organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­pyridinium 4-hy­dr­oxy­benzoate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 24 December 2012; accepted 17 January 2013; online 23 January 2013)

In the crystal structure of the title salt, C6H8N+·C7H5O3, the anions and cations are linked by classical N—H⋯O hydrogen bonds. The anions are connected by pairs of C—H⋯O hydrogen bonds into inversion dimers and further linked by classical O—H⋯O hydrogen bonds. Weak ππ inter­actions [centroid–centroid distances = 3.740 (3) and 3.855 (3) Å] also occur. The dihedral angle between the CO2 group and the benzene ring to which it is attached is 20.95 (8)°.

Related literature

For biological applications of picolinium-containing compounds, see: Butler & Walker (1993[Butler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937-1944.]); Roy et al. (2001[Roy, S. C., Guin, C., Rana, K. K. & Maiti, G. (2001). Tetrahedron Lett. 42, 6941-6942.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N+·C7H5O3

  • Mr = 231.24

  • Monoclinic, P 21 /c

  • a = 7.479 (5) Å

  • b = 11.671 (4) Å

  • c = 13.520 (5) Å

  • β = 100.217 (5)°

  • V = 1161.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 11741 measured reflections

  • 2564 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.06

  • 2564 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.85 2.6707 (19) 176
N1—H1A⋯O3ii 0.86 1.73 2.5889 (19) 173
C2—H2⋯O1iii 0.93 2.60 3.485 (2) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Picolinium compounds are valuable intermediates in organic synthesis and they have been used widely in industrially important products and biologically active substrates as antitumor, antifungal, antibacterial, antineoplastic and antviral (Butler & Walker, 1993; Roy et al., 2001) activities.

The asymmetric unit of the title salt, I, (Fig. 1), contains C6H8N+ cation and C7H5O3- anion. The bond lengths and angles in both anion and cation are within normal range (Allen et al., 1987). The crystal structure exhibit weak intermolecular classical N—H···O, O—H···O and non–classical C—H···O interactions (Table 1 & Fig. 2). The ππ interactions are found in crystal structure: Cg1···Cg2iv = 3.740 (3)Å; Cg1···Cg2v = 3.855 (3)Å, where Cg1 and Cg2 are the centroids of the rings (C1–C6) and (N1/C8–C12), respectively. Symmetry codes: (iv) x, -y+1/2, z+1/2); (v) x+1, y, z;

Related literature top

For biological applications of picolinium-containing compounds, see: Butler & Walker (1993); Roy et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Picolinium 4-hydroxybenzoate compound was synthesized by using the starting materials of 4-picoline (1.66 g) and 4-hydroxybenzoic acid (1.12 g) in methanol and the single crystals suitable for X-ray diffraction were grown by slow evaporation.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93Å and 0.96Å, O—H = 0.82Å and N—H = 0.86Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O) for hydroxy group, Uiso(H) = 1.2Ueq(N) for amino group, Uiso(H) = 1.2Ueq(C) for aryl H and Uiso(H) = 1.5Ueq(C) for methyl H.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of I, viewed down a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
4-Methylpyridinium 4-hydroxybenzoate top
Crystal data top
C6H8N+·C7H5O3F(000) = 488
Mr = 231.24Dx = 1.322 Mg m3
Monoclinic, P21/cMelting point = 470.4–481.2 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.479 (5) ÅCell parameters from 7082 reflections
b = 11.671 (4) Åθ = 2.3–27.1°
c = 13.520 (5) ŵ = 0.10 mm1
β = 100.217 (5)°T = 295 K
V = 1161.4 (10) Å3Block, colourless
Z = 40.24 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2564 independent reflections
Radiation source: fine–focus sealed tube1939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 27.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.978, Tmax = 0.983k = 148
11741 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3003P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2564 reflectionsΔρmax = 0.38 e Å3
156 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C6H8N+·C7H5O3V = 1161.4 (10) Å3
Mr = 231.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.479 (5) ŵ = 0.10 mm1
b = 11.671 (4) ÅT = 295 K
c = 13.520 (5) Å0.24 × 0.20 × 0.18 mm
β = 100.217 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2564 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1939 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.029
11741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2564 reflectionsΔρmin = 0.34 e Å3
156 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55020 (18)0.18454 (10)0.02055 (8)0.0578 (4)
H10.59810.24640.01310.087*
O20.7215 (2)0.11967 (10)0.49538 (9)0.0599 (4)
O30.71511 (18)0.05893 (9)0.44053 (8)0.0563 (4)
C10.5832 (2)0.15548 (13)0.11952 (11)0.0396 (4)
C20.5407 (2)0.04549 (13)0.14510 (11)0.0435 (4)
H20.48830.00560.09550.052*
C30.5761 (2)0.01174 (12)0.24435 (11)0.0394 (4)
H30.54920.06280.26120.047*
C40.6512 (2)0.08716 (12)0.31929 (10)0.0356 (3)
C50.6894 (2)0.19833 (12)0.29287 (11)0.0394 (4)
H50.73750.25030.34270.047*
C60.6571 (2)0.23261 (13)0.19390 (11)0.0397 (4)
H60.68460.30700.17690.048*
C70.6972 (2)0.05049 (13)0.42610 (11)0.0412 (4)
N10.18709 (19)0.10699 (12)0.37067 (10)0.0475 (4)
H1A0.21700.09660.43440.057*
C80.2266 (2)0.20451 (14)0.32853 (13)0.0490 (4)
H80.28720.26170.36920.059*
C90.1813 (2)0.22368 (14)0.22732 (12)0.0473 (4)
H90.20990.29330.20050.057*
C100.0932 (2)0.13982 (14)0.16510 (11)0.0446 (4)
C110.0517 (2)0.03949 (14)0.20988 (13)0.0480 (4)
H110.00910.01900.17090.058*
C120.1000 (2)0.02581 (14)0.31174 (13)0.0478 (4)
H120.07100.04240.34070.057*
C130.0475 (3)0.15746 (19)0.05391 (14)0.0686 (6)
H13A0.02590.23740.03980.103*
H13B0.05960.11450.02720.103*
H13C0.14690.13180.02340.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0913 (9)0.0446 (7)0.0328 (6)0.0132 (6)0.0014 (6)0.0060 (5)
O20.1019 (10)0.0430 (7)0.0334 (6)0.0124 (6)0.0079 (6)0.0037 (5)
O30.0980 (10)0.0342 (6)0.0363 (6)0.0073 (6)0.0106 (6)0.0038 (5)
C10.0502 (9)0.0365 (8)0.0309 (7)0.0008 (6)0.0040 (6)0.0032 (6)
C20.0561 (9)0.0357 (8)0.0363 (8)0.0062 (7)0.0014 (7)0.0028 (6)
C30.0509 (9)0.0283 (7)0.0391 (8)0.0019 (6)0.0081 (7)0.0025 (6)
C40.0440 (8)0.0316 (7)0.0320 (7)0.0046 (6)0.0091 (6)0.0012 (6)
C50.0520 (9)0.0325 (8)0.0339 (8)0.0003 (6)0.0085 (6)0.0050 (6)
C60.0537 (9)0.0282 (7)0.0383 (8)0.0022 (6)0.0106 (7)0.0016 (6)
C70.0554 (9)0.0357 (8)0.0343 (8)0.0052 (7)0.0123 (7)0.0005 (6)
N10.0592 (9)0.0506 (8)0.0323 (7)0.0066 (6)0.0073 (6)0.0070 (6)
C80.0561 (10)0.0450 (9)0.0441 (9)0.0015 (7)0.0036 (7)0.0009 (7)
C90.0550 (10)0.0417 (9)0.0454 (9)0.0008 (7)0.0089 (7)0.0087 (7)
C100.0468 (9)0.0502 (10)0.0365 (8)0.0059 (7)0.0068 (7)0.0045 (7)
C110.0544 (10)0.0446 (9)0.0440 (9)0.0011 (7)0.0057 (7)0.0018 (7)
C120.0563 (10)0.0415 (9)0.0474 (9)0.0016 (7)0.0138 (8)0.0070 (7)
C130.0898 (15)0.0731 (13)0.0400 (10)0.0027 (11)0.0039 (9)0.0092 (9)
Geometric parameters (Å, º) top
O1—C11.3599 (18)N1—C81.329 (2)
O1—H10.8200N1—C121.331 (2)
O2—C71.2255 (19)N1—H1A0.8600
O3—C71.2953 (19)C8—C91.369 (2)
C1—C21.381 (2)C8—H80.9300
C1—C61.389 (2)C9—C101.379 (2)
C2—C31.378 (2)C9—H90.9300
C2—H20.9300C10—C111.379 (2)
C3—C41.384 (2)C10—C131.496 (2)
C3—H30.9300C11—C121.370 (2)
C4—C51.389 (2)C11—H110.9300
C4—C71.487 (2)C12—H120.9300
C5—C61.376 (2)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C1—O1—H1109.5C8—N1—H1A120.8
O1—C1—C2117.94 (13)C12—N1—H1A120.8
O1—C1—C6122.02 (14)N1—C8—C9122.28 (16)
C2—C1—C6120.05 (14)N1—C8—H8118.9
C3—C2—C1119.75 (14)C9—C8—H8118.9
C3—C2—H2120.1C8—C9—C10120.04 (15)
C1—C2—H2120.1C8—C9—H9120.0
C2—C3—C4120.93 (14)C10—C9—H9120.0
C2—C3—H3119.5C11—C10—C9117.07 (15)
C4—C3—H3119.5C11—C10—C13121.95 (16)
C3—C4—C5118.77 (13)C9—C10—C13120.97 (16)
C3—C4—C7121.46 (13)C12—C11—C10120.06 (16)
C5—C4—C7119.74 (13)C12—C11—H11120.0
C6—C5—C4120.85 (14)C10—C11—H11120.0
C6—C5—H5119.6N1—C12—C11122.17 (15)
C4—C5—H5119.6N1—C12—H12118.9
C5—C6—C1119.62 (14)C11—C12—H12118.9
C5—C6—H6120.2C10—C13—H13A109.5
C1—C6—H6120.2C10—C13—H13B109.5
O2—C7—O3122.48 (15)H13A—C13—H13B109.5
O2—C7—C4122.01 (14)C10—C13—H13C109.5
O3—C7—C4115.47 (13)H13A—C13—H13C109.5
C8—N1—C12118.37 (14)H13B—C13—H13C109.5
O1—C1—C2—C3178.41 (14)C5—C4—C7—O220.1 (2)
C6—C1—C2—C31.7 (2)C3—C4—C7—O320.0 (2)
C1—C2—C3—C41.1 (2)C5—C4—C7—O3157.84 (15)
C2—C3—C4—C50.4 (2)C12—N1—C8—C90.1 (2)
C2—C3—C4—C7177.46 (14)N1—C8—C9—C100.7 (3)
C3—C4—C5—C61.4 (2)C8—C9—C10—C111.2 (2)
C7—C4—C5—C6176.54 (14)C8—C9—C10—C13178.06 (16)
C4—C5—C6—C10.8 (2)C9—C10—C11—C120.9 (2)
O1—C1—C6—C5179.34 (14)C13—C10—C11—C12178.39 (17)
C2—C1—C6—C50.7 (2)C8—N1—C12—C110.5 (2)
C3—C4—C7—O2162.01 (16)C10—C11—C12—N10.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.6707 (19)176
N1—H1A···O3ii0.861.732.5889 (19)173
C2—H2···O1iii0.932.603.485 (2)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H8N+·C7H5O3
Mr231.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.479 (5), 11.671 (4), 13.520 (5)
β (°) 100.217 (5)
V3)1161.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
11741, 2564, 1939
Rint0.029
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.06
No. of reflections2564
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.6707 (19)176
N1—H1A···O3ii0.861.732.5889 (19)173
C2—H2···O1iii0.932.603.485 (2)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

MK would like to thank Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No. 03 (1200)/11/EMR–II].

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937–1944.  CrossRef CAS Web of Science Google Scholar
First citationRoy, S. C., Guin, C., Rana, K. K. & Maiti, G. (2001). Tetrahedron Lett. 42, 6941–6942.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds