organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(2,4-Di­nitro­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6,7,9-hexa­hydro-1H-xanthene-1,8(2H)-dione

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

(Received 6 January 2013; accepted 14 January 2013; online 23 January 2013)

In the title compound, C23H24N2O7, the central 4H-pyran ring adopts a flattened boat conformation, whereas both cyclo­hexenone rings adopt envelope conformations, the C atom bearing the dimethyl substituent being the flap atom in each case. The mean and maximum deviation of the pyran ring are 0.0379 (4) and 0.0605 (3) Å. The mean plane of the pyran ring and the dinitro­benzene ring make a dihedral angle of 85.88 (2)°.

Related literature

For the synthesis of xanthenes, see: Vanag & Stankevich (1960[Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287-3290.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]). For their pharmaceutical properties, see: Dimmock et al. (1988[Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111-117.]); Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.]); Poupelin et al. (1978[Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]); Hideo (1981[Hideo, T. (1981). Jpn Kokai Tokkyo Koho JP 56 005480.]); Selvanayagam et al. (1996[Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664-667.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Odabaşoğlu et al. (2008[Odabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]); Mehdi et al. (2011[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.]); Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24N2O7

  • Mr = 440.44

  • Monoclinic, P 21 /c

  • a = 9.7733 (3) Å

  • b = 19.6193 (5) Å

  • c = 11.7922 (3) Å

  • β = 109.603 (1)°

  • V = 2130.04 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.975

  • 29785 measured reflections

  • 7327 independent reflections

  • 4793 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.03

  • 7327 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Xanthene is the parent compound of a number of naturally occurring substances and some synthetic dyes. Xanthene derivatives are used as dyes (Hilderbrand & Weissleder, 2007), possess biological properties like antibacterial, antiviral and anti-inflammatory (Dimmock et al., 1988) activities and are used in medicine. Ehretianone, a quinonoid xanthene was reported to possess antisnake venom activity (Selvanayagam et al., 1996; Lambert et al., 1997; Poupelin et al., 1978; Hideo, 1981).

The central pyran B (O1/C1/C6/C7/C8/C13) ring almost planar with a mean deviation from the mean plane of 0.0379 (4) Å and a maximum deviation of 0.061 (3) Å for C7. O1 and C7 are moved out of this mean plane towards the direction which means that the ring may also be described as a highly flattened boat conformation. The rings A (C8—C13), B (O1/C1/C6/C7/C8/C13) and C (C1—C6) show total puckering amplitudes Q(T) of 0.4602 (15) Å, 0.0988 (2) Å, 0.4479 (16) Å, respectively. The cyclohexenone rings A and C both adopt envelope conformations, whereas the central B ring adopts a flattened boat conformation. This can be rationalized by the respective puckering parameters (Cremer & Pople, 1975) ϕ = 177.6 (2)° and θ = 53.65 (2)° for A, ϕ = 179.0 (8)° and θ = 84.7 (2)° for B, ϕ = -54.5 (12)° and θ = 126.82 (2)° for C, respectively. The planar phenyl substituent and the central pyran ring form a dihedral angle of 85.88 (2)°. In the title compound, bond lengths (Allen et al., 1987) and angles are generally within normal ranges. In the pyran ring C1—C6 and C8—C13 are double bonds in nature (C1—C6 1.333 (8) Å and C8—C13 1.334 (2) Å), as indicated by the bond distances. The C1—C6—C5 (118.81 (12)°) and C13—C8—C9 (118.70 (2)°) angles are almost identical. In this conformation C3 and C11 must be described as flap atoms being situated out of the plane of the ring with deviations of 0.316 (2) Å and 0.325 (2) Å, respectively. The observed carbonyl bond lengths C5—O2 = 1.223 (2) Å and C9—O3 = 1.216 (2) Å are also normal.

Related literature top

For the synthesis of xanthenes, see: Vanag & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Dimmock et al. (1988); Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996). For bond-length data, see: Allen et al. (1987). For related structures, see: Odabaşoğlu et al. (2008); Reddy et al. (2009); Mehdi et al. (2011); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

Following a literature method (Vanag & Stankevich, 1960) a mixture of 2,4-dinitrobenzaldehyde (0.588 g, 3 m mol) and 5,5-dimethylcyclohexane-1,3-dione (0.84 g, 6 m mol) was dissolved in 25 ml of ethanol in a 100 ml round bottomed flask. To this solution about 15 drops of concentrated hydrochloric acid were added and the content was refluxed for 30 minutes. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The formed precipitate was filtered and dried. The yellow crystal used for data collection was obtained by crystallization from ethanol at room temperature,(m.p.446 K, yield: 86%).

Refinement top

Hydrogen atoms were fixed in calculated positions and allowed to ride on their parent atom with distances of d(C–H) = 0.96 Å (for CH3) with Uiso(H) = 1.5Ueq(C), d(C–H) = 0.97 Å (for CH2) with Uiso(H) = 1.2Ueq(C), d(C–H) = 0.98 Å (for CH) with Uiso(H) = 1.2Ueq(C) and d(C–H) = 0.93 Å (for aromatic CH) with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
9-(2,4-Dinitrophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H- xanthene-1,8(2H)-dione top
Crystal data top
C23H24N2O7F(000) = 928
Mr = 440.44Dx = 1.373 Mg m3
Monoclinic, P21/cMelting point: 446 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7733 (3) ÅCell parameters from 8512 reflections
b = 19.6193 (5) Åθ = 2.2–31.1°
c = 11.7922 (3) ŵ = 0.10 mm1
β = 109.603 (1)°T = 296 K
V = 2130.04 (10) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7327 independent reflections
Radiation source: fine-focus sealed tube4793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scanθmax = 32.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.905, Tmax = 0.975k = 2927
29785 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.3517P]
where P = (Fo2 + 2Fc2)/3
7327 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H24N2O7V = 2130.04 (10) Å3
Mr = 440.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7733 (3) ŵ = 0.10 mm1
b = 19.6193 (5) ÅT = 296 K
c = 11.7922 (3) Å0.35 × 0.30 × 0.25 mm
β = 109.603 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4793 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.975Rint = 0.031
29785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
7327 reflectionsΔρmin = 0.30 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51973 (13)0.15131 (7)0.58305 (11)0.0339 (3)
C20.41933 (15)0.19984 (8)0.61245 (13)0.0434 (3)
H2A0.47600.23530.66480.052*
H2B0.36590.17580.65610.052*
C30.31152 (14)0.23285 (8)0.50052 (13)0.0397 (3)
C40.24534 (14)0.17645 (8)0.40933 (14)0.0432 (3)
H4A0.18270.14880.43930.052*
H4B0.18510.19730.33470.052*
C50.35407 (13)0.13059 (7)0.38268 (12)0.0372 (3)
C60.49306 (12)0.11891 (7)0.47847 (11)0.0325 (3)
C70.59949 (13)0.06997 (6)0.45403 (10)0.0303 (2)
H70.55040.02650.42600.036*
C80.72373 (13)0.05827 (6)0.56996 (11)0.0309 (2)
C90.83150 (13)0.00583 (7)0.57141 (11)0.0338 (3)
C100.95370 (15)0.00702 (7)0.68746 (12)0.0393 (3)
H10A1.03780.02270.66870.047*
H10B0.92510.04330.73080.047*
C110.99723 (14)0.05519 (7)0.76956 (12)0.0383 (3)
C120.85972 (15)0.08387 (8)0.78692 (11)0.0406 (3)
H12A0.82790.05300.83740.049*
H12B0.88220.12740.82810.049*
C130.73989 (13)0.09328 (7)0.67058 (11)0.0330 (3)
C140.38929 (18)0.28478 (9)0.44734 (16)0.0541 (4)
H14A0.43080.31980.50560.081*
H14B0.32100.30480.37660.081*
H14C0.46490.26240.42640.081*
C150.19240 (17)0.26822 (10)0.53505 (17)0.0551 (4)
H15A0.23440.30360.59250.083*
H15B0.14490.23560.56990.083*
H15C0.12280.28780.46450.083*
C161.10517 (18)0.03431 (10)0.89168 (14)0.0594 (5)
H16A1.06140.00070.92790.089*
H16B1.13130.07360.94310.089*
H16C1.19060.01550.88080.089*
C171.06762 (17)0.10848 (9)0.71315 (15)0.0509 (4)
H17A1.00030.12200.63650.076*
H17B1.15300.08960.70230.076*
H17C1.09400.14750.76510.076*
C180.65475 (12)0.09886 (6)0.35707 (10)0.0295 (2)
C190.61732 (13)0.07634 (7)0.23872 (11)0.0313 (2)
C200.66867 (14)0.10639 (7)0.15506 (11)0.0361 (3)
H200.64140.09040.07640.043*
C210.76167 (14)0.16090 (7)0.19241 (12)0.0379 (3)
C220.80053 (16)0.18654 (8)0.30670 (13)0.0425 (3)
H220.86180.22410.32940.051*
C230.74630 (15)0.15511 (7)0.38759 (12)0.0382 (3)
H230.77210.17230.46550.046*
N10.51735 (13)0.01863 (7)0.19194 (10)0.0422 (3)
N20.81838 (16)0.19342 (8)0.10531 (13)0.0543 (4)
O10.64491 (10)0.14292 (5)0.67914 (8)0.0384 (2)
O20.32732 (11)0.10217 (6)0.28536 (9)0.0516 (3)
O30.81924 (12)0.02696 (6)0.48107 (9)0.0491 (3)
O40.52780 (15)0.03162 (6)0.25373 (11)0.0642 (4)
O50.42986 (15)0.02476 (8)0.09097 (11)0.0723 (4)
O60.7810 (2)0.17153 (9)0.00386 (14)0.0984 (6)
O70.89653 (17)0.24275 (8)0.13837 (14)0.0805 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (5)0.0406 (7)0.0304 (6)0.0049 (5)0.0120 (5)0.0037 (5)
C20.0425 (7)0.0530 (9)0.0372 (7)0.0145 (6)0.0168 (6)0.0015 (6)
C30.0347 (6)0.0417 (8)0.0427 (7)0.0055 (5)0.0131 (5)0.0038 (6)
C40.0306 (6)0.0467 (8)0.0494 (8)0.0011 (5)0.0095 (5)0.0013 (6)
C50.0308 (6)0.0426 (7)0.0377 (7)0.0029 (5)0.0109 (5)0.0018 (5)
C60.0295 (5)0.0382 (7)0.0311 (6)0.0010 (5)0.0119 (4)0.0029 (5)
C70.0317 (5)0.0334 (6)0.0268 (5)0.0018 (5)0.0109 (4)0.0004 (4)
C80.0317 (5)0.0343 (6)0.0279 (5)0.0012 (5)0.0116 (4)0.0014 (5)
C90.0354 (6)0.0329 (6)0.0343 (6)0.0005 (5)0.0133 (5)0.0013 (5)
C100.0377 (6)0.0379 (7)0.0400 (7)0.0065 (5)0.0099 (5)0.0002 (6)
C110.0346 (6)0.0439 (8)0.0331 (6)0.0061 (5)0.0069 (5)0.0041 (5)
C120.0403 (6)0.0539 (9)0.0263 (6)0.0099 (6)0.0094 (5)0.0011 (5)
C130.0328 (5)0.0394 (7)0.0283 (6)0.0063 (5)0.0125 (4)0.0025 (5)
C140.0495 (8)0.0476 (9)0.0650 (10)0.0020 (7)0.0189 (7)0.0097 (8)
C150.0455 (8)0.0576 (10)0.0643 (10)0.0162 (7)0.0212 (7)0.0023 (8)
C160.0495 (8)0.0747 (12)0.0417 (8)0.0207 (8)0.0010 (7)0.0062 (8)
C170.0452 (8)0.0524 (9)0.0559 (9)0.0092 (7)0.0180 (7)0.0133 (7)
C180.0309 (5)0.0316 (6)0.0270 (5)0.0013 (4)0.0108 (4)0.0006 (4)
C190.0321 (5)0.0334 (6)0.0281 (6)0.0002 (5)0.0098 (4)0.0014 (5)
C200.0403 (6)0.0426 (7)0.0272 (6)0.0066 (5)0.0137 (5)0.0023 (5)
C210.0406 (6)0.0399 (7)0.0399 (7)0.0055 (5)0.0222 (5)0.0101 (5)
C220.0452 (7)0.0382 (7)0.0463 (8)0.0086 (6)0.0183 (6)0.0017 (6)
C230.0444 (7)0.0381 (7)0.0328 (6)0.0073 (6)0.0138 (5)0.0034 (5)
N10.0436 (6)0.0483 (7)0.0337 (6)0.0087 (5)0.0115 (5)0.0092 (5)
N20.0629 (8)0.0574 (9)0.0552 (8)0.0032 (7)0.0367 (7)0.0144 (7)
O10.0376 (5)0.0481 (6)0.0284 (4)0.0115 (4)0.0096 (4)0.0031 (4)
O20.0387 (5)0.0704 (8)0.0398 (6)0.0021 (5)0.0052 (4)0.0092 (5)
O30.0528 (6)0.0513 (6)0.0419 (6)0.0084 (5)0.0141 (5)0.0121 (5)
O40.0859 (9)0.0470 (7)0.0540 (7)0.0244 (6)0.0157 (6)0.0048 (5)
O50.0660 (8)0.0897 (10)0.0424 (6)0.0206 (7)0.0067 (6)0.0088 (6)
O60.1521 (16)0.1066 (13)0.0657 (9)0.0304 (11)0.0749 (11)0.0055 (9)
O70.0924 (10)0.0799 (10)0.0826 (10)0.0268 (8)0.0471 (8)0.0168 (8)
Geometric parameters (Å, º) top
C1—C61.3331 (18)C12—H12B0.9700
C1—O11.3702 (15)C13—O11.3723 (15)
C1—C21.4892 (18)C14—H14A0.9600
C2—C31.5293 (19)C14—H14B0.9600
C2—H2A0.9700C14—H14C0.9600
C2—H2B0.9700C15—H15A0.9600
C3—C151.523 (2)C15—H15B0.9600
C3—C141.526 (2)C15—H15C0.9600
C3—C41.527 (2)C16—H16A0.9600
C4—C51.504 (2)C16—H16B0.9600
C4—H4A0.9700C16—H16C0.9600
C4—H4B0.9700C17—H17A0.9600
C5—O21.2226 (17)C17—H17B0.9600
C5—C61.4643 (17)C17—H17C0.9600
C6—C71.5127 (17)C18—C231.3899 (18)
C7—C81.5107 (16)C18—C191.3908 (16)
C7—C181.5279 (17)C19—C201.3801 (18)
C7—H70.9800C19—N11.4762 (17)
C8—C131.3338 (17)C20—C211.377 (2)
C8—C91.4683 (17)C20—H200.9300
C9—O31.2155 (15)C21—C221.368 (2)
C9—C101.5054 (18)C21—N21.4667 (18)
C10—C111.5270 (19)C22—C231.3820 (19)
C10—H10A0.9700C22—H220.9300
C10—H10B0.9700C23—H230.9300
C11—C171.522 (2)N1—O41.2096 (17)
C11—C161.5280 (19)N1—O51.2166 (16)
C11—C121.5327 (18)N2—O61.207 (2)
C12—C131.4864 (17)N2—O71.213 (2)
C12—H12A0.9700
C6—C1—O1123.43 (11)C11—C12—H12B109.2
C6—C1—C2125.49 (11)H12A—C12—H12B107.9
O1—C1—C2111.07 (11)C8—C13—O1123.36 (11)
C1—C2—C3112.76 (11)C8—C13—C12125.35 (11)
C1—C2—H2A109.0O1—C13—C12111.29 (11)
C3—C2—H2A109.0C3—C14—H14A109.5
C1—C2—H2B109.0C3—C14—H14B109.5
C3—C2—H2B109.0H14A—C14—H14B109.5
H2A—C2—H2B107.8C3—C14—H14C109.5
C15—C3—C14109.66 (13)H14A—C14—H14C109.5
C15—C3—C4109.71 (12)H14B—C14—H14C109.5
C14—C3—C4110.24 (13)C3—C15—H15A109.5
C15—C3—C2109.23 (12)C3—C15—H15B109.5
C14—C3—C2110.09 (12)H15A—C15—H15B109.5
C4—C3—C2107.89 (12)C3—C15—H15C109.5
C5—C4—C3114.75 (11)H15A—C15—H15C109.5
C5—C4—H4A108.6H15B—C15—H15C109.5
C3—C4—H4A108.6C11—C16—H16A109.5
C5—C4—H4B108.6C11—C16—H16B109.5
C3—C4—H4B108.6H16A—C16—H16B109.5
H4A—C4—H4B107.6C11—C16—H16C109.5
O2—C5—C6120.23 (12)H16A—C16—H16C109.5
O2—C5—C4121.70 (12)H16B—C16—H16C109.5
C6—C5—C4118.04 (12)C11—C17—H17A109.5
C1—C6—C5118.81 (12)C11—C17—H17B109.5
C1—C6—C7123.05 (11)H17A—C17—H17B109.5
C5—C6—C7118.14 (11)C11—C17—H17C109.5
C8—C7—C6108.62 (10)H17A—C17—H17C109.5
C8—C7—C18110.80 (10)H17B—C17—H17C109.5
C6—C7—C18110.21 (10)C23—C18—C19116.22 (11)
C8—C7—H7109.1C23—C18—C7117.34 (11)
C6—C7—H7109.1C19—C18—C7126.38 (11)
C18—C7—H7109.1C20—C19—C18123.04 (12)
C13—C8—C9118.70 (11)C20—C19—N1114.48 (11)
C13—C8—C7123.10 (11)C18—C19—N1122.48 (11)
C9—C8—C7118.21 (11)C21—C20—C19117.55 (12)
O3—C9—C8120.08 (12)C21—C20—H20121.2
O3—C9—C10121.53 (12)C19—C20—H20121.2
C8—C9—C10118.37 (11)C22—C21—C20122.43 (12)
C9—C10—C11114.19 (11)C22—C21—N2119.00 (13)
C9—C10—H10A108.7C20—C21—N2118.56 (13)
C11—C10—H10A108.7C21—C22—C23118.17 (13)
C9—C10—H10B108.7C21—C22—H22120.9
C11—C10—H10B108.7C23—C22—H22120.9
H10A—C10—H10B107.6C22—C23—C18122.56 (12)
C17—C11—C10110.04 (12)C22—C23—H23118.7
C17—C11—C16109.01 (13)C18—C23—H23118.7
C10—C11—C16109.91 (12)O4—N1—O5124.03 (13)
C17—C11—C12110.57 (12)O4—N1—C19119.24 (11)
C10—C11—C12107.93 (11)O5—N1—C19116.72 (13)
C16—C11—C12109.37 (11)O6—N2—O7123.44 (15)
C13—C12—C11112.15 (11)O6—N2—C21118.66 (15)
C13—C12—H12A109.2O7—N2—C21117.84 (15)
C11—C12—H12A109.2C1—O1—C13117.56 (10)
C13—C12—H12B109.2
C6—C1—C2—C324.1 (2)C16—C11—C12—C13169.45 (14)
O1—C1—C2—C3156.81 (12)C9—C8—C13—O1179.49 (11)
C1—C2—C3—C15166.99 (13)C7—C8—C13—O10.5 (2)
C1—C2—C3—C1472.55 (17)C9—C8—C13—C120.1 (2)
C1—C2—C3—C447.79 (16)C7—C8—C13—C12179.97 (12)
C15—C3—C4—C5170.89 (13)C11—C12—C13—C826.1 (2)
C14—C3—C4—C568.26 (16)C11—C12—C13—O1154.43 (12)
C2—C3—C4—C551.99 (16)C8—C7—C18—C2350.45 (15)
C3—C4—C5—O2151.35 (14)C6—C7—C18—C2369.81 (14)
C3—C4—C5—C630.51 (18)C8—C7—C18—C19132.67 (13)
O1—C1—C6—C5178.65 (12)C6—C7—C18—C19107.07 (14)
C2—C1—C6—C50.3 (2)C23—C18—C19—C201.15 (19)
O1—C1—C6—C70.9 (2)C7—C18—C19—C20178.06 (12)
C2—C1—C6—C7179.87 (13)C23—C18—C19—N1178.00 (12)
O2—C5—C6—C1179.17 (13)C7—C18—C19—N11.09 (19)
C4—C5—C6—C12.66 (19)C18—C19—C20—C210.32 (19)
O2—C5—C6—C71.26 (19)N1—C19—C20—C21179.54 (11)
C4—C5—C6—C7176.91 (12)C19—C20—C21—C221.7 (2)
C1—C6—C7—C87.67 (17)C19—C20—C21—N2179.64 (12)
C5—C6—C7—C8171.88 (11)C20—C21—C22—C231.5 (2)
C1—C6—C7—C18113.88 (13)N2—C21—C22—C23179.84 (13)
C5—C6—C7—C1866.57 (14)C21—C22—C23—C180.1 (2)
C6—C7—C8—C137.50 (17)C19—C18—C23—C221.4 (2)
C18—C7—C8—C13113.70 (13)C7—C18—C23—C22178.56 (13)
C6—C7—C8—C9172.53 (11)C20—C19—N1—O4138.94 (14)
C18—C7—C8—C966.27 (14)C18—C19—N1—O441.84 (19)
C13—C8—C9—O3179.81 (13)C20—C19—N1—O539.93 (18)
C7—C8—C9—O30.22 (19)C18—C19—N1—O5139.28 (14)
C13—C8—C9—C101.31 (18)C22—C21—N2—O6178.31 (17)
C7—C8—C9—C10178.72 (11)C20—C21—N2—O60.4 (2)
O3—C9—C10—C11152.40 (13)C22—C21—N2—O71.0 (2)
C8—C9—C10—C1129.12 (17)C20—C21—N2—O7177.70 (15)
C9—C10—C11—C1768.38 (15)C6—C1—O1—C137.06 (19)
C9—C10—C11—C16171.56 (12)C2—C1—O1—C13172.05 (12)
C9—C10—C11—C1252.36 (16)C8—C13—O1—C17.24 (19)
C17—C11—C12—C1370.50 (16)C12—C13—O1—C1172.26 (11)
C10—C11—C12—C1349.90 (16)

Experimental details

Crystal data
Chemical formulaC23H24N2O7
Mr440.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.7733 (3), 19.6193 (5), 11.7922 (3)
β (°) 109.603 (1)
V3)2130.04 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.905, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
29785, 7327, 4793
Rint0.031
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.03
No. of reflections7327
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHideo, T. (1981). Jpn Kokai Tokkyo Koho JP 56 005480.  Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719–o1720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPoupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.  CSD CrossRef IUCr Journals Google Scholar
First citationVanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287–3290.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds