organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-Cyclo­propyl-1-(2-fluoro­phen­yl)-2-oxoeth­yl]-5-(4-methyl­sulfanyl­benzyl­­idene)-1,3-thia­zolidine-2,4-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bOrchid Chemicals & Pharmaceuticals Ltd, R&D Center, Chennai 600 119, India, cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and dDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 26 December 2012; accepted 28 December 2012; online 4 January 2013)

In the title compound, C22H18FNO3S2, the five-membered thia­zolidine ring is planar (r.m.s. deviation = 0.003 Å) and forms dihedral angles of 70.2 (3), 73.16 (17) and 10.32 (14)° with the cyclo­propane, fluoro­benzene and methyl­thio­benzene rings, respectively. The sum of the bond angles around the thia­zolidine ring N atom (359.6°) indicates sp2 hybridization. The mol­ecular structure features intra­molecular C—H⋯S, C—H⋯F and C—H⋯O inter­actions. In the crystal, no significant inter­molecular contacts were apparent.

Related literature

For general properties of thia­zolidines, see: Botti et al. (1996[Botti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018-10024.]); Spiegelman (1998[Spiegelman, B. M. (1998). Diabetes, 47, 507-514.]); Day (1999[Day, C. (1999). Diabet. Med. 16, 179-192.]); Barreca et al. (2002[Barreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410-5413.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18FNO3S2

  • Mr = 427.49

  • Monoclinic, P 21 /c

  • a = 7.657 (3) Å

  • b = 15.799 (5) Å

  • c = 17.425 (6) Å

  • β = 95.641 (5)°

  • V = 2097.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 19651 measured reflections

  • 3838 independent reflections

  • 2429 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.149

  • S = 1.02

  • 3838 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F 0.98 2.35 2.740 (4) 103
C4—H4⋯O2 0.98 2.33 2.792 (4) 108
C15—H15⋯O2 0.93 2.53 2.884 (4) 103
C17—H17⋯S1 0.93 2.55 3.238 (3) 131

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiazolidines are an important class of heteroaromatic compounds and have widespread applications from ranging from pharmaceuticals (Barreca et al., 2002) to materials (Botti et al., 1996). Thiazolidinediones (TZDs), which are known to sensitize tissues to insulin, have been developed and clinically used as anti-diabetic agents. They have been shown to reduce plasma glucose, lipid, and insulin levels, and are used for the treatment of type 2 diabetes (Day, 1999; Spiegelman, 1998). In view of this we have synthesized the title compound to study its crystal structure.

In the title compound, Fig. 1, the five-membered thiazolidine is nearly planar with a r.m.s. deviation of 0.003 Å. The 4-methyl sulfonyl benzylidine ring is nearly coplanar with the central thiazolidine ring as indicated by the dihedral angle of 8.35 (1)°. The 2-fluorobenzene and cyclopropyl rings make dihedral angles of 73.16 (17) and 70.2 (3)° with the thiazolidine ring, respectively. The sum of bond angles around N is 359.6° which confirms sp2 hybridization. In the cyclopropyl ring the mean C—C bond length is 1.504 (3) Å and the mean C—C—C bond angle is 60.0 (2)°; these are unexceptional. The molecular structure features intramolecular C—H···S, C—H···F C—H···O interactions (Table 1).

Related literature top

For general properties of thiazolidines, see: Botti et al. (1996); Spiegelman (1998); Day (1999); Barreca et al. (2002).

Experimental top

A mixture of 5-(4-methylsulfanyl-benzylidenethiazolidine-2,4-dione (1 mmol), 2-bromo-1-cyclopropyl-2-(2-fluorophenyl)ethanone (1 mmol) and sodium bicarbonate (3 mmol) were taken in DMF and stirred for 6 h at 25–35 °C. After completion of the reaction as evident by TLC, (eluent: 7:3 / hexane:ethyl acetate) the mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine (20 ml) twice and then with water. The solvent was distilled off to obtain a viscous paste to which diisopropyl ether (5 volumes) was added. The resultant solid was filtered and washed with diisopropyl ether. The product was recrystallized from its methanol solution. Melting point: 414.5–415.9 Yield: 83.5%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å. Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for the CH3 group. The (0 1 1) reflection was probably affected by the beam-stop and was omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
3-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-5-(4- methylsulfanylbenzylidene)-1,3-thiazolidine-2,4-dione top
Crystal data top
C22H18FNO3S2F(000) = 888
Mr = 427.49Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 7.657 (3) Åθ = 2–25°
b = 15.799 (5) ŵ = 0.29 mm1
c = 17.425 (6) ÅT = 293 K
β = 95.641 (5)°Block, colourless
V = 2097.7 (13) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3838 independent reflections
Radiation source: fine-focus sealed tube2429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 25.4°, θmin = 2.4°
ω and ϕ scansh = 59
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1819
Tmin = 0.967, Tmax = 0.974l = 2120
19651 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.8976P]
where P = (Fo2 + 2Fc2)/3
3838 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H18FNO3S2V = 2097.7 (13) Å3
Mr = 427.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.657 (3) ŵ = 0.29 mm1
b = 15.799 (5) ÅT = 293 K
c = 17.425 (6) Å0.23 × 0.21 × 0.19 mm
β = 95.641 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
3838 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2429 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.033
19651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
3838 reflectionsΔρmin = 0.26 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0768 (4)0.07851 (19)0.35525 (16)0.0603 (7)
C20.2318 (3)0.02818 (18)0.34213 (15)0.0539 (7)
C30.1614 (4)0.08537 (18)0.28013 (16)0.0589 (7)
C40.1107 (4)0.16162 (18)0.23261 (15)0.0575 (7)
H40.02730.18110.19720.069*
C50.2414 (4)0.1066 (2)0.18456 (17)0.0648 (8)
C60.3427 (4)0.1473 (2)0.11919 (18)0.0769 (9)
H60.33140.20890.11510.092*
C70.5155 (5)0.1103 (3)0.0911 (2)0.1003 (13)
H7A0.55470.06110.11810.120*
H7B0.60820.14890.07190.120*
C80.3702 (6)0.0993 (3)0.0454 (2)0.1102 (14)
H8A0.37200.13110.00230.132*
H8B0.31850.04330.04390.132*
C90.1842 (4)0.24062 (19)0.26535 (16)0.0640 (8)
C100.3536 (5)0.2472 (2)0.28457 (19)0.0892 (11)
H100.43070.20190.27660.107*
C110.4098 (8)0.3236 (4)0.3166 (2)0.1203 (18)
H110.52410.32960.32950.144*
C120.2909 (11)0.3889 (3)0.3283 (3)0.137 (3)
H120.32570.43850.35110.164*
C130.1253 (10)0.3835 (3)0.3079 (3)0.131 (2)
H130.04950.42950.31440.157*
C140.0726 (6)0.3109 (2)0.27810 (19)0.0832 (10)
C150.3898 (3)0.00777 (18)0.34052 (16)0.0566 (7)
H150.45070.00930.29960.068*
C160.4815 (3)0.06842 (17)0.39142 (15)0.0523 (6)
C170.4287 (4)0.09486 (18)0.46215 (16)0.0589 (7)
H170.32470.07410.47820.071*
C180.5269 (4)0.15058 (19)0.50819 (16)0.0605 (7)
H180.48900.16710.55500.073*
C190.6831 (4)0.18290 (19)0.48574 (16)0.0611 (7)
C200.7347 (4)0.1587 (2)0.41522 (17)0.0677 (8)
H200.83750.18040.39870.081*
C210.6358 (3)0.10303 (19)0.36966 (16)0.0609 (7)
H210.67300.08770.32240.073*
C220.9974 (6)0.2703 (4)0.5069 (3)0.142 (2)
H22A1.07290.30670.53940.212*
H22B1.05710.21800.49900.212*
H22C0.96700.29740.45810.212*
N0.0076 (3)0.11071 (14)0.29086 (12)0.0543 (6)
O10.2202 (3)0.09354 (14)0.37424 (13)0.0807 (7)
O20.2345 (3)0.10769 (15)0.22512 (13)0.0868 (7)
O30.2558 (4)0.03221 (15)0.19915 (15)0.0952 (8)
F0.0895 (4)0.30462 (16)0.25692 (14)0.1184 (8)
S10.07690 (9)0.01156 (5)0.40749 (4)0.0652 (3)
S20.80371 (12)0.24929 (6)0.55177 (5)0.0834 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0589 (16)0.0646 (18)0.0587 (18)0.0013 (14)0.0130 (14)0.0060 (15)
C20.0573 (15)0.0623 (17)0.0433 (15)0.0036 (13)0.0116 (12)0.0021 (13)
C30.0620 (16)0.0637 (18)0.0523 (17)0.0018 (14)0.0132 (14)0.0010 (14)
C40.0649 (16)0.0608 (18)0.0476 (16)0.0013 (14)0.0102 (13)0.0069 (14)
C50.0770 (19)0.062 (2)0.0559 (18)0.0030 (16)0.0072 (15)0.0013 (15)
C60.094 (2)0.079 (2)0.0565 (19)0.0150 (18)0.0036 (17)0.0109 (17)
C70.086 (2)0.123 (3)0.089 (3)0.018 (2)0.004 (2)0.033 (2)
C80.122 (3)0.153 (4)0.054 (2)0.023 (3)0.002 (2)0.007 (2)
C90.091 (2)0.0552 (19)0.0455 (16)0.0119 (17)0.0063 (15)0.0055 (14)
C100.113 (3)0.092 (3)0.065 (2)0.044 (2)0.022 (2)0.0144 (19)
C110.163 (4)0.132 (4)0.071 (3)0.078 (4)0.034 (3)0.033 (3)
C120.263 (8)0.078 (3)0.070 (3)0.063 (5)0.022 (4)0.011 (3)
C130.257 (7)0.064 (3)0.068 (3)0.001 (4)0.005 (4)0.008 (2)
C140.134 (3)0.063 (2)0.0523 (19)0.007 (2)0.007 (2)0.0114 (17)
C150.0565 (15)0.0679 (18)0.0470 (16)0.0024 (14)0.0129 (12)0.0016 (14)
C160.0510 (14)0.0604 (17)0.0456 (15)0.0017 (13)0.0055 (12)0.0055 (13)
C170.0545 (15)0.0688 (19)0.0547 (17)0.0030 (14)0.0121 (13)0.0046 (14)
C180.0659 (17)0.0689 (19)0.0475 (16)0.0000 (15)0.0087 (14)0.0011 (14)
C190.0616 (16)0.0678 (19)0.0524 (18)0.0053 (14)0.0018 (14)0.0051 (14)
C200.0572 (16)0.088 (2)0.0592 (18)0.0125 (16)0.0126 (14)0.0009 (17)
C210.0596 (16)0.077 (2)0.0477 (16)0.0033 (15)0.0133 (13)0.0007 (15)
C220.106 (3)0.218 (6)0.103 (3)0.088 (3)0.020 (3)0.042 (3)
N0.0560 (12)0.0618 (14)0.0459 (13)0.0031 (11)0.0089 (10)0.0055 (11)
O10.0627 (12)0.0963 (17)0.0874 (16)0.0178 (11)0.0300 (11)0.0260 (13)
O20.0850 (14)0.1093 (18)0.0723 (14)0.0220 (13)0.0382 (12)0.0331 (13)
O30.127 (2)0.0603 (15)0.0921 (18)0.0026 (14)0.0193 (15)0.0020 (13)
F0.134 (2)0.1123 (19)0.1068 (18)0.0420 (16)0.0020 (15)0.0186 (14)
S10.0581 (4)0.0814 (6)0.0582 (5)0.0072 (4)0.0169 (3)0.0164 (4)
S20.0848 (6)0.1018 (7)0.0621 (5)0.0229 (5)0.0005 (4)0.0087 (5)
Geometric parameters (Å, º) top
C1—O11.201 (3)C10—H100.9300
C1—N1.384 (3)C11—C121.378 (8)
C1—S11.767 (3)C11—H110.9300
C2—C151.340 (4)C12—C131.353 (8)
C2—C31.470 (4)C12—H120.9300
C2—S11.743 (3)C13—C141.337 (6)
C3—O21.209 (3)C13—H130.9300
C3—N1.385 (3)C14—F1.333 (4)
C4—N1.464 (3)C15—C161.441 (4)
C4—C91.504 (4)C15—H150.9300
C4—C51.515 (4)C16—C211.388 (4)
C4—H40.9800C16—C171.398 (4)
C5—O31.209 (4)C17—C181.366 (4)
C5—C61.463 (4)C17—H170.9300
C6—C71.486 (5)C18—C191.391 (4)
C6—C81.490 (5)C18—H180.9300
C6—H60.9800C19—C201.381 (4)
C7—C81.441 (5)C19—S21.752 (3)
C7—H7A0.9700C20—C211.363 (4)
C7—H7B0.9700C20—H200.9300
C8—H8A0.9700C21—H210.9300
C8—H8B0.9700C22—S21.774 (4)
C9—C101.375 (5)C22—H22A0.9600
C9—C141.406 (5)C22—H22B0.9600
C10—C111.413 (6)C22—H22C0.9600
O1—C1—N125.7 (3)C12—C11—H11120.8
O1—C1—S1123.8 (2)C10—C11—H11120.8
N—C1—S1110.43 (19)C13—C12—C11122.5 (5)
C15—C2—C3120.8 (2)C13—C12—H12118.8
C15—C2—S1128.6 (2)C11—C12—H12118.8
C3—C2—S1110.44 (19)C14—C13—C12118.9 (6)
O2—C3—N122.3 (3)C14—C13—H13120.6
O2—C3—C2126.7 (3)C12—C13—H13120.6
N—C3—C2111.0 (2)F—C14—C13119.7 (5)
N—C4—C9112.9 (2)F—C14—C9117.8 (3)
N—C4—C5110.5 (2)C13—C14—C9122.5 (5)
C9—C4—C5115.8 (2)C2—C15—C16131.0 (3)
N—C4—H4105.6C2—C15—H15114.5
C9—C4—H4105.6C16—C15—H15114.5
C5—C4—H4105.6C21—C16—C17116.8 (3)
O3—C5—C6122.6 (3)C21—C16—C15118.1 (2)
O3—C5—C4120.7 (3)C17—C16—C15125.2 (2)
C6—C5—C4116.6 (3)C18—C17—C16121.4 (3)
C5—C6—C7118.0 (3)C18—C17—H17119.3
C5—C6—C8117.8 (3)C16—C17—H17119.3
C7—C6—C857.9 (2)C17—C18—C19120.7 (3)
C5—C6—H6116.7C17—C18—H18119.7
C7—C6—H6116.7C19—C18—H18119.7
C8—C6—H6116.7C20—C19—C18118.5 (3)
C8—C7—C661.2 (2)C20—C19—S2124.9 (2)
C8—C7—H7A117.6C18—C19—S2116.6 (2)
C6—C7—H7A117.6C21—C20—C19120.4 (3)
C8—C7—H7B117.6C21—C20—H20119.8
C6—C7—H7B117.6C19—C20—H20119.8
H7A—C7—H7B114.8C20—C21—C16122.3 (3)
C7—C8—C660.9 (2)C20—C21—H21118.9
C7—C8—H8A117.7C16—C21—H21118.9
C6—C8—H8A117.7S2—C22—H22A109.5
C7—C8—H8B117.7S2—C22—H22B109.5
C6—C8—H8B117.7H22A—C22—H22B109.5
H8A—C8—H8B114.8S2—C22—H22C109.5
C10—C9—C14118.4 (3)H22A—C22—H22C109.5
C10—C9—C4123.5 (3)H22B—C22—H22C109.5
C14—C9—C4118.1 (3)C1—N—C3116.1 (2)
C9—C10—C11119.5 (4)C1—N—C4122.7 (2)
C9—C10—H10120.3C3—N—C4120.8 (2)
C11—C10—H10120.3C2—S1—C191.99 (13)
C12—C11—C10118.4 (5)C19—S2—C22103.42 (18)
C15—C2—C3—O22.4 (5)C2—C15—C16—C21171.7 (3)
S1—C2—C3—O2178.1 (3)C2—C15—C16—C179.2 (5)
C15—C2—C3—N176.1 (2)C21—C16—C17—C181.5 (4)
S1—C2—C3—N0.4 (3)C15—C16—C17—C18177.7 (3)
N—C4—C5—O33.6 (4)C16—C17—C18—C190.1 (4)
C9—C4—C5—O3126.4 (3)C17—C18—C19—C201.2 (4)
N—C4—C5—C6174.5 (2)C17—C18—C19—S2176.6 (2)
C9—C4—C5—C655.6 (4)C18—C19—C20—C211.2 (5)
O3—C5—C6—C726.8 (5)S2—C19—C20—C21176.4 (2)
C4—C5—C6—C7155.3 (3)C19—C20—C21—C160.2 (5)
O3—C5—C6—C839.7 (5)C17—C16—C21—C201.5 (4)
C4—C5—C6—C8138.3 (3)C15—C16—C21—C20177.7 (3)
C5—C6—C7—C8106.9 (4)O1—C1—N—C3179.6 (3)
C5—C6—C8—C7107.2 (4)S1—C1—N—C30.0 (3)
N—C4—C9—C1098.6 (3)O1—C1—N—C46.4 (5)
C5—C4—C9—C1030.1 (4)S1—C1—N—C4174.0 (2)
N—C4—C9—C1480.3 (3)O2—C3—N—C1178.3 (3)
C5—C4—C9—C14151.0 (3)C2—C3—N—C10.3 (3)
C14—C9—C10—C110.3 (5)O2—C3—N—C44.2 (4)
C4—C9—C10—C11178.6 (3)C2—C3—N—C4174.3 (2)
C9—C10—C11—C120.7 (6)C9—C4—N—C158.9 (3)
C10—C11—C12—C132.3 (7)C5—C4—N—C172.5 (3)
C11—C12—C13—C142.8 (8)C9—C4—N—C3127.4 (3)
C12—C13—C14—F179.3 (4)C5—C4—N—C3101.1 (3)
C12—C13—C14—C91.7 (6)C15—C2—S1—C1175.6 (3)
C10—C9—C14—F177.9 (3)C3—C2—S1—C10.3 (2)
C4—C9—C14—F3.1 (4)O1—C1—S1—C2179.4 (3)
C10—C9—C14—C130.2 (5)N—C1—S1—C20.2 (2)
C4—C9—C14—C13179.2 (3)C20—C19—S2—C222.2 (4)
C3—C2—C15—C16176.3 (3)C18—C19—S2—C22175.6 (3)
S1—C2—C15—C161.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F0.982.352.740 (4)103
C4—H4···O20.982.332.792 (4)108
C15—H15···O20.932.532.884 (4)103
C17—H17···S10.932.553.238 (3)131

Experimental details

Crystal data
Chemical formulaC22H18FNO3S2
Mr427.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.657 (3), 15.799 (5), 17.425 (6)
β (°) 95.641 (5)
V3)2097.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
19651, 3838, 2429
Rint0.033
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.02
No. of reflections3838
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F0.982.352.740 (4)103
C4—H4···O20.982.332.792 (4)108
C15—H15···O20.932.532.884 (4)103
C17—H17···S10.932.553.238 (3)131
 

Acknowledgements

SP thanks the management, Orchid Chemicals & Pharmaceuticals Ltd, Chennai, for providing laboratory facilities. JS thanks the UGC for the FIST support. JS and MV thank the management of The Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No·SR/FT/CS-073/2009).

References

First citationBarreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410–5413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBotti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018–10024.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, C. (1999). Diabet. Med. 16, 179–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiegelman, B. M. (1998). Diabetes, 47, 507–514.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds