organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-1-[6-Hy­dr­oxy-4-(4-meth­­oxy­phen­yl)-3,6-di­methyl-4,5,6,7-tetra­hydro-2H-indazol-5-yl]ethanone

aVladimir State University, Qor'ky St 87, 600000 Vladimir, Russian Federation, and bBaku State University, Z. Khalilov St 23, AZ-1148 Baku, Azerbaijan
*Correspondence e-mail: Naralab7@gmail.com

(Received 30 November 2012; accepted 10 January 2013; online 16 January 2013)

The title compound, C18H22N2O3, represents a (4S,5R,6S)-stereoisomer, crystallizing as a racemate in a centrosymmetric space group. The six-membered aliphatic ring adopts a half-chair conformation, with the hy­droxy- and acetyl-substituted C atoms deviating by 0.458 (2) and −0.366 (2) Å, respectively, from the plane defined by other four ring atoms. The pyrazole ring is essentially planar [r.m.s deviation = 0.004 (2) Å]. In the crystal, the mol­ecules are linked into chains along the b axis by N—H⋯N hydrogen bonds. The chains are linked by O—H⋯N hydrogen bonds into layers parallel to the bc plane.

Related literature

For background to the use of β-cyclo­ketols as synthons in the synthesis of pyrazoles, see: Pramula et al. (1985[Pramula, B., Rajanarender, E., Shoolery, J. N. & Krishna, M. (1985). Indian J. Chem. Sect. B, 24, 1255-1258.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O3

  • Mr = 314.38

  • Monoclinic, P 21 /c

  • a = 18.3693 (14) Å

  • b = 5.6971 (4) Å

  • c = 16.3049 (12) Å

  • β = 109.526 (1)°

  • V = 1608.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.982

  • 17994 measured reflections

  • 4015 independent reflections

  • 2740 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.00

  • 4015 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2i 0.81 (3) 2.15 (3) 2.948 (2) 168 (2)
N1—H1N⋯N2ii 0.87 (2) 2.27 (2) 3.093 (2) 157 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We explore the use of simple molecules with different functionalities for synthesis of heterocycles. Particularly, the β-cycloketols have been used as an effective synthon in syntheses of pyrazoles (Pramula et al. 1985).

Fig. 1 shows the molecular structure of title compound (I), C18H22N2O3. The six-membered ring C1, C2, C3, C4, C5, C6 has a half-chair conformation. Four atoms of a six-membered ring C1,C2, C5, C6 are located on the same plane within 0.004 (2) Å while C3 (+ 0.458 (2) Å) and C4 (- 0.366 (2) Å) atoms are deviating to the opposite sides of the plane. The pyrazole ring is essentially planar (r.m.s deviation is 0.004 (2) Å). Hydrogen bonds N—H ··· N combine molecules into chains oriented along the axis b (Fig.2). H-bonds O—H ··· N form centrosymmetric cycles. Through these cycles, the above chains are combined into two-dimensional layers parallel to the plane bc.

Related literature top

For background to the use of β-cycloketols as synthons in the synthesis of pyrazoles, see: Pramula et al. (1985). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

2,4-Diacetyl-5-hydroxy-5-metyl-3(4-methoxyphenyl)cyclohexanone (20 mmol) and hydrazine hydrate (20 mmol) were dissolved in 20 ml of ethanol. The mixture was stirred at 335–340 K for 10 h. After cooling to the room temperature, white crystals were obtained. The crystals were filtered off and washed with cold ethanol. Then they were dissolved in ethanol (50 ml) and recrystallized to yield colourless block-shaped crystals suitable for data collection.

Refinement top

Hydrogen atoms of the OH and NH group found in difference-Fourier maps and included in the refinement with isotropic displacement parameters. The other hydrogen atoms were placed in calculated positions with and refined in the riding mode with isotropic displacement parameters restricted to 1.2Ueq of the adjacent C atom (1.5Ueq for methyl C atoms).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Non-essential H-atoms were removed for clarity. Displacement ellipsoids were drawn at 50% probability.
[Figure 2] Fig. 2. The projection of the crystal structure (I) along the b axis. H bonds are shown as a dashed lines. H atoms not involved in the formation of the hydrogen bonds are not shown.
rac-1-[6-Hydroxy-4-(4-methoxyphenyl)-3,6-dimethyl-4,5,6,7- tetrahydro-2H-indazol-5-yl]ethanone top
Crystal data top
C18H22N2O3F(000) = 672
Mr = 314.38Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2645 reflections
a = 18.3693 (14) Åθ = 2.4–27.8°
b = 5.6971 (4) ŵ = 0.09 mm1
c = 16.3049 (12) ÅT = 296 K
β = 109.526 (1)°Prism, yellow
V = 1608.2 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4015 independent reflections
Radiation source: fine-focus sealed tube2740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2424
Tmin = 0.974, Tmax = 0.982k = 77
17994 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: difference Fourier map
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.4526P]
where P = (Fo2 + 2Fc2)/3
4015 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H22N2O3V = 1608.2 (2) Å3
Mr = 314.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.3693 (14) ŵ = 0.09 mm1
b = 5.6971 (4) ÅT = 296 K
c = 16.3049 (12) Å0.30 × 0.20 × 0.20 mm
β = 109.526 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4015 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2740 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.053
17994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
4015 reflectionsΔρmin = 0.26 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37902 (8)0.0325 (2)0.39112 (9)0.0292 (3)
H1O0.4175 (15)0.014 (4)0.3782 (15)0.042 (7)*
O20.17526 (9)0.3321 (3)0.33143 (10)0.0509 (5)
O30.02786 (9)0.2338 (3)0.60541 (12)0.0581 (5)
N10.44992 (10)0.1360 (3)0.68991 (11)0.0323 (4)
H1N0.4757 (13)0.189 (4)0.7417 (15)0.036 (6)*
N20.47720 (9)0.0401 (3)0.65158 (10)0.0317 (4)
C10.41943 (10)0.0765 (3)0.57672 (11)0.0250 (4)
C20.42242 (11)0.2495 (3)0.50915 (12)0.0291 (4)
H2B0.41320.40620.52670.035*
H2C0.47320.24690.50330.035*
C30.36087 (10)0.1881 (3)0.42137 (11)0.0240 (4)
C40.28224 (10)0.1512 (3)0.43618 (11)0.0233 (4)
H4A0.27560.28450.47100.028*
C50.28328 (10)0.0725 (3)0.49055 (11)0.0224 (4)
H5A0.28540.20830.45450.027*
C60.35664 (10)0.0713 (3)0.56806 (11)0.0236 (4)
C70.37853 (10)0.2084 (3)0.64195 (12)0.0274 (4)
C80.35771 (13)0.3796 (4)0.35532 (13)0.0359 (5)
H8A0.40770.39670.34940.054*
H8B0.32060.33770.30010.054*
H8C0.34280.52520.37480.054*
C90.21385 (11)0.1556 (4)0.35177 (12)0.0296 (4)
C100.19493 (14)0.0554 (4)0.29457 (13)0.0429 (5)
H10A0.16280.01020.23720.064*
H10B0.24180.12420.29190.064*
H10C0.16810.16760.31780.064*
C110.21160 (10)0.0998 (3)0.51714 (11)0.0241 (4)
C120.16362 (11)0.2925 (4)0.49013 (13)0.0327 (4)
H12A0.17260.39800.45110.039*
C130.10256 (12)0.3313 (4)0.52006 (15)0.0404 (5)
H13A0.07130.46250.50140.048*
C140.08796 (11)0.1756 (4)0.57763 (14)0.0366 (5)
C150.13375 (13)0.0199 (4)0.60398 (15)0.0406 (5)
H15A0.12370.12740.64180.049*
C160.19500 (12)0.0552 (4)0.57368 (14)0.0368 (5)
H16A0.22590.18730.59200.044*
C170.00859 (16)0.0772 (6)0.66259 (19)0.0634 (8)
H17A0.03430.13910.67680.095*
H17B0.05220.05930.71490.095*
H17C0.00510.07270.63480.095*
C180.33930 (13)0.4034 (4)0.67129 (14)0.0416 (5)
H18A0.34870.38910.73260.062*
H18B0.28470.39620.64060.062*
H18C0.35910.55100.65960.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (7)0.0281 (7)0.0358 (7)0.0006 (6)0.0173 (6)0.0041 (6)
O20.0481 (10)0.0498 (10)0.0436 (9)0.0213 (8)0.0006 (7)0.0046 (8)
O30.0388 (9)0.0800 (13)0.0677 (11)0.0212 (9)0.0342 (8)0.0121 (10)
N10.0282 (9)0.0422 (10)0.0218 (8)0.0005 (7)0.0023 (7)0.0050 (7)
N20.0244 (8)0.0415 (10)0.0266 (8)0.0043 (7)0.0049 (7)0.0006 (7)
C10.0211 (9)0.0299 (10)0.0240 (9)0.0020 (7)0.0074 (7)0.0029 (7)
C20.0266 (9)0.0295 (10)0.0316 (10)0.0059 (8)0.0101 (8)0.0004 (8)
C30.0249 (9)0.0237 (9)0.0245 (9)0.0008 (7)0.0096 (7)0.0002 (7)
C40.0229 (9)0.0255 (9)0.0217 (8)0.0025 (7)0.0074 (7)0.0017 (7)
C50.0199 (8)0.0247 (9)0.0220 (8)0.0016 (7)0.0063 (7)0.0022 (7)
C60.0225 (9)0.0277 (9)0.0218 (8)0.0003 (7)0.0087 (7)0.0003 (7)
C70.0255 (9)0.0339 (10)0.0218 (9)0.0008 (8)0.0067 (7)0.0001 (8)
C80.0416 (12)0.0330 (11)0.0361 (11)0.0005 (9)0.0169 (9)0.0083 (9)
C90.0264 (9)0.0381 (11)0.0257 (9)0.0038 (8)0.0106 (8)0.0045 (8)
C100.0413 (12)0.0506 (14)0.0284 (10)0.0003 (10)0.0006 (9)0.0047 (10)
C110.0196 (8)0.0281 (9)0.0227 (8)0.0012 (7)0.0045 (7)0.0006 (7)
C120.0287 (10)0.0326 (11)0.0360 (10)0.0038 (8)0.0098 (8)0.0062 (9)
C130.0284 (10)0.0418 (12)0.0500 (13)0.0158 (9)0.0120 (9)0.0071 (10)
C140.0247 (10)0.0484 (13)0.0388 (11)0.0053 (9)0.0133 (9)0.0028 (10)
C150.0384 (12)0.0461 (13)0.0440 (12)0.0059 (9)0.0227 (10)0.0142 (10)
C160.0358 (11)0.0355 (11)0.0439 (12)0.0133 (9)0.0198 (9)0.0129 (9)
C170.0423 (14)0.094 (2)0.0652 (17)0.0028 (14)0.0330 (13)0.0015 (16)
C180.0427 (12)0.0475 (13)0.0321 (11)0.0069 (10)0.0091 (9)0.0116 (10)
Geometric parameters (Å, º) top
O1—C31.430 (2)C8—H8A0.9600
O1—H1O0.81 (3)C8—H8B0.9600
O2—C91.211 (2)C8—H8C0.9600
O3—C141.367 (2)C9—C101.489 (3)
O3—C171.418 (3)C10—H10A0.9600
N1—C71.348 (2)C10—H10B0.9600
N1—N21.363 (2)C10—H10C0.9600
N1—H1N0.87 (2)C11—C161.382 (3)
N2—C11.339 (2)C11—C121.385 (3)
C1—C61.397 (2)C12—C131.382 (3)
C1—C21.493 (3)C12—H12A0.9300
C2—C31.539 (3)C13—C141.382 (3)
C2—H2B0.9700C13—H13A0.9300
C2—H2C0.9700C14—C151.375 (3)
C3—C81.520 (3)C15—C161.386 (3)
C3—C41.556 (2)C15—H15A0.9300
C4—C91.522 (2)C16—H16A0.9300
C4—C51.549 (2)C17—H17A0.9600
C4—H4A0.9800C17—H17B0.9600
C5—C61.508 (2)C17—H17C0.9600
C5—C111.525 (2)C18—H18A0.9600
C5—H5A0.9800C18—H18B0.9600
C6—C71.378 (3)C18—H18C0.9600
C7—C181.488 (3)
C3—O1—H1O107.3 (17)C3—C8—H8C109.5
C14—O3—C17118.17 (19)H8A—C8—H8C109.5
C7—N1—N2113.26 (16)H8B—C8—H8C109.5
C7—N1—H1N124.4 (15)O2—C9—C10120.39 (18)
N2—N1—H1N122.3 (15)O2—C9—C4119.46 (18)
C1—N2—N1103.36 (15)C10—C9—C4120.14 (17)
N2—C1—C6112.02 (16)C9—C10—H10A109.5
N2—C1—C2124.16 (16)C9—C10—H10B109.5
C6—C1—C2123.80 (16)H10A—C10—H10B109.5
C1—C2—C3109.87 (14)C9—C10—H10C109.5
C1—C2—H2B109.7H10A—C10—H10C109.5
C3—C2—H2B109.7H10B—C10—H10C109.5
C1—C2—H2C109.7C16—C11—C12117.36 (17)
C3—C2—H2C109.7C16—C11—C5121.89 (16)
H2B—C2—H2C108.2C12—C11—C5120.58 (17)
O1—C3—C8110.14 (14)C13—C12—C11121.33 (19)
O1—C3—C2109.69 (15)C13—C12—H12A119.3
C8—C3—C2109.78 (15)C11—C12—H12A119.3
O1—C3—C4105.66 (14)C12—C13—C14120.12 (19)
C8—C3—C4112.92 (15)C12—C13—H13A119.9
C2—C3—C4108.54 (14)C14—C13—H13A119.9
C9—C4—C5112.31 (15)O3—C14—C15124.8 (2)
C9—C4—C3112.70 (14)O3—C14—C13115.54 (19)
C5—C4—C3111.46 (14)C15—C14—C13119.67 (18)
C9—C4—H4A106.6C14—C15—C16119.4 (2)
C5—C4—H4A106.6C14—C15—H15A120.3
C3—C4—H4A106.6C16—C15—H15A120.3
C6—C5—C11112.13 (14)C11—C16—C15122.11 (18)
C6—C5—C4108.23 (14)C11—C16—H16A118.9
C11—C5—C4113.58 (14)C15—C16—H16A118.9
C6—C5—H5A107.5O3—C17—H17A109.5
C11—C5—H5A107.5O3—C17—H17B109.5
C4—C5—H5A107.5H17A—C17—H17B109.5
C7—C6—C1105.28 (16)O3—C17—H17C109.5
C7—C6—C5130.39 (16)H17A—C17—H17C109.5
C1—C6—C5124.31 (16)H17B—C17—H17C109.5
N1—C7—C6106.07 (16)C7—C18—H18A109.5
N1—C7—C18121.61 (17)C7—C18—H18B109.5
C6—C7—C18132.32 (17)H18A—C18—H18B109.5
C3—C8—H8A109.5C7—C18—H18C109.5
C3—C8—H8B109.5H18A—C18—H18C109.5
H8A—C8—H8B109.5H18B—C18—H18C109.5
C7—N1—N2—C10.1 (2)N2—N1—C7—C60.7 (2)
N1—N2—C1—C60.6 (2)N2—N1—C7—C18178.36 (18)
N1—N2—C1—C2177.76 (17)C1—C6—C7—N11.0 (2)
N2—C1—C2—C3160.60 (17)C5—C6—C7—N1179.50 (18)
C6—C1—C2—C317.5 (2)C1—C6—C7—C18178.0 (2)
C1—C2—C3—O165.31 (18)C5—C6—C7—C180.6 (4)
C1—C2—C3—C8173.54 (15)C5—C4—C9—O2132.80 (19)
C1—C2—C3—C449.68 (19)C3—C4—C9—O2100.3 (2)
O1—C3—C4—C978.02 (18)C5—C4—C9—C1047.5 (2)
C8—C3—C4—C942.4 (2)C3—C4—C9—C1079.4 (2)
C2—C3—C4—C9164.39 (15)C6—C5—C11—C1657.2 (2)
O1—C3—C4—C549.32 (17)C4—C5—C11—C1665.9 (2)
C8—C3—C4—C5169.78 (15)C6—C5—C11—C12117.95 (19)
C2—C3—C4—C568.27 (18)C4—C5—C11—C12118.97 (19)
C9—C4—C5—C6174.75 (14)C16—C11—C12—C131.4 (3)
C3—C4—C5—C647.19 (18)C5—C11—C12—C13173.94 (19)
C9—C4—C5—C1160.06 (19)C11—C12—C13—C140.4 (3)
C3—C4—C5—C11172.39 (14)C17—O3—C14—C153.0 (4)
N2—C1—C6—C71.0 (2)C17—O3—C14—C13178.2 (2)
C2—C1—C6—C7177.33 (17)C12—C13—C14—O3178.0 (2)
N2—C1—C6—C5179.63 (16)C12—C13—C14—C151.0 (3)
C2—C1—C6—C51.3 (3)O3—C14—C15—C16177.5 (2)
C11—C5—C6—C742.2 (3)C13—C14—C15—C161.3 (4)
C4—C5—C6—C7168.21 (18)C12—C11—C16—C151.0 (3)
C11—C5—C6—C1139.57 (18)C5—C11—C16—C15174.3 (2)
C4—C5—C6—C113.5 (2)C14—C15—C16—C110.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i0.81 (3)2.15 (3)2.948 (2)168 (2)
N1—H1N···N2ii0.87 (2)2.27 (2)3.093 (2)157 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H22N2O3
Mr314.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.3693 (14), 5.6971 (4), 16.3049 (12)
β (°) 109.526 (1)
V3)1608.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17994, 4015, 2740
Rint0.053
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 1.00
No. of reflections4015
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i0.81 (3)2.15 (3)2.948 (2)168 (2)
N1—H1N···N2ii0.87 (2)2.27 (2)3.093 (2)157 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank Baku State University and Vladimir State University for supporting this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPramula, B., Rajanarender, E., Shoolery, J. N. & Krishna, M. (1985). Indian J. Chem. Sect. B, 24, 1255–1258.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds