metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m92-m93

rac-Di­chlorido[3-eth­­oxy-3-(1-ethyl-1H-benzimidazol-2-yl)-2,3-di­hydro-1H-pyrrolo­[1,2-a]benzimidazole]­copper(II)

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
*Correspondence e-mail: DZSquared@aol.com

(Received 19 December 2012; accepted 21 December 2012; online 9 January 2013)

The title complex, [CuCl2(C21H22N4O)], contains a bis­(benzimidazole) unit with a chiral bridgehead C atom that forms part of a tetra­hydro­pyrrole ring fused to one of the benzimidazoles. The chelate angle is 90.45 (9)° and the dihedral angle between the essentially planar benzimidazole fragments is 26.68 (9)°. The CuII coordination geometry lies approximately midway between tetra­hedral and square planar. Overall, each chiral mol­ecule contains six fused rings, and a racemic mixture is formed with symmetry-related enanti­omers. In the crystal, C—H⋯π and C—H⋯Cl inter­actions link mol­ecules into a supra­molecular chain along the a-axis direction.

Related literature

For 19F NMR studies of related compounds, see: Stibrany (2003[Stibrany, R. T. (2003). Copper-Based Olefin Polymerization Catalysts: High-Pressure 19F NMR Catalyst Probe, ACS Symp. Ser. 857, Beyond Metallocenes, edited by G. G. Hlatky & A. O. Patil, pp. 210-221. Washington, DC: ACS Press.]). For polymerization studies, see: Stibrany et al. (2003[Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584-8586.]). For their use as agents to study electron transfer, see: Knapp et al. (1990[Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.]). For related structures, see: Baugh et al. (2006[Baugh, L. S., Sissano, J. A., Kacker, S., Berluche, E., Stibrany, R. T., Schulz, D. N. & Rucker, S. P. (2006). J. Polymer Sci. Part A: Polymer Chem. 44, 1817-1840.]); Stibrany (2009[Stibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719-722.]); Stibrany et al. (2002[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142-o1144.], 2004[Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472-1480.]); Stibrany & Potenza (2006[Stibrany, R. T. & Potenza, J. A. (2006). Private communication (refcode TEVJAG). CCDC, Cambridge, England.], 2008[Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213-m216.]). For calculation of the four-coordination geometry, see: Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C21H22N4O)]

  • Mr = 480.87

  • Triclinic, [P \overline 1]

  • a = 8.9409 (17) Å

  • b = 9.5209 (18) Å

  • c = 14.323 (3) Å

  • α = 106.973 (4)°

  • β = 92.373 (4)°

  • γ = 113.778 (4)°

  • V = 1049.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 294 K

  • 0.43 × 0.23 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000;[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.771, Tmax = 1.00

  • 10062 measured reflections

  • 4126 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.00

  • 4126 reflections

  • 264 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—N23 1.993 (2)
Cu—N13 2.005 (2)
Cu—Cl1 2.2169 (9)
Cu—Cl2 2.2198 (9)
N23—Cu—N13 90.45 (9)
N23—Cu—Cl1 141.12 (8)
N13—Cu—Cl1 94.14 (7)
N23—Cu—Cl2 100.17 (7)
N13—Cu—Cl2 143.67 (8)
Cl1—Cu—Cl2 98.64 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11/C13–C17 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCg1i 0.96 2.99 3.910 (5) 160
C17—H17⋯Cl1ii 0.93 2.78 3.694 (4) 169
Symmetry codes: (i) -x, -y+2, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title complex (I), Fig. 1, was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), 19F NMR polymerization catalyst probes (Stibrany, 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008). In this study we extend the ring system with the addition of a fused tetrahydropyyrole.

Only two bis(benzimidazole) ligands containing quaternary bridgehead carbon atoms have been structurally characterized (Fig. 2) II (Stibrany, 2009) and III (Stibrany et al., 2003; Stibrany & Potenza, 2006). Several structures containing bis(benzimidazole) ligands with a single bridgehead carbon atom of the form CuIIN2X2, where X is a halogen, have previously been reported (Baugh et al., 2006; Stibrany, 2009; Stibrany et al., 2003; Stibrany & Potenza, 2006; Stibrany & Potenza, 2008). Of those structures, several contain tertiary bridgehead carbon atoms (3') and the remaining contain quaternary bridgehead carbon atoms (4'). The "bite" angle of the bis(benzimidazole) ligands, which is defined as the N—Cu—N angle and is constrained by the ligand structure. The previously reported average for structures containing (4') carbon bridgehead atoms was reported as 90.4 (8)° (Stibrany, 2009). This compares favorably with the title structure which is 90.45 (9)° for the N23—Cu—N13 bond angle. The essentially planar benzimidazole fragments are twisted by 26.68 (9)°. A τ4 value of 0.53 indicates the coordination geometry is approximately midway between a perfect tetrahedral coordination geometry (τ4 = 1) and a perfect square-planar geometry (τ4 = 0) (Yang et al., 2007).

Related literature top

For 19F NMR studies of related compounds, see: Stibrany (2003). For polymerization studies, see: Stibrany et al. (2003). For their use as agents to study electron transfer, see: Knapp et al. (1990). For related structures, see: Baugh et al. (2006); Stibrany (2009); Stibrany et al. (2002, 2004); Stibrany & Potenza (2006, 2008). For calculation of the four-coordination geometry, see: Yang et al. (2007).

Experimental top

In a 50 ml Erlenmeyer flask containing acetonitrile (10 ml), CuCl2.2H2O (20 mg) was dissolved. Then rac-[3-ethoxy-3-(1-ethylbenzimidazol-2-yl)-4,5- dihydro-pyrrolo[1,2-a]benzimidazole] (41 mg) was added to the flask to give a green solution. The flask was sealed in a jar containing diethyl ether designed to allow slow vapor diffusion of diethyl ether. After 3 days, yellow-green plates of the title complex formed.

Refinement top

Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.97 secondary alkyl, 0.96 primary alkyl, and 0.93 Å, and with Uiso(H) = 1.2–1.5Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 40% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Drawings of previously reported quaternary substituted bis(benzimidazoles).
rac-Dichlorido[3-ethoxy-3-(1-ethyl-1H-benzimidazol-2-yl)-2,3- dihydro-1H-pyrrolo[1,2-a]benzimidazole]copper(II) top
Crystal data top
[CuCl2(C21H22N4O)]Z = 2
Mr = 480.87F(000) = 494
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9409 (17) ÅCell parameters from 897 reflections
b = 9.5209 (18) Åθ = 5.0–50.8°
c = 14.323 (3) ŵ = 1.32 mm1
α = 106.973 (4)°T = 294 K
β = 92.373 (4)°Cleaved plate, yellow-green
γ = 113.778 (4)°0.43 × 0.23 × 0.06 mm
V = 1049.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4126 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 1111
Tmin = 0.771, Tmax = 1.00k = 1111
10062 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
4126 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.90 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
[CuCl2(C21H22N4O)]γ = 113.778 (4)°
Mr = 480.87V = 1049.3 (3) Å3
Triclinic, P1Z = 2
a = 8.9409 (17) ÅMo Kα radiation
b = 9.5209 (18) ŵ = 1.32 mm1
c = 14.323 (3) ÅT = 294 K
α = 106.973 (4)°0.43 × 0.23 × 0.06 mm
β = 92.373 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
3380 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.00Rint = 0.027
10062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.90 e Å3
4126 reflectionsΔρmin = 0.29 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.05985 (4)1.12548 (4)0.28616 (3)0.04148 (15)
Cl10.11321 (11)1.17616 (13)0.15011 (7)0.0642 (3)
Cl20.17411 (11)1.26316 (11)0.38646 (7)0.0588 (2)
O10.0067 (3)0.7244 (3)0.15123 (16)0.0505 (5)
N110.3553 (3)1.0483 (3)0.21160 (19)0.0420 (6)
N130.1575 (3)1.1244 (3)0.25783 (17)0.0375 (5)
N210.0518 (3)0.7479 (3)0.36364 (18)0.0410 (5)
N230.1091 (3)0.9408 (3)0.33722 (18)0.0411 (5)
C10.0961 (3)0.8415 (3)0.2462 (2)0.0385 (6)
C30.0847 (5)0.7703 (5)0.0917 (3)0.0678 (10)
H3A0.00930.86000.07290.081*
H3B0.15940.80520.12870.081*
C40.1818 (6)0.6250 (7)0.0011 (3)0.1055 (19)
H4A0.10730.58790.03290.158*
H4B0.23950.65450.04210.158*
H4C0.26070.53930.02030.158*
C110.4096 (3)1.2079 (3)0.2130 (2)0.0397 (6)
C120.2047 (3)1.0057 (3)0.2399 (2)0.0365 (6)
C130.2862 (3)1.2549 (3)0.2426 (2)0.0369 (6)
C140.3060 (4)1.4126 (4)0.2565 (2)0.0466 (7)
H140.22501.44600.27770.056*
C150.4509 (4)1.5166 (4)0.2374 (3)0.0513 (8)
H150.46791.62280.24550.062*
C160.5728 (4)1.4675 (4)0.2062 (2)0.0516 (8)
H160.66851.54150.19330.062*
C170.5561 (4)1.3137 (4)0.1939 (2)0.0483 (7)
H170.63831.28160.17380.058*
C180.4450 (4)0.9499 (4)0.1798 (3)0.0625 (10)
H18A0.56291.02110.19240.075*
H18B0.42790.87870.21890.075*
C190.3921 (9)0.8517 (9)0.0753 (4)0.145 (3)
H19A0.27900.77190.06380.217*
H19B0.46200.79760.05630.217*
H19C0.40040.92060.03650.217*
C210.1714 (3)0.7566 (3)0.4191 (2)0.0407 (6)
C220.0218 (3)0.8560 (3)0.3164 (2)0.0375 (6)
C230.2082 (3)0.8786 (3)0.4025 (2)0.0397 (6)
C240.3296 (4)0.9138 (4)0.4451 (3)0.0535 (8)
H240.35430.99520.43560.064*
C250.4141 (4)0.8241 (4)0.5026 (3)0.0575 (8)
H250.49790.84450.53140.069*
C260.3756 (4)0.7040 (4)0.5180 (2)0.0526 (8)
H260.43450.64630.55720.063*
C270.2544 (4)0.6675 (4)0.4778 (2)0.0497 (7)
H270.22880.58760.48900.060*
C280.0448 (4)0.6532 (4)0.3416 (3)0.0513 (8)
H28A0.02220.54330.29620.062*
H28B0.09450.64860.40150.062*
C290.1774 (4)0.7556 (4)0.2925 (3)0.0492 (7)
H29A0.20950.68600.24170.059*
H29B0.27550.83540.34160.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0349 (2)0.0438 (2)0.0595 (3)0.02188 (17)0.01855 (16)0.02833 (18)
Cl10.0509 (5)0.0988 (7)0.0767 (6)0.0443 (5)0.0264 (4)0.0576 (5)
Cl20.0677 (5)0.0548 (5)0.0766 (6)0.0398 (4)0.0346 (4)0.0319 (4)
O10.0545 (13)0.0378 (11)0.0488 (12)0.0117 (10)0.0105 (10)0.0121 (9)
N110.0327 (12)0.0374 (13)0.0589 (15)0.0155 (10)0.0175 (10)0.0186 (11)
N130.0279 (11)0.0363 (12)0.0499 (13)0.0122 (10)0.0101 (9)0.0187 (10)
N210.0402 (13)0.0358 (12)0.0511 (14)0.0155 (10)0.0124 (10)0.0215 (11)
N230.0384 (13)0.0376 (13)0.0543 (14)0.0172 (11)0.0173 (11)0.0227 (11)
C10.0362 (14)0.0312 (14)0.0483 (15)0.0146 (12)0.0098 (11)0.0133 (12)
C30.063 (2)0.066 (2)0.054 (2)0.0090 (19)0.0028 (17)0.0210 (18)
C40.091 (3)0.102 (4)0.058 (2)0.014 (3)0.003 (2)0.020 (2)
C110.0328 (14)0.0373 (15)0.0468 (15)0.0123 (12)0.0087 (11)0.0152 (12)
C120.0284 (13)0.0365 (14)0.0455 (15)0.0133 (11)0.0091 (11)0.0157 (12)
C130.0304 (13)0.0368 (14)0.0425 (15)0.0116 (11)0.0056 (11)0.0163 (12)
C140.0405 (16)0.0413 (16)0.0608 (19)0.0179 (13)0.0113 (13)0.0209 (14)
C150.0447 (17)0.0374 (16)0.069 (2)0.0128 (14)0.0041 (15)0.0222 (15)
C160.0336 (15)0.0453 (17)0.0633 (19)0.0011 (13)0.0041 (13)0.0245 (15)
C170.0320 (15)0.0505 (18)0.0619 (19)0.0141 (13)0.0135 (13)0.0233 (15)
C180.051 (2)0.054 (2)0.097 (3)0.0285 (17)0.0366 (19)0.034 (2)
C190.128 (6)0.139 (6)0.143 (6)0.072 (5)0.030 (5)0.005 (5)
C210.0364 (14)0.0371 (15)0.0453 (15)0.0114 (12)0.0081 (12)0.0157 (12)
C220.0338 (14)0.0314 (14)0.0451 (15)0.0101 (11)0.0074 (11)0.0157 (12)
C230.0361 (14)0.0333 (14)0.0462 (16)0.0103 (12)0.0118 (12)0.0150 (12)
C240.0511 (18)0.0455 (18)0.070 (2)0.0229 (15)0.0246 (16)0.0241 (16)
C250.0498 (19)0.054 (2)0.067 (2)0.0194 (16)0.0293 (16)0.0201 (17)
C260.0499 (18)0.0497 (18)0.0485 (17)0.0088 (15)0.0150 (14)0.0211 (15)
C270.0501 (18)0.0448 (17)0.0517 (18)0.0125 (14)0.0109 (14)0.0242 (14)
C280.0536 (18)0.0479 (18)0.068 (2)0.0294 (16)0.0194 (15)0.0290 (16)
C290.0477 (17)0.0435 (17)0.068 (2)0.0259 (14)0.0170 (15)0.0251 (15)
Geometric parameters (Å, º) top
Cu—N231.993 (2)C14—C151.373 (4)
Cu—N132.005 (2)C14—H140.9300
Cu—Cl12.2169 (9)C15—C161.391 (5)
Cu—Cl22.2198 (9)C15—H150.9300
O1—C31.426 (4)C16—C171.366 (5)
O1—C11.428 (3)C16—H160.9300
N11—C121.357 (3)C17—H170.9300
N11—C111.390 (4)C18—C191.452 (6)
N11—C181.454 (4)C18—H18A0.9700
N13—C121.321 (4)C18—H18B0.9700
N13—C131.393 (4)C19—H19A0.9600
N21—C221.338 (3)C19—H19B0.9600
N21—C211.373 (4)C19—H19C0.9600
N21—C281.464 (4)C21—C271.392 (4)
N23—C221.318 (4)C21—C231.405 (4)
N23—C231.407 (3)C23—C241.375 (4)
C1—C121.504 (4)C24—C251.386 (5)
C1—C221.505 (4)C24—H240.9300
C1—C291.546 (4)C25—C261.391 (5)
C3—C41.498 (6)C25—H250.9300
C3—H3A0.9700C26—C271.365 (5)
C3—H3B0.9700C26—H260.9300
C4—H4A0.9600C27—H270.9300
C4—H4B0.9600C28—C291.545 (4)
C4—H4C0.9600C28—H28A0.9700
C11—C131.386 (4)C28—H28B0.9700
C11—C171.390 (4)C29—H29A0.9700
C13—C141.391 (4)C29—H29B0.9700
N23—Cu—N1390.45 (9)C17—C16—C15121.9 (3)
N23—Cu—Cl1141.12 (8)C17—C16—H16119.0
N13—Cu—Cl194.14 (7)C15—C16—H16119.0
N23—Cu—Cl2100.17 (7)C16—C17—C11116.5 (3)
N13—Cu—Cl2143.67 (8)C16—C17—H17121.8
Cl1—Cu—Cl298.64 (4)C11—C17—H17121.8
C3—O1—C1116.9 (2)C19—C18—N11112.5 (4)
C12—N11—C11106.7 (2)C19—C18—H18A109.1
C12—N11—C18129.1 (3)N11—C18—H18A109.1
C11—N11—C18124.2 (2)C19—C18—H18B109.1
C12—N13—C13106.1 (2)N11—C18—H18B109.1
C12—N13—Cu130.38 (19)H18A—C18—H18B107.8
C13—N13—Cu123.17 (18)C18—C19—H19A109.5
C22—N21—C21107.9 (2)C18—C19—H19B109.5
C22—N21—C28114.1 (2)H19A—C19—H19B109.5
C21—N21—C28138.0 (3)C18—C19—H19C109.5
C22—N23—C23104.6 (2)H19A—C19—H19C109.5
C22—N23—Cu118.62 (19)H19B—C19—H19C109.5
C23—N23—Cu136.46 (19)N21—C21—C27132.3 (3)
O1—C1—C12112.2 (2)N21—C21—C23105.3 (2)
O1—C1—C22110.5 (2)C27—C21—C23122.3 (3)
C12—C1—C22110.3 (2)N23—C22—N21113.5 (3)
O1—C1—C29104.6 (2)N23—C22—C1135.6 (3)
C12—C1—C29118.8 (2)N21—C22—C1110.7 (2)
C22—C1—C2999.6 (2)C24—C23—C21120.1 (3)
O1—C3—C4107.8 (4)C24—C23—N23131.1 (3)
O1—C3—H3A110.1C21—C23—N23108.8 (2)
C4—C3—H3A110.1C23—C24—C25117.9 (3)
O1—C3—H3B110.1C23—C24—H24121.1
C4—C3—H3B110.1C25—C24—H24121.1
H3A—C3—H3B108.5C24—C25—C26121.0 (3)
C3—C4—H4A109.5C24—C25—H25119.5
C3—C4—H4B109.5C26—C25—H25119.5
H4A—C4—H4B109.5C27—C26—C25122.5 (3)
C3—C4—H4C109.5C27—C26—H26118.8
H4A—C4—H4C109.5C25—C26—H26118.8
H4B—C4—H4C109.5C26—C27—C21116.2 (3)
C13—C11—C17122.0 (3)C26—C27—H27121.9
C13—C11—N11106.4 (2)C21—C27—H27121.9
C17—C11—N11131.6 (3)N21—C28—C29100.3 (2)
N13—C12—N11112.2 (2)N21—C28—H28A111.7
N13—C12—C1122.2 (2)C29—C28—H28A111.7
N11—C12—C1125.5 (2)N21—C28—H28B111.7
C11—C13—C14120.9 (3)C29—C28—H28B111.7
C11—C13—N13108.6 (2)H28A—C28—H28B109.5
C14—C13—N13130.4 (3)C28—C29—C1106.2 (2)
C15—C14—C13116.8 (3)C28—C29—H29A110.5
C15—C14—H14121.6C1—C29—H29A110.5
C13—C14—H14121.6C28—C29—H29B110.5
C14—C15—C16121.9 (3)C1—C29—H29B110.5
C14—C15—H15119.1H29A—C29—H29B108.7
C16—C15—H15119.1
N23—Cu—N13—C1225.1 (3)C14—C15—C16—C170.8 (5)
Cl1—Cu—N13—C12116.3 (2)C15—C16—C17—C110.8 (5)
Cl2—Cu—N13—C12133.1 (2)C13—C11—C17—C160.3 (5)
N23—Cu—N13—C13162.5 (2)N11—C11—C17—C16177.3 (3)
Cl1—Cu—N13—C1356.1 (2)C12—N11—C18—C1983.6 (5)
Cl2—Cu—N13—C1354.5 (3)C11—N11—C18—C1992.7 (5)
N13—Cu—N23—C2215.8 (2)C22—N21—C21—C27176.2 (3)
Cl1—Cu—N23—C2281.4 (2)C28—N21—C21—C272.1 (6)
Cl2—Cu—N23—C22160.9 (2)C22—N21—C21—C230.8 (3)
N13—Cu—N23—C23156.1 (3)C28—N21—C21—C23179.1 (3)
Cl1—Cu—N23—C23106.8 (3)C23—N23—C22—N211.5 (3)
Cl2—Cu—N23—C2311.0 (3)Cu—N23—C22—N21172.72 (19)
C3—O1—C1—C1251.1 (3)C23—N23—C22—C1173.0 (3)
C3—O1—C1—C2272.5 (3)Cu—N23—C22—C112.8 (4)
C3—O1—C1—C29178.8 (3)C21—N21—C22—N231.5 (3)
C1—O1—C3—C4174.3 (3)C28—N21—C22—N23179.8 (3)
C12—N11—C11—C130.1 (3)C21—N21—C22—C1174.4 (2)
C18—N11—C11—C13176.9 (3)C28—N21—C22—C14.3 (3)
C12—N11—C11—C17177.8 (3)O1—C1—C22—N2386.1 (4)
C18—N11—C11—C175.2 (5)C12—C1—C22—N2338.5 (4)
C13—N13—C12—N111.3 (3)C29—C1—C22—N23164.2 (3)
Cu—N13—C12—N11172.07 (19)O1—C1—C22—N2188.5 (3)
C13—N13—C12—C1178.6 (3)C12—C1—C22—N21146.9 (2)
Cu—N13—C12—C15.2 (4)C29—C1—C22—N2121.1 (3)
C11—N11—C12—N130.9 (3)N21—C21—C23—C24177.6 (3)
C18—N11—C12—N13175.9 (3)C27—C21—C23—C240.2 (5)
C11—N11—C12—C1178.1 (3)N21—C21—C23—N230.1 (3)
C18—N11—C12—C11.3 (5)C27—C21—C23—N23177.5 (3)
O1—C1—C12—N1397.8 (3)C22—N23—C23—C24176.4 (3)
C22—C1—C12—N1325.9 (4)Cu—N23—C23—C2411.0 (5)
C29—C1—C12—N13139.9 (3)C22—N23—C23—C210.9 (3)
O1—C1—C12—N1179.1 (3)Cu—N23—C23—C21171.7 (2)
C22—C1—C12—N11157.2 (3)C21—C23—C24—C250.9 (5)
C29—C1—C12—N1143.2 (4)N23—C23—C24—C25176.1 (3)
C17—C11—C13—C141.4 (5)C23—C24—C25—C261.0 (5)
N11—C11—C13—C14176.7 (3)C24—C25—C26—C270.2 (5)
C17—C11—C13—N13178.8 (3)C25—C26—C27—C210.6 (5)
N11—C11—C13—N130.7 (3)N21—C21—C27—C26176.0 (3)
C12—N13—C13—C111.2 (3)C23—C21—C27—C260.6 (4)
Cu—N13—C13—C11172.76 (18)C22—N21—C28—C2914.7 (3)
C12—N13—C13—C14175.9 (3)C21—N21—C28—C29167.1 (3)
Cu—N13—C13—C1410.1 (4)N21—C28—C29—C127.3 (3)
C11—C13—C14—C151.4 (5)O1—C1—C29—C2884.9 (3)
N13—C13—C14—C15178.2 (3)C12—C1—C29—C28149.1 (3)
C13—C14—C15—C160.4 (5)C22—C1—C29—C2829.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11/C13–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg1i0.962.993.910 (5)160
C17—H17···Cl1ii0.932.783.694 (4)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C21H22N4O)]
Mr480.87
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.9409 (17), 9.5209 (18), 14.323 (3)
α, β, γ (°)106.973 (4), 92.373 (4), 113.778 (4)
V3)1049.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.43 × 0.23 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000; Blessing, 1995)
Tmin, Tmax0.771, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
10062, 4126, 3380
Rint0.027
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.00
No. of reflections4126
No. of parameters264
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu—N231.993 (2)Cu—Cl12.2169 (9)
Cu—N132.005 (2)Cu—Cl22.2198 (9)
N23—Cu—N1390.45 (9)N23—Cu—Cl2100.17 (7)
N23—Cu—Cl1141.12 (8)N13—Cu—Cl2143.67 (8)
N13—Cu—Cl194.14 (7)Cl1—Cu—Cl298.64 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11/C13–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg1i0.962.993.910 (5)160
C17—H17···Cl1ii0.932.783.694 (4)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z.
 

References

First citationBaugh, L. S., Sissano, J. A., Kacker, S., Berluche, E., Stibrany, R. T., Schulz, D. N. & Rucker, S. P. (2006). J. Polymer Sci. Part A: Polymer Chem. 44, 1817–1840.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKnapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452–3464.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. (2003). Copper-Based Olefin Polymerization Catalysts: High-Pressure 19F NMR Catalyst Probe, ACS Symp. Ser. 857, Beyond Metallocenes, edited by G. G. Hlatky & A. O. Patil, pp. 210–221. Washington, DC: ACS Press.  Google Scholar
First citationStibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719–722.  Web of Science CSD CrossRef CAS Google Scholar
First citationStibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006). Private communication (refcode TEVJAG). CCDC, Cambridge, England.  Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m92-m93
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds