organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o167-o168

(Pyridin-4-yl)methyl N′-(3-phenyl­allyl­­idene)hydrazinecarbodi­thio­ate

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 December 2012; accepted 20 December 2012; online 4 January 2013)

In the title compound, C16H15N3S2, the central C2N2S2 residue is planar (r.m.s. deviation = 0.045 Å) and the pyridyl and benzene rings are inclined and approximately coplanar to this plane, respectively [dihedral angles = 72.85 (9) and 10.73 (9)°], so that, overall, the mol­ecule adopts an L-shape. The conformation about each of the N=C [1.290 (3) Å] and C=C [1.340 (3) Å] bonds is E. Supra­molecular chains along [1-10] are stabilized by N—H⋯N(pyridine) hydrogen bonding and these are connected into a double layer that stacks along the c-axis direction by C—H⋯π(pyridine) inter­actions.

Related literature

For background to related Schiff bases of S-substituted dithio­carbaza­tes with cinnamaldehyde, see: Tarafder et al. (2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.], 2010[Tarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. & Zangrando, E. (2010). Acta Cryst. E66, o2851.]). For the corresponding metal complexes, see: Reza et al. (2012[Reza, M. S., Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C. & Zangrando, E. (2012). Acta Cryst. E68, m976-m977.]); Liu et al. (2009[Liu, Y.-H., Ye, J., Liu, X.-L. & Guo, R. (2009). J. Coord. Chem. 62, 3488-3499.]). For the biological activity of similar sulfur–nitro­gen-containing Schiff base derivatives, see: Maia et al. (2010[Maia, P. I. D. S., Fernandes, A. G. D. A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276-1282.]); Pavan et al. (2010[Pavan, F. R., Maia, P. I., d, S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898-1905.]); Zhu et al. (2009[Zhu, Y.-J., Song, K.-K., Ll, Z.-C., Pan, Z.-Z., Guo, Y.-J., Zhou, J.-J., Wang, Q., Liu, B. & Chen, Q.-X. (2009). J. Agric. Food Chem. 57, 5518-5523.]). For the synthesis, see: Crouse et al. (2004[Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161-168.]); Khoo (2008[Khoo, T. J. (2008). PhD thesis, Universiti Putra Malaysia, Malaysia.]); Tarafder et al. (2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.], 2010[Tarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. & Zangrando, E. (2010). Acta Cryst. E66, o2851.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3S2

  • Mr = 313.43

  • Triclinic, [P \overline 1]

  • a = 5.3784 (5) Å

  • b = 10.1570 (9) Å

  • c = 14.5488 (17) Å

  • α = 77.315 (9)°

  • β = 84.735 (9)°

  • γ = 78.193 (8)°

  • V = 758.06 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.14 mm−1

  • T = 100 K

  • 0.13 × 0.06 × 0.01 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.83, Tmax = 0.97

  • 15664 measured reflections

  • 2918 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.05

  • 2918 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3,C12–C15 pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3i 0.88 (2) 2.02 (2) 2.897 (3) 172 (2)
C8—H8⋯Cg1ii 0.95 2.92 3.701 (3) 141
Symmetry codes: (i) x+1, y-1, z; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases of S-substituted dithiocarbazates with cinnamaldehyde attract interest in terms of both coordination chemistry (Reza et al., 2012; Liu et al., 2009) and for their biological activities (Maia et al., 2010; Pavan et al., 2010; Zhu et al., 2009. In pursuing our continuing interest in the coordination chemistry of dithiocarbazate derivatives and their biological importance (Tarafder et al., 2010; Tarafder et al., 2008), the title compound, (I), the product of condensation between S-4-picolyl dithiocarbazate and cinnamaldehyde, was investigated.

In (I), Fig. 1, the central C2N2S2 residue is planar (r.m.s. deviation = 0.045 Å) with maximum deviations of 0.040 (2) Å for each of N1 and C11, and -0.048 (1) Å for the S1 atom. The pyridyl ring is inclined to this plane, forming a dihedral angle of 72.85 (9) °, whereas the benzene ring is almost co-planar [dihedral angle = 10.73 (9)°]. The maximum twist from co-planarity along the C5N2 chain is seen in the C1—N1—N2—C2 torsion angle of -176.15 (19) Å. The amine-N1—H atom is syn to the thione-S2 atom. The conformation about each of the N2C2 [1.290 (3) Å] and C3C4 [1.340 (3) Å] bonds is E. Globally, the molecule adopts an L-shape as the pyridyl residue is anti to the thione-S2 atom. A very similar conformation was found in the benzyl ester (Tarafder et al., 2008).

The pyridyl ring proves pivotal in the crystal packing by forming a hydrogen bond with the amine-N1—H atom and acting as an acceptor in a C—H···π(pyridyl) contact, Table 1. The hydrogen bonding leads to the formation of supramolecular chains along [1 1 0] and these are connected into a double layer in the ab plane via the C—H···π(pyridyl) contacts, Fig. 2.

Related literature top

For background to related Schiff bases of S-substituted dithiocarbazates with cinnamaldehyde, see: Tarafder et al. (2008, 2010). For the corresponding metal complexes, see: Reza et al. (2012); Liu et al. (2009). For the biological activity of similar sulfur–nitrogen-containing Schiff base derivatives, see: Maia et al. (2010); Pavan et al. (2010); Zhu et al. (2009). For the synthesis, see: Crouse et al. (2004); Khoo (2008); Tarafder et al. (2008, 2010).

Experimental top

The previously reported method for preparation substituted dithiocarbazate (Crouse et al., 2004) was modified by reaction with 4-picolylchloride hydrochloride (Khoo, 2008).

Potassium hydroxide (11.4 g, 0.2 mol) was dissolved completely in 90% ethanol (70 ml) and the mixture was cooled in ice. To the cold solution, hydrazine hydrate (9.7 ml, 0.2 mol) was added slowly with stirring. Carbon disulfide (12.0 ml, 0.2 mol) was then added drop-wise with vigorous stirring for about 1 h. The temperature of the reaction mixture was kept below 268 K during addition. During this time two layers formed. The resulting yellow oil (lower layer) was separated and dissolved in 40% ethanol (60 ml). 4-Picolylchloride hydrochloride (32.8 g, 0.2 mol) was completely dissolved in 100 ml of 80% ethanol and added slowly to the above solution with vigorous mechanical stirring. The resulting white product (S4PDTC) was separated by filtration, washed with water and dried. The crude product was recrystallized from absolute ethanol.

Previously reported methods for preparation of Schiff bases (Tarafder et al., 2010; Tarafder et al., 2008) were used to prepare S4PDTC derivatives with cinnamaldehyde. An equimolar amount of cinnamaldehyde (1.26 ml) was added to the solution of S4PDTC (1.99 g, 0.01 mol) dissolved in hot absolute ethanol (100 ml). The mixture was heated while being stirred to reduce it to half the original volume and then cooled. The orange compound was filtered, washed with absolute ethanol then dried over silica gel. Single crystals were obtained after recrystallization from a mixture of DMF/chloroform. (yield 72%, M.pt: 481–482 K).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(C). The nitrogen-bound H-atom was refined with N—H = 0.88±0.01 Å. The (0 3 14) reflection was omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in projection down the a axis, highlighting the stacking of supramolecular layers along the c axis. The N—H···N and C—H···π interactions are shown as blue and purple dashed lines, respectively.
(Pyridin-4-yl)methyl N'-(3-phenylallylidene)hydrazinecarbodithioate top
Crystal data top
C16H15N3S2Z = 2
Mr = 313.43F(000) = 328
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.3784 (5) ÅCell parameters from 5833 reflections
b = 10.1570 (9) Åθ = 3–72°
c = 14.5488 (17) ŵ = 3.14 mm1
α = 77.315 (9)°T = 100 K
β = 84.735 (9)°Thin-plate, orange
γ = 78.193 (8)°0.13 × 0.06 × 0.01 mm
V = 758.06 (13) Å3
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2918 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1952 pixels mm-1θmax = 72.3°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.83, Tmax = 0.97l = 1715
15664 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.3038P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C16H15N3S2γ = 78.193 (8)°
Mr = 313.43V = 758.06 (13) Å3
Triclinic, P1Z = 2
a = 5.3784 (5) ÅCu Kα radiation
b = 10.1570 (9) ŵ = 3.14 mm1
c = 14.5488 (17) ÅT = 100 K
α = 77.315 (9)°0.13 × 0.06 × 0.01 mm
β = 84.735 (9)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2918 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2469 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.97Rint = 0.045
15664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
2918 reflectionsΔρmin = 0.29 e Å3
193 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36876 (9)0.53086 (5)0.18295 (4)0.02532 (16)
S20.33320 (10)0.32045 (5)0.06781 (4)0.02701 (17)
N10.6775 (3)0.29601 (17)0.19095 (13)0.0256 (4)
H1n0.749 (4)0.2148 (14)0.1794 (18)0.031*
N20.7786 (3)0.34184 (17)0.25917 (13)0.0262 (4)
N30.1177 (4)1.01818 (18)0.16683 (15)0.0338 (5)
C10.4717 (4)0.3730 (2)0.14713 (15)0.0233 (4)
C20.9846 (4)0.2638 (2)0.29282 (16)0.0266 (5)
H21.05790.18460.26820.032*
C31.1038 (4)0.2962 (2)0.36748 (16)0.0284 (5)
H31.02950.37640.39090.034*
C41.3162 (4)0.2171 (2)0.40512 (16)0.0279 (5)
H41.38930.14050.37760.033*
C51.4484 (4)0.2350 (2)0.48372 (16)0.0284 (5)
C61.3649 (5)0.3430 (2)0.53137 (18)0.0370 (6)
H61.21390.40740.51330.044*
C71.4982 (5)0.3574 (3)0.60420 (19)0.0393 (6)
H71.44010.43230.63490.047*
C81.7160 (5)0.2633 (3)0.63253 (18)0.0368 (6)
H81.80740.27330.68260.044*
C91.8000 (4)0.1543 (3)0.58746 (18)0.0359 (5)
H91.94840.08890.60720.043*
C101.6683 (4)0.1405 (2)0.51347 (17)0.0312 (5)
H101.72830.06590.48270.037*
C110.1118 (4)0.6125 (2)0.10459 (17)0.0269 (5)
H11A0.17250.61640.03790.032*
H11B0.02980.56120.11810.032*
C120.0263 (4)0.7559 (2)0.12385 (16)0.0262 (5)
C130.1950 (4)0.7908 (2)0.17696 (19)0.0357 (6)
H130.30220.72580.19980.043*
C140.2588 (4)0.9219 (2)0.1965 (2)0.0390 (6)
H140.41120.94410.23300.047*
C150.0961 (5)0.9839 (2)0.11574 (18)0.0345 (5)
H150.19991.05080.09400.041*
C160.1742 (4)0.8555 (2)0.09283 (17)0.0314 (5)
H160.32770.83610.05620.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (3)0.0170 (3)0.0333 (3)0.00106 (19)0.0078 (2)0.0104 (2)
S20.0278 (3)0.0215 (3)0.0342 (3)0.0011 (2)0.0060 (2)0.0124 (2)
N10.0275 (9)0.0184 (8)0.0315 (10)0.0004 (7)0.0035 (8)0.0100 (7)
N20.0260 (9)0.0226 (9)0.0312 (10)0.0014 (7)0.0049 (7)0.0095 (7)
N30.0309 (10)0.0233 (9)0.0484 (13)0.0048 (7)0.0124 (9)0.0149 (9)
C10.0249 (10)0.0176 (9)0.0272 (11)0.0021 (8)0.0002 (8)0.0062 (8)
C20.0251 (10)0.0224 (10)0.0323 (12)0.0021 (8)0.0013 (9)0.0078 (9)
C30.0292 (11)0.0234 (10)0.0334 (12)0.0025 (8)0.0023 (9)0.0096 (9)
C40.0300 (11)0.0238 (10)0.0299 (12)0.0020 (8)0.0003 (9)0.0089 (9)
C50.0271 (11)0.0262 (11)0.0313 (12)0.0045 (8)0.0021 (9)0.0051 (9)
C60.0370 (13)0.0302 (12)0.0429 (15)0.0047 (9)0.0111 (11)0.0122 (10)
C70.0419 (14)0.0341 (13)0.0436 (15)0.0009 (10)0.0083 (11)0.0166 (11)
C80.0345 (12)0.0433 (14)0.0341 (13)0.0045 (10)0.0093 (10)0.0111 (11)
C90.0281 (11)0.0395 (13)0.0387 (14)0.0020 (9)0.0057 (10)0.0111 (11)
C100.0291 (11)0.0303 (11)0.0339 (13)0.0007 (9)0.0007 (9)0.0108 (9)
C110.0268 (10)0.0201 (10)0.0344 (12)0.0004 (8)0.0097 (9)0.0077 (9)
C120.0270 (10)0.0198 (10)0.0320 (12)0.0022 (8)0.0113 (9)0.0081 (8)
C130.0260 (11)0.0314 (12)0.0542 (16)0.0051 (9)0.0020 (10)0.0185 (11)
C140.0257 (11)0.0359 (13)0.0584 (17)0.0018 (9)0.0017 (11)0.0235 (12)
C150.0389 (13)0.0204 (10)0.0439 (14)0.0034 (9)0.0068 (11)0.0060 (9)
C160.0328 (11)0.0230 (10)0.0363 (13)0.0005 (9)0.0022 (10)0.0071 (9)
Geometric parameters (Å, º) top
S1—C11.760 (2)C7—C81.383 (3)
S1—C111.817 (2)C7—H70.9500
S2—C11.662 (2)C8—C91.385 (4)
N1—C11.342 (3)C8—H80.9500
N1—N21.379 (3)C9—C101.389 (3)
N1—H1n0.880 (10)C9—H90.9500
N2—C21.290 (3)C10—H100.9500
N3—C141.332 (3)C11—C121.514 (3)
N3—C151.337 (3)C11—H11A0.9900
C2—C31.439 (3)C11—H11B0.9900
C2—H20.9500C12—C131.385 (3)
C3—C41.340 (3)C12—C161.386 (3)
C3—H30.9500C13—C141.391 (3)
C4—C51.463 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C101.398 (3)C15—C161.389 (3)
C5—C61.400 (3)C15—H150.9500
C6—C71.382 (3)C16—H160.9500
C6—H60.9500
C1—S1—C11101.51 (10)C9—C8—H8120.2
C1—N1—N2119.67 (17)C8—C9—C10120.2 (2)
C1—N1—H1n122.4 (17)C8—C9—H9119.9
N2—N1—H1n117.9 (17)C10—C9—H9119.9
C2—N2—N1114.56 (18)C9—C10—C5120.9 (2)
C14—N3—C15116.84 (19)C9—C10—H10119.6
N1—C1—S2121.98 (16)C5—C10—H10119.6
N1—C1—S1113.13 (16)C12—C11—S1105.44 (14)
S2—C1—S1124.88 (12)C12—C11—H11A110.7
N2—C2—C3120.4 (2)S1—C11—H11A110.7
N2—C2—H2119.8C12—C11—H11B110.7
C3—C2—H2119.8S1—C11—H11B110.7
C4—C3—C2122.2 (2)H11A—C11—H11B108.8
C4—C3—H3118.9C13—C12—C16117.4 (2)
C2—C3—H3118.9C13—C12—C11121.6 (2)
C3—C4—C5127.5 (2)C16—C12—C11121.0 (2)
C3—C4—H4116.3C12—C13—C14119.3 (2)
C5—C4—H4116.3C12—C13—H13120.3
C10—C5—C6117.9 (2)C14—C13—H13120.3
C10—C5—C4119.1 (2)N3—C14—C13123.6 (2)
C6—C5—C4123.0 (2)N3—C14—H14118.2
C7—C6—C5121.1 (2)C13—C14—H14118.2
C7—C6—H6119.4N3—C15—C16123.4 (2)
C5—C6—H6119.4N3—C15—H15118.3
C6—C7—C8120.2 (2)C16—C15—H15118.3
C6—C7—H7119.9C12—C16—C15119.4 (2)
C8—C7—H7119.9C12—C16—H16120.3
C7—C8—C9119.7 (2)C15—C16—H16120.3
C7—C8—H8120.2
C1—N1—N2—C2176.15 (19)C8—C9—C10—C50.5 (4)
N2—N1—C1—S2177.22 (15)C6—C5—C10—C90.5 (3)
N2—N1—C1—S12.5 (2)C4—C5—C10—C9179.6 (2)
C11—S1—C1—N1175.41 (16)C1—S1—C11—C12174.77 (15)
C11—S1—C1—S24.84 (16)S1—C11—C12—C13103.5 (2)
N1—N2—C2—C3177.19 (18)S1—C11—C12—C1673.2 (2)
N2—C2—C3—C4179.2 (2)C16—C12—C13—C140.1 (4)
C2—C3—C4—C5176.9 (2)C11—C12—C13—C14176.9 (2)
C3—C4—C5—C10179.6 (2)C15—N3—C14—C130.1 (4)
C3—C4—C5—C60.2 (4)C12—C13—C14—N30.0 (4)
C10—C5—C6—C71.3 (4)C14—N3—C15—C160.2 (4)
C4—C5—C6—C7178.8 (2)C13—C12—C16—C150.0 (3)
C5—C6—C7—C81.1 (4)C11—C12—C16—C15176.9 (2)
C6—C7—C8—C90.1 (4)N3—C15—C16—C120.1 (4)
C7—C8—C9—C100.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3,C12–C15 pyridyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N3i0.88 (2)2.02 (2)2.897 (3)172 (2)
C8—H8···Cg1ii0.952.923.701 (3)141
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15N3S2
Mr313.43
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.3784 (5), 10.1570 (9), 14.5488 (17)
α, β, γ (°)77.315 (9), 84.735 (9), 78.193 (8)
V3)758.06 (13)
Z2
Radiation typeCu Kα
µ (mm1)3.14
Crystal size (mm)0.13 × 0.06 × 0.01
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.83, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
15664, 2918, 2469
Rint0.045
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.05
No. of reflections2918
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3,C12–C15 pyridyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N3i0.881 (16)2.021 (15)2.897 (3)172 (2)
C8—H8···Cg1ii0.952.923.701 (3)141
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: crouse@pc.jaring.my.

Acknowledgements

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS 9174000) and the Malaysian Ministry of Science Technology and Innovation (MOSTI 09–02-04–9752EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS 01–13-11–986FR). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCrouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhoo, T. J. (2008). PhD thesis, Universiti Putra Malaysia, Malaysia.  Google Scholar
First citationLiu, Y.-H., Ye, J., Liu, X.-L. & Guo, R. (2009). J. Coord. Chem. 62, 3488–3499.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaia, P. I. D. S., Fernandes, A. G. D. A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276–1282.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPavan, F. R., Maia, P. I., d, S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898–1905.  Web of Science CrossRef CAS PubMed Google Scholar
First citationReza, M. S., Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C. & Zangrando, E. (2012). Acta Cryst. E68, m976–m977.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. & Zangrando, E. (2010). Acta Cryst. E66, o2851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Y.-J., Song, K.-K., Ll, Z.-C., Pan, Z.-Z., Guo, Y.-J., Zhou, J.-J., Wang, Q., Liu, B. & Chen, Q.-X. (2009). J. Agric. Food Chem. 57, 5518–5523.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o167-o168
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds