C180.7150 (3)0.31431 (15)0.61838 (17)0.0665 (5)
H180.76130.35110.57390.080*
C190.2050 (2)0.42710 (13)0.47926 (13)0.0491 (4)
H1N0.499 (3)0.4785 (14)0.6034 (16)0.059*
H1O0.004 (3)0.4135 (16)0.4325 (18)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0438 (3)0.0605 (3)0.0478 (3)0.00944 (19)0.01179 (18)0.00627 (19)
O10.0815 (10)0.0540 (8)0.0685 (9)0.0020 (7)0.0201 (8)0.0057 (7)
O20.0465 (8)0.0973 (11)0.0667 (9)0.0235 (7)0.0148 (6)0.0138 (8)
O30.0578 (9)0.0813 (10)0.0536 (8)0.0026 (7)0.0119 (6)0.0181 (7)
O40.0452 (8)0.0972 (11)0.0578 (8)0.0087 (7)0.0101 (6)0.0008 (8)
N10.0368 (7)0.0587 (9)0.0449 (8)0.0018 (7)0.0044 (6)0.0024 (6)
C10.0458 (10)0.0687 (12)0.0417 (9)0.0002 (8)0.0003 (7)0.0060 (8)
C20.0590 (13)0.1014 (18)0.0645 (13)0.0162 (12)0.0052 (10)0.0047 (12)
C30.097 (2)0.123 (2)0.0877 (19)0.0394 (19)0.0219 (17)0.0136 (18)
C40.120 (3)0.106 (2)0.0686 (16)0.0131 (19)0.0126 (16)0.0233 (15)
C50.0856 (16)0.0774 (14)0.0485 (11)0.0091 (12)0.0012 (10)0.0035 (10)
C60.0518 (11)0.0639 (11)0.0412 (9)0.0067 (8)0.0035 (7)0.0039 (8)
C70.0483 (11)0.0830 (14)0.0547 (11)0.0030 (10)0.0083 (9)0.0009 (10)
C80.0529 (14)0.117 (2)0.0803 (16)0.0082 (13)0.0203 (12)0.0049 (15)
C90.085 (2)0.127 (2)0.0751 (17)0.0339 (19)0.0363 (15)0.0053 (16)
C100.112 (2)0.102 (2)0.0563 (13)0.0313 (18)0.0201 (14)0.0092 (13)
C110.0428 (9)0.0535 (10)0.0394 (8)0.0005 (7)0.0033 (7)0.0017 (7)
C120.0599 (11)0.0562 (10)0.0439 (9)0.0092 (9)0.0029 (8)0.0030 (8)
C130.0578 (11)0.0459 (9)0.0503 (10)0.0072 (8)0.0056 (8)0.0027 (8)
C140.0871 (18)0.0854 (17)0.0880 (17)0.0149 (14)0.0151 (14)0.0390 (14)
C150.137 (3)0.119 (3)0.102 (2)0.004 (2)0.026 (2)0.065 (2)
C160.136 (3)0.093 (2)0.0835 (19)0.028 (2)0.0475 (19)0.0104 (16)
C170.0658 (16)0.0867 (18)0.113 (2)0.0183 (13)0.0335 (15)0.0249 (17)
C180.0580 (12)0.0615 (12)0.0798 (14)0.0071 (10)0.0015 (10)0.0006 (11)
C190.0409 (9)0.0603 (11)0.0456 (9)0.0028 (8)0.0032 (7)0.0083 (8)
Geometric parameters (Å, º) top
S1—O11.4226 (15)C8—C91.404 (4)
S1—O21.4356 (14)C8—H80.9300
S1—N11.6090 (16)C9—C101.337 (4)
S1—C11.766 (2)C9—H90.9300
O3—C191.193 (2)C10—H100.9300
O4—C191.314 (2)C11—C121.529 (2)
O4—H1O0.88 (3)C11—C191.531 (2)
N1—C111.459 (2)C11—H110.9800
N1—H1N0.80 (2)C12—C131.507 (2)
C1—C21.364 (3)C12—H12A0.9700
C1—C61.430 (3)C12—H12B0.9700
C2—C31.401 (4)C13—C141.367 (3)
C2—H20.9300C13—C181.372 (3)
C3—C41.350 (4)C14—C151.376 (4)
C3—H30.9300C14—H140.9300
C4—C51.405 (4)C15—C161.340 (5)
C4—H40.9300C15—H150.9300
C5—C101.408 (4)C16—C171.364 (5)
C5—C61.427 (3)C16—H160.9300
C6—C71.410 (3)C17—C181.399 (3)
C7—C81.364 (3)C17—H170.9300
C7—H70.9300C18—H180.9300
O1—S1—O2118.96 (9)C9—C10—C5121.6 (2)
O1—S1—N1107.60 (9)C9—C10—H10119.2
O2—S1—N1105.70 (8)C5—C10—H10119.2
O1—S1—C1110.58 (9)N1—C11—C12111.45 (15)
O2—S1—C1106.34 (10)N1—C11—C19108.61 (14)
N1—S1—C1107.01 (9)C12—C11—C19108.98 (14)
C19—O4—H1O108.0 (16)N1—C11—H11109.3
C11—N1—S1119.01 (12)C12—C11—H11109.3
C11—N1—H1N120.3 (16)C19—C11—H11109.3
S1—N1—H1N115.9 (16)C13—C12—C11112.56 (15)
C2—C1—C6122.0 (2)C13—C12—H12A109.1
C2—C1—S1116.37 (16)C11—C12—H12A109.1
C6—C1—S1121.61 (15)C13—C12—H12B109.1
C1—C2—C3119.8 (2)C11—C12—H12B109.1
C1—C2—H2120.1H12A—C12—H12B107.8
C3—C2—H2120.1C14—C13—C18118.6 (2)
C4—C3—C2120.5 (3)C14—C13—C12120.2 (2)
C4—C3—H3119.8C18—C13—C12121.15 (19)
C2—C3—H3119.8C13—C14—C15120.8 (3)
C3—C4—C5121.5 (3)C13—C14—H14119.6
C3—C4—H4119.2C15—C14—H14119.6
C5—C4—H4119.2C16—C15—C14120.8 (3)
C4—C5—C10121.4 (2)C16—C15—H15119.6
C4—C5—C6119.5 (2)C14—C15—H15119.6
C10—C5—C6119.1 (2)C15—C16—C17119.8 (3)
C7—C6—C5117.90 (19)C15—C16—H16120.1
C7—C6—C1125.40 (18)C17—C16—H16120.1
C5—C6—C1116.69 (19)C16—C17—C18120.0 (3)
C8—C7—C6120.6 (2)C16—C17—H17120.0
C8—C7—H7119.7C18—C17—H17120.0
C6—C7—H7119.7C13—C18—C17119.9 (2)
C7—C8—C9120.9 (3)C13—C18—H18120.0
C7—C8—H8119.5C17—C18—H18120.0
C9—C8—H8119.5O3—C19—O4124.08 (17)
C10—C9—C8119.9 (2)O3—C19—C11124.07 (16)
C10—C9—H9120.0O4—C19—C11111.81 (17)
C8—C9—H9120.0
O1—S1—N1—C11168.97 (13)C1—C6—C7—C8178.1 (2)
O2—S1—N1—C1140.88 (15)C6—C7—C8—C90.1 (4)
C1—S1—N1—C1172.17 (15)C7—C8—C9—C101.0 (5)
O1—S1—C1—C2141.61 (17)C8—C9—C10—C50.4 (5)
O2—S1—C1—C211.1 (2)C4—C5—C10—C9179.7 (3)
N1—S1—C1—C2101.49 (18)C6—C5—C10—C91.1 (4)
O1—S1—C1—C641.01 (18)S1—N1—C11—C12148.96 (13)
O2—S1—C1—C6171.48 (15)S1—N1—C11—C1990.98 (15)
N1—S1—C1—C675.89 (17)N1—C11—C12—C1362.6 (2)
C6—C1—C2—C30.1 (4)C19—C11—C12—C13177.57 (16)
S1—C1—C2—C3177.2 (2)C11—C12—C13—C1470.3 (3)
C1—C2—C3—C41.5 (5)C11—C12—C13—C18109.5 (2)
C2—C3—C4—C51.3 (5)C18—C13—C14—C151.0 (4)
C3—C4—C5—C10178.9 (3)C12—C13—C14—C15178.8 (3)
C3—C4—C5—C60.3 (4)C13—C14—C15—C161.5 (6)
C4—C5—C6—C7178.9 (2)C14—C15—C16—C171.0 (6)
C10—C5—C6—C71.9 (3)C15—C16—C17—C180.1 (5)
C4—C5—C6—C11.6 (3)C14—C13—C18—C170.1 (3)
C10—C5—C6—C1177.6 (2)C12—C13—C18—C17179.6 (2)
C2—C1—C6—C7179.1 (2)C16—C17—C18—C130.3 (4)
S1—C1—C6—C71.9 (3)N1—C11—C19—O347.5 (2)
C2—C1—C6—C51.4 (3)C12—C11—C19—O374.1 (2)
S1—C1—C6—C5178.65 (15)N1—C11—C19—O4134.51 (16)
C5—C6—C7—C81.4 (3)C12—C11—C19—O4103.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.80 (2)2.18 (2)2.964 (2)164 (2)
O4—H1O···O2ii0.88 (3)1.90 (3)2.772 (2)174 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H17NO4S
Mr355.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.0694 (2), 15.2168 (4), 14.0996 (3)
β (°) 92.505 (2)
V3)1729.64 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.87
Crystal size (mm)0.29 × 0.10 × 0.09
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas) CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.784, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13588, 3486, 2813
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.03
No. of reflections3486
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.37

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.80 (2)2.18 (2)2.964 (2)164 (2)
O4—H1O···O2ii0.88 (3)1.90 (3)2.772 (2)174 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via Research Group Track grant No. 3-102/428.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.  CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Mubashar-ur-Rehman, H., Aziz, S. & Harrison, W. T. A. (2012). Acta Cryst. E68, o2019.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds