metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetyl­acetonato-κ2O,O′)bis­­(pyridine-κN)nickel(II) dihydrate

aUnité de Recherche de Chimie de l'Environnement et, Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: a_beghidja@yahoo.fr

(Received 21 December 2012; accepted 27 January 2013; online 31 January 2013)

The title compound, [Ni(C5H7O2)2(C5H5N)2]·2H2O, crystallizes with two half-mol­ecules in the asymmetric unit. The NiII ion of each unique complex mol­ecule lies on an inversion centre and has an octa­hedral coordination geometry. The crystal structure features weak O—H⋯O hydrogen bonds, which form chains running parallel to the a axis.

Related literature

For the structures of octa­hedral complexes of the type [M(acac)2(L)2]2 (M = Ni; acac = acetyl­acetonate, 1,3-diphenyl-1,3 propane­dianato; L = pyridine, 3-cyano­pyridine, 4-cyano­pyridine, 3-methyl­pyridine, 2-methyl­pyridine, 4-pyridyl­tetra­thia­fulvalene), see: Elder (1968[Elder, R. C. (1968). Inorg. Chem. 7, 2316-2322.]); Zukerman-Schpector et al. (2000[Zukerman-Schpector, J., Trindade, A. C. & Dunstan, P. O. (2000). Acta Cryst. C56, 763-765.], 2007[Zukerman-Schpector, J., Caracelli, I., Trindade, A. C., Cussigh, O. & Dunstan, P. O. (2007). Z. Kristallogr. New Cryst. Struct. 222, 47-49.]); Wang et al. (2006[Wang, L., Zhang, B. & Zhang, J. (2006). Inorg. Chem. 45, 6860-6863.]); Soldatov et al. (2001[Soldatov, D. V., Enright, G. D., Ratcliffe, C. I., Henegouwen, A. T. & Ripmeester, J. A. (2001). Chem. Mater. 13, 4322-4334.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H7O2)2(C5H5N)2]·2H2O

  • Mr = 451.13

  • Monoclinic, P 21 /c

  • a = 16.362 (5) Å

  • b = 14.476 (5) Å

  • c = 9.543 (5) Å

  • β = 91.510 (5)°

  • V = 2259.5 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 55078 measured reflections

  • 5587 independent reflections

  • 4298 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.103

  • S = 1.05

  • 5587 reflections

  • 269 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0427 (17)
Ni1—O2 2.0407 (16)
Ni1—N1 2.1039 (19)
Ni2—N2 2.126 (2)
Ni2—O3 2.0299 (16)
Ni2—O4 2.0297 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H1W⋯O3 0.84 2.10 2.926 (3) 166
O2W—H2W⋯O1W 0.86 2.46 3.092 (4) 131
O1W—H11W⋯O2 0.83 2.45 2.908 (3) 116
O1W—H22W⋯O1i 0.84 2.07 2.896 (3) 169
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1995[Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal structure of the title compound Ni(acac)2(py)2.2H2O, where acac = acetylacetonate and py = pyridine, is composed of two crystallographically independent Ni complexes with similar geometry and with the Ni(II) atoms located on inversion centres as well as two water molecules located on general positions (Fig. 1). Both Ni(II) atoms have octahedral coordination geometry with the basal plane defined by the four oxygen atoms of the chelating acac (O1, O1i, O2, O2i) and (O3, O3ii, O4, O4ii) for Ni1 and Ni2 respectively, the axial positions are occupied by pyridine N atoms. Related structures have been reported previously in literature: the structure published by Elder (1968) is the anhydrate of the title compound, Zukerman-Schpector et al. (2007) published a methyl pyridine derivative, and the 3 and 4-cyanopyridine derivatives were also reported by Zukerman-Schpector and co-workers (2000). Other structures have been obtained with derivatives of acac: 1,3-diphenyl-1,3-propanedionato (Soldatov, et al., (2001)) and 4-pyridyltetrathiafulvalene (Wang, et al., (2006)). All the bond lengths and angles are in the normal range (Elder et al., 1968; Zukerman-Schpector et al., 2000; Wang et al., 2006). The two independent units are linked to each other by weak O—H···O hydrogen bonds (see Table 2 for geometric details) which form a one-dimensional chain, running parallel to a as shown in Fig. 2. Another feature in this crystal structure is the presence of C—H···π interactions, which further stabilize the crystal packing. These C—H···π interactions are present between the C—H group of acac and an adjacent pyridine rings with a H···π distance of 3.183 Å (Fig. 2).

Related literature top

For the structures of octahedral complexes of the type [M(acac)2(L)2]2 (M = Ni; acac = acetylacetonate, 1,3-diphenyl-1,3 propanedianato; L = pyridine, 3-cyanopyridine, 4-cyanopyridine, 3-methylpyridine, 2-methylpyridine, 4-pyridyltetrathiafulvalene), see: Elder (1968); Zukerman-Schpector et al. (2000, 2007); Wang et al. (2006); Soldatov et al. (2001).

Experimental top

An amount of 0.075 g (0.5 mmol) of mercapto succinic acid was dissolved in 2 ml of pyridine and 0,1374 g (0.5 mmol) of nickel(II) acetylacetonate was dissolved in 10 ml methanol. The two solutions were mixed and stirred for 15 min. The resulting solution was allowed to stand at room temperature. After several days X-ray quality blue crystals were obtained. A fragment cut from a larger crystal was used for data collection.

Refinement top

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter 1.5 that of the adjacent oxygen atom. The O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 with Uiso(H) = 1.5 Ueq(O) and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. All other Hydrogen atoms were placed in calculated positions with C—H distances of 0.93–0.96 Å for aromatic H atoms with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. symmetry code: i = 1 - x,1 - y,1 - z; ii = -x,1 - y,1 - z.
[Figure 2] Fig. 2. View down c of the crystal packing of the title compound showing the hydrogen bonds and C—H···π interactions as dashed lines.
Bis(acetylacetonato-κ2O,O')bis(pyridine-κN)nickel(II) dihydrate top
Crystal data top
[Ni(C5H7O2)2(C5H5N)2]·2H2OF(000) = 952
Mr = 451.13Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9929 reflections
a = 16.362 (5) Åθ = 2.6–28.3°
b = 14.476 (5) ŵ = 0.89 mm1
c = 9.543 (5) ÅT = 296 K
β = 91.510 (5)°Block, blue
V = 2259.5 (16) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4298 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.3°, θmin = 1.2°
Detector resolution: 18.4 pixels mm-1h = 2121
ϕ and ω scansk = 1819
55078 measured reflectionsl = 1212
5587 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.9372P]
where P = (Fo2 + 2Fc2)/3
5587 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.22 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C5H7O2)2(C5H5N)2]·2H2OV = 2259.5 (16) Å3
Mr = 451.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.362 (5) ŵ = 0.89 mm1
b = 14.476 (5) ÅT = 296 K
c = 9.543 (5) Å0.15 × 0.12 × 0.10 mm
β = 91.510 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4298 reflections with I > 2σ(I)
55078 measured reflectionsRint = 0.018
5587 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
5587 reflectionsΔρmin = 0.25 e Å3
269 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.500000.500000.500000.0388 (1)
O10.59123 (8)0.40479 (9)0.52664 (13)0.0504 (4)
O20.47500 (7)0.45218 (9)0.30232 (12)0.0478 (4)
N10.41637 (9)0.40607 (11)0.58429 (15)0.0458 (4)
C10.43286 (13)0.36179 (16)0.7042 (2)0.0623 (7)
C20.38029 (16)0.29902 (19)0.7614 (3)0.0771 (9)
C30.30771 (15)0.27972 (18)0.6921 (3)0.0771 (9)
C40.29001 (13)0.32532 (18)0.5691 (2)0.0703 (8)
C50.34512 (11)0.38751 (15)0.5184 (2)0.0549 (6)
C60.68575 (14)0.28756 (18)0.4746 (3)0.0733 (8)
C70.61380 (11)0.34840 (14)0.43447 (19)0.0502 (6)
C80.57898 (14)0.33964 (17)0.3012 (2)0.0663 (8)
C90.51543 (12)0.39087 (14)0.24124 (18)0.0509 (6)
C100.49162 (19)0.3735 (2)0.0893 (2)0.0821 (9)
Ni20.000000.500000.500000.0454 (1)
O30.05752 (8)0.38202 (8)0.44348 (15)0.0548 (4)
O40.07630 (8)0.43023 (9)0.62668 (15)0.0553 (4)
N20.08437 (10)0.51694 (10)0.67131 (18)0.0518 (5)
C110.16473 (15)0.51415 (17)0.6544 (3)0.0696 (8)
C120.22079 (17)0.5225 (2)0.7630 (3)0.0834 (10)
C130.19364 (18)0.53429 (18)0.8970 (3)0.0774 (9)
C140.11092 (17)0.53708 (17)0.9161 (3)0.0722 (9)
C150.05890 (14)0.52919 (14)0.8021 (2)0.0602 (7)
C160.08741 (14)0.22314 (14)0.4275 (3)0.0663 (8)
C170.03892 (11)0.30288 (11)0.48564 (19)0.0464 (5)
C180.02264 (13)0.28323 (12)0.5796 (2)0.0552 (6)
C190.07502 (11)0.34409 (12)0.64369 (18)0.0449 (5)
C200.13618 (13)0.30541 (16)0.7449 (2)0.0629 (7)
O1W0.33029 (12)0.55261 (16)0.2056 (2)0.0998 (8)
O2W0.18999 (13)0.41332 (17)0.2490 (2)0.1108 (9)
H10.482200.373900.751200.0750*
H20.393700.270000.845900.0930*
H30.271400.236800.727800.0930*
H40.241000.314200.520400.0840*
H50.332400.418000.434900.0660*
H6A0.684500.273700.572900.1100*
H6B0.735700.319200.454700.1100*
H6C0.682700.231200.421800.1100*
H80.600900.293900.245000.0800*
H10A0.435200.389400.073500.1230*
H10B0.499600.309500.067700.1230*
H10C0.525000.410700.030300.1230*
H110.183900.506100.564300.0840*
H120.276500.520200.746200.1000*
H130.230400.540200.972500.0930*
H140.090400.544201.005500.0870*
H150.003000.532500.816200.0720*
H16A0.122300.245400.355600.0990*
H16B0.050500.177700.388800.0990*
H16C0.120200.195800.501500.0990*
H180.029300.221200.602000.0660*
H20A0.182900.345400.747400.0940*
H20B0.111200.301300.836900.0940*
H20C0.153100.245000.714400.0940*
H11W0.354000.507800.172000.1500*
H22W0.355000.571800.278000.1500*
H1W0.150100.413900.303100.1660*
H2W0.203100.470700.258100.1660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0400 (2)0.0425 (2)0.0336 (2)0.0005 (1)0.0026 (1)0.0044 (1)
O10.0492 (7)0.0560 (7)0.0456 (6)0.0076 (6)0.0067 (5)0.0061 (6)
O20.0511 (7)0.0537 (7)0.0383 (6)0.0006 (6)0.0061 (5)0.0068 (5)
N10.0468 (8)0.0504 (8)0.0402 (7)0.0042 (6)0.0011 (6)0.0032 (6)
C10.0618 (12)0.0696 (13)0.0550 (11)0.0134 (10)0.0092 (9)0.0098 (10)
C20.0854 (17)0.0819 (17)0.0640 (13)0.0222 (13)0.0003 (12)0.0185 (12)
C30.0743 (15)0.0784 (16)0.0795 (15)0.0278 (13)0.0189 (12)0.0000 (13)
C40.0523 (11)0.0885 (16)0.0700 (13)0.0208 (11)0.0018 (10)0.0099 (12)
C50.0479 (10)0.0685 (12)0.0480 (9)0.0059 (9)0.0016 (8)0.0052 (9)
C60.0612 (13)0.0821 (16)0.0767 (14)0.0246 (12)0.0031 (11)0.0002 (12)
C70.0452 (9)0.0539 (10)0.0517 (10)0.0038 (8)0.0076 (7)0.0003 (8)
C80.0707 (13)0.0781 (15)0.0503 (11)0.0186 (11)0.0041 (9)0.0187 (10)
C90.0597 (11)0.0565 (11)0.0366 (8)0.0056 (9)0.0031 (7)0.0058 (8)
C100.117 (2)0.0896 (17)0.0392 (10)0.0126 (15)0.0071 (11)0.0138 (11)
Ni20.0479 (2)0.0291 (2)0.0602 (2)0.0021 (1)0.0166 (2)0.0029 (1)
O30.0569 (8)0.0353 (6)0.0730 (9)0.0058 (5)0.0172 (6)0.0004 (6)
O40.0558 (7)0.0408 (7)0.0703 (8)0.0018 (6)0.0198 (6)0.0068 (6)
N20.0554 (9)0.0389 (7)0.0615 (9)0.0026 (6)0.0120 (7)0.0016 (7)
C110.0579 (13)0.0834 (16)0.0680 (14)0.0098 (11)0.0090 (10)0.0047 (11)
C120.0616 (14)0.102 (2)0.0864 (18)0.0118 (14)0.0030 (13)0.0064 (15)
C130.0899 (18)0.0682 (15)0.0734 (15)0.0006 (13)0.0124 (13)0.0001 (12)
C140.0941 (18)0.0618 (13)0.0613 (13)0.0074 (13)0.0111 (12)0.0023 (11)
C150.0655 (13)0.0493 (10)0.0667 (13)0.0038 (9)0.0165 (10)0.0018 (9)
C160.0661 (13)0.0401 (10)0.0920 (16)0.0103 (9)0.0103 (11)0.0159 (10)
C170.0490 (9)0.0346 (8)0.0549 (10)0.0015 (7)0.0133 (7)0.0053 (7)
C180.0684 (12)0.0327 (8)0.0644 (11)0.0072 (8)0.0026 (9)0.0044 (8)
C190.0475 (9)0.0425 (9)0.0442 (9)0.0102 (7)0.0103 (7)0.0058 (7)
C200.0660 (12)0.0641 (13)0.0586 (11)0.0177 (10)0.0023 (9)0.0164 (10)
O1W0.0906 (13)0.1176 (17)0.0896 (13)0.0192 (12)0.0296 (10)0.0028 (12)
O2W0.1004 (15)0.1241 (18)0.1093 (16)0.0189 (13)0.0298 (12)0.0021 (13)
Geometric parameters (Å, º) top
Ni1—O12.0427 (17)C1—H10.9300
Ni1—O22.0407 (16)C2—H20.9300
Ni1—N12.1039 (19)C3—H30.9300
Ni1—O1i2.0427 (17)C4—H40.9300
Ni1—O2i2.0407 (16)C5—H50.9300
Ni1—N1i2.1039 (19)C6—H6A0.9600
Ni2—N2ii2.126 (2)C6—H6C0.9600
Ni2—N22.126 (2)C6—H6B0.9600
Ni2—O32.0299 (16)C8—H80.9300
Ni2—O42.0297 (17)C10—H10B0.9600
Ni2—O3ii2.0298 (16)C10—H10A0.9600
Ni2—O4ii2.0297 (17)C10—H10C0.9600
O1—C71.262 (2)C11—C121.371 (4)
O2—C91.259 (2)C12—C131.375 (4)
O3—C171.254 (2)C13—C141.371 (4)
O4—C191.258 (2)C14—C151.368 (4)
O1W—H22W0.8400C16—C171.514 (3)
O1W—H11W0.8300C17—C181.395 (3)
O2W—H2W0.8600C18—C191.383 (3)
O2W—H1W0.8400C19—C201.516 (3)
N1—C51.337 (2)C11—H110.9300
N1—C11.333 (3)C12—H120.9300
N2—C111.330 (3)C13—H130.9300
N2—C151.338 (3)C14—H140.9300
C1—C21.374 (4)C15—H150.9300
C2—C31.373 (4)C16—H16A0.9600
C3—C41.371 (4)C16—H16B0.9600
C4—C51.371 (3)C16—H16C0.9600
C6—C71.511 (3)C18—H180.9300
C7—C81.386 (3)C20—H20B0.9600
C8—C91.388 (3)C20—H20C0.9600
C9—C101.513 (3)C20—H20A0.9600
Ni1···O1W3.972 (3)N2···O4ii2.944 (3)
Ni1···O1Wi3.972 (3)N2···O32.947 (3)
Ni1···H22W3.3100N2···O3ii2.932 (3)
Ni1···H22Wi3.3100C2···C10vi3.523 (4)
Ni2···H1Wii3.3700C2···C9vi3.536 (4)
Ni2···H1W3.3700C4···C113.525 (4)
O1···N12.928 (2)C9···C2v3.536 (4)
O1···O22.908 (2)C10···C2v3.523 (4)
O1···N1i2.937 (3)C11···C43.525 (4)
O1···O1Wi2.896 (3)C1···H10Bvi3.0200
O1···O2i2.867 (2)C4···H2v3.0800
O1···C92.970 (3)C5···H2v2.9300
O1···C5i3.215 (3)C7···H22Wi3.0100
O1···C13.195 (3)C10···H11W3.0900
O1W···Ni13.972 (3)C14···H18vii2.9800
O1W···O22.908 (3)C15···H18vii2.9700
O1W···O2W3.092 (4)C16···H42.9500
O1W···Ni13.972 (3)C17···H1W3.0200
O1W···O1i2.896 (3)C18···H20Bv2.9600
O2···O1W2.908 (3)C19···H16Bvi3.0900
O2···C72.976 (3)H1···O2i2.6700
O2···O12.908 (2)H1···O12.8600
O2···C1i3.088 (3)H1W···O32.1000
O2···N12.957 (2)H1W···C173.0200
O2···C53.143 (3)H1W···Ni23.3700
O2···O1i2.867 (2)H1W···O4ii2.6500
O2···N1i2.905 (2)H1W···H16A2.5300
O2W···O1W3.092 (4)H1W···Ni23.3700
O2W···O4ii3.180 (3)H2···C4vi3.0800
O2W···O32.926 (3)H2···C5vi2.9300
O3···N2ii2.932 (3)H2W···O4ii2.7700
O3···O42.922 (2)H2W···O1W2.4600
O3···C192.979 (3)H3···O2Wvi2.5600
O3···O2W2.926 (3)H4···C162.9500
O3···C113.256 (3)H5···O2W2.8900
O3···O4ii2.818 (2)H5···O1i2.8700
O3···N22.947 (3)H5···O22.7300
O3···C15ii3.246 (3)H6A···H8vi2.3800
O4···N22.934 (3)H6C···O1Wviii2.8600
O4···O3ii2.818 (2)H6C···H82.3100
O4···C172.983 (3)H8···H10B2.3500
O4···C153.091 (3)H8···H6Av2.3800
O4···O2Wii3.180 (3)H8···H6C2.3100
O4···N2ii2.944 (3)H10A···H11W2.3800
O4···O32.922 (2)H10B···C1v3.0200
O4···C11ii3.120 (4)H10B···H82.3500
O1···H22Wi2.0700H11···O4ii2.6600
O1···H5i2.8700H11W···O22.4500
O1···H12.8600H11W···C103.0900
O1W···H6Ciii2.8600H11W···H10A2.3800
O1W···H20Aii2.8700H13···O1Wix2.7300
O1W···H13iv2.7300H14···H15x2.5700
O1W···H2W2.4600H15···H14x2.5700
O2···H1i2.6700H15···O42.6500
O2···H22W2.6200H15···O3ii2.9200
O2···H11W2.4500H16A···O2W2.8700
O2···H52.7300H16A···H1W2.5300
O2W···H52.8900H16B···C19v3.0900
O2W···H3v2.5600H16B···H182.5300
O2W···H16A2.8700H18···C15xi2.9700
O3···H1W2.1000H18···C14xi2.9800
O3···H15ii2.9200H18···H16B2.5300
O4···H152.6500H18···H20C2.3400
O4···H1Wii2.6500H20A···O1Wii2.8700
O4···H11ii2.6600H20B···C18vi2.9600
O4···H2Wii2.7700H20C···H182.3400
N1···O12.928 (2)H22W···C7i3.0100
N1···O22.957 (2)H22W···Ni13.3100
N1···O1i2.937 (3)H22W···O22.6200
N1···O2i2.905 (2)H22W···Ni13.3100
N2···O42.934 (3)H22W···O1i2.0700
O1—Ni1—O290.81 (5)C3—C2—H2120.00
O1—Ni1—N189.82 (6)C4—C3—H3121.00
O1—Ni1—O1i180.00C2—C3—H3121.00
O1—Ni1—O2i89.19 (5)C3—C4—H4120.00
O1—Ni1—N1i90.18 (6)C5—C4—H4120.00
O2—Ni1—N191.01 (5)C4—C5—H5119.00
O1i—Ni1—O289.19 (5)N1—C5—H5119.00
O2—Ni1—O2i180.00H6A—C6—H6B109.00
O2—Ni1—N1i88.99 (5)H6A—C6—H6C109.00
O1i—Ni1—N190.18 (6)C7—C6—H6A109.00
O2i—Ni1—N188.99 (5)C7—C6—H6B109.00
N1—Ni1—N1i180.00H6B—C6—H6C110.00
O1i—Ni1—O2i90.81 (5)C7—C6—H6C109.00
O1i—Ni1—N1i89.82 (6)C7—C8—H8116.00
O2i—Ni1—N1i91.01 (5)C9—C8—H8116.00
O4—Ni2—N289.80 (6)H10A—C10—H10C109.00
O3ii—Ni2—O487.92 (5)H10B—C10—H10C109.00
O4—Ni2—O4ii180.00C9—C10—H10C109.00
O4—Ni2—N2ii90.20 (6)H10A—C10—H10B110.00
O3ii—Ni2—N289.70 (6)C9—C10—H10A109.00
O4ii—Ni2—N290.20 (6)C9—C10—H10B109.00
N2—Ni2—N2ii180.00N2—C11—C12123.3 (3)
O3ii—Ni2—O4ii92.08 (5)C11—C12—C13119.2 (3)
O3ii—Ni2—N2ii90.30 (6)C12—C13—C14118.1 (3)
O4ii—Ni2—N2ii89.80 (6)C13—C14—C15119.2 (3)
O3—Ni2—O492.08 (5)N2—C15—C14123.4 (2)
O3—Ni2—N290.30 (6)C16—C17—C18118.30 (16)
O3—Ni2—O3ii180.00O3—C17—C18125.29 (16)
O3—Ni2—O4ii87.92 (5)O3—C17—C16116.41 (17)
O3—Ni2—N2ii89.70 (6)C17—C18—C19128.36 (16)
Ni1—O1—C7125.16 (12)O4—C19—C20116.07 (16)
Ni1—O2—C9124.90 (11)O4—C19—C18125.66 (17)
Ni2—O3—C17124.41 (12)C18—C19—C20118.27 (17)
Ni2—O4—C19124.19 (12)C12—C11—H11118.00
H11W—O1W—H22W111.00N2—C11—H11118.00
H1W—O2W—H2W97.00C13—C12—H12120.00
Ni1—N1—C1121.33 (13)C11—C12—H12120.00
Ni1—N1—C5121.19 (13)C14—C13—H13121.00
C1—N1—C5117.47 (17)C12—C13—H13121.00
Ni2—N2—C15121.38 (14)C13—C14—H14120.00
C11—N2—C15116.8 (2)C15—C14—H14120.00
Ni2—N2—C11121.83 (16)N2—C15—H15118.00
N1—C1—C2123.0 (2)C14—C15—H15118.00
C1—C2—C3119.1 (2)C17—C16—H16C109.00
C2—C3—C4118.4 (2)H16A—C16—H16B110.00
C3—C4—C5119.5 (2)C17—C16—H16B109.00
N1—C5—C4122.63 (18)H16B—C16—H16C110.00
C6—C7—C8118.55 (19)H16A—C16—H16C109.00
O1—C7—C8125.31 (18)C17—C16—H16A109.00
O1—C7—C6116.13 (18)C17—C18—H18116.00
C7—C8—C9127.9 (2)C19—C18—H18116.00
O2—C9—C10115.84 (18)C19—C20—H20B109.00
O2—C9—C8125.64 (17)C19—C20—H20C109.00
C8—C9—C10118.52 (19)H20A—C20—H20C109.00
N1—C1—H1118.00H20B—C20—H20C109.00
C2—C1—H1119.00H20A—C20—H20B110.00
C1—C2—H2120.00C19—C20—H20A109.00
O2—Ni1—O1—C72.88 (15)Ni1—O1—C7—C6176.78 (14)
N1—Ni1—O1—C793.89 (15)Ni1—O1—C7—C82.0 (3)
O2i—Ni1—O1—C7177.12 (15)Ni1—O2—C9—C86.1 (3)
N1i—Ni1—O1—C786.11 (15)Ni1—O2—C9—C10173.57 (15)
O1—Ni1—O2—C94.80 (15)Ni2—O3—C17—C181.4 (3)
N1—Ni1—O2—C994.64 (15)Ni2—O3—C17—C16178.01 (14)
O1i—Ni1—O2—C9175.20 (15)Ni2—O4—C19—C20178.97 (12)
N1i—Ni1—O2—C985.37 (15)Ni2—O4—C19—C180.4 (3)
O1—Ni1—N1—C149.00 (15)C1—N1—C5—C40.3 (3)
O2—Ni1—N1—C1139.81 (15)Ni1—N1—C1—C2179.04 (18)
O1i—Ni1—N1—C1131.00 (15)Ni1—N1—C5—C4178.68 (16)
O2i—Ni1—N1—C140.19 (15)C5—N1—C1—C20.0 (3)
O1—Ni1—N1—C5129.99 (15)Ni2—N2—C11—C12178.3 (2)
O2—Ni1—N1—C539.18 (15)C15—N2—C11—C120.4 (3)
O1i—Ni1—N1—C550.01 (15)C11—N2—C15—C141.2 (3)
O2i—Ni1—N1—C5140.82 (15)Ni2—N2—C15—C14177.59 (17)
O4ii—Ni2—N2—C15145.01 (15)N1—C1—C2—C30.7 (4)
O4—Ni2—O3—C171.15 (15)C1—C2—C3—C41.1 (4)
N2—Ni2—O3—C1790.97 (15)C2—C3—C4—C50.7 (4)
O4ii—Ni2—O3—C17178.85 (15)C3—C4—C5—N10.0 (3)
N2ii—Ni2—O3—C1789.04 (15)O1—C7—C8—C91.8 (4)
O3—Ni2—O4—C190.32 (15)C6—C7—C8—C9177.0 (2)
N2—Ni2—O4—C1990.61 (15)C7—C8—C9—C10175.5 (2)
O3ii—Ni2—O4—C19179.68 (15)C7—C8—C9—O24.1 (4)
N2ii—Ni2—O4—C1989.39 (15)N2—C11—C12—C130.1 (4)
O3—Ni2—N2—C1151.62 (16)C11—C12—C13—C140.1 (4)
O4—Ni2—N2—C11143.71 (16)C12—C13—C14—C150.8 (4)
O3ii—Ni2—N2—C11128.38 (16)C13—C14—C15—N21.4 (4)
O4ii—Ni2—N2—C1136.29 (16)O3—C17—C18—C190.5 (3)
O3—Ni2—N2—C15127.07 (15)C16—C17—C18—C19178.9 (2)
O4—Ni2—N2—C1534.99 (15)C17—C18—C19—C20178.79 (19)
O3ii—Ni2—N2—C1552.93 (15)C17—C18—C19—O40.5 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y, z1; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2; (vii) x, y+1/2, z+3/2; (viii) x+1, y1/2, z+1/2; (ix) x, y, z+1; (x) x, y+1, z+2; (xi) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H1W···O30.842.102.926 (3)166
O2W—H2W···O1W0.862.463.092 (4)131
O1W—H11W···O20.832.452.908 (3)116
O1W—H22W···O1i0.842.072.896 (3)169
C3—H3···O2Wvi0.932.563.445 (4)159
Symmetry codes: (i) x+1, y+1, z+1; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H7O2)2(C5H5N)2]·2H2O
Mr451.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.362 (5), 14.476 (5), 9.543 (5)
β (°) 91.510 (5)
V3)2259.5 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
55078, 5587, 4298
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.103, 1.05
No. of reflections5587
No. of parameters269
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1995), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Ni1—O12.0427 (17)Ni2—N22.126 (2)
Ni1—O22.0407 (16)Ni2—O32.0299 (16)
Ni1—N12.1039 (19)Ni2—O42.0297 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H1W···O30.84002.10002.926 (3)166.00
O2W—H2W···O1W0.86002.46003.092 (4)131.00
O1W—H11W···O20.83002.45002.908 (3)116.00
O1W—H22W···O1i0.84002.07002.896 (3)169.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the MESRS (Algeria) for financial support. MB thanks the DG–RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Dévelopement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algeria) for support through the PNR project.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationElder, R. C. (1968). Inorg. Chem. 7, 2316–2322.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatov, D. V., Enright, G. D., Ratcliffe, C. I., Henegouwen, A. T. & Ripmeester, J. A. (2001). Chem. Mater. 13, 4322–4334.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Zhang, B. & Zhang, J. (2006). Inorg. Chem. 45, 6860–6863.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZukerman-Schpector, J., Caracelli, I., Trindade, A. C., Cussigh, O. & Dunstan, P. O. (2007). Z. Kristallogr. New Cryst. Struct. 222, 47–49.  CAS Google Scholar
First citationZukerman-Schpector, J., Trindade, A. C. & Dunstan, P. O. (2000). Acta Cryst. C56, 763–765.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds