metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tri­aqua­[3-(4-carb­­oxy­phen­­oxy)phthalato-κO2]manganese(II)]-μ-4,4′-bi­pyridine-κ2N:N′] 4,4′-bi­pyridine monosolvate dihydrate]

aDepartment of Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: 760064489@qq.com

(Received 15 November 2012; accepted 7 January 2013; online 23 January 2013)

In the title compound, {[Mn(C15H8O7)(C10H8N2)(H2O)3]·C10H8N2·2H2O}n, the bridging mode of the coordinating 4,4′-bipyridine ligands leads to the formation of polymeric zigzag chains parallel to [0-11]. The chains are separated by 4,4′-bipyridine and water solvent mol­ecules. Within a chain, the MnII atom is six-coordinated by two N atoms of the bridging 4,4′-bipyridine ligands, three water O atoms and one carboxyl­ate O atom of a single deprotonated 3-(4-carb­oxy­phen­oxy)phthalic acid ligand. Both coordinating and solvent 4,4′-bipyridine mol­ecules are situated on centres of inversion. An intricate network of O—H⋯O and O—H⋯N hydrogen bonds involving the carb­oxy group, the coordinating water mol­ecules and the two types of solvent mol­ecules leads to the formation of a three-dimensional network.

Related literature

For applications of metal-organic coordination polymers, see: Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]). For a related structure, see: Wang et al. (2009[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273-5282.]). For synthetic details, see: Cai (2011[Cai, X. (2011). Acta Cryst. E67, m60.]); Wang et al. (2010[Wang, H., Zhang, D., Sun, D., Chen, Y., Wang, K., Ni, Z.-H., Tian, L. & Jiang, J. (2010). CrystEngComm, 12, 1096-1102.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C15H8O7)(C10H8N2)(H2O)3]·C10H8N2·2H2O

  • Mr = 757.60

  • Triclinic, [P \overline 1]

  • a = 10.765 (1) Å

  • b = 11.883 (2) Å

  • c = 14.574 (1) Å

  • α = 110.275 (3)°

  • β = 95.028 (1)°

  • γ = 94.970 (1)°

  • V = 1728.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.956

  • 9338 measured reflections

  • 6673 independent reflections

  • 5695 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.07

  • 6673 reflections

  • 469 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N4i 0.94 1.64 2.577 (2) 170
O8—H8B⋯N3ii 0.90 1.94 2.814 (2) 166
O8—H8A⋯O3 0.95 1.76 2.662 (2) 158
O9—H9A⋯O2 0.95 1.87 2.8035 (19) 165
O9—H9B⋯O2iii 0.89 1.77 2.6595 (18) 174
O10—H10A⋯O11iv 0.99 1.78 2.771 (2) 173
O10—H10B⋯O1iii 0.82 1.84 2.6545 (19) 174
O11—H11B⋯O12 0.88 1.93 2.803 (3) 170
O11—H11A⋯O6v 0.84 2.02 2.847 (2) 168
O12—H12A⋯O3vi 0.85 2.14 2.802 (3) 134
O12—H12B⋯O2vi 0.85 2.45 3.139 (3) 139
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) -x, -y+1, -z+1; (v) -x, -y, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design of metal-organic coordination polymers with interesting structures and properties has stimulated the interests of scientists in the field of supramolecular chemistry and crystal engineering over the past few decades (Leininger et al., 2000). Recently, considerable progress has been achieved in the preparation of coordination polymers with desired functionalities. In the present work, the novel coordination polymer, [Mn(C15H8O7)(H2O)3(C10H8N2)].C10H8N2.2H2O, (I), has been prepared hydrothermally, and its structure is described here.

The asymmetric unit of compound (I) is composed of a 3-(4-carboxyphenoxy) phthalate ligand (L), two halves of two 4,4'-bipyridine ligands, a divalent manganese ion, three coordinating water molecules, two halves of 4,4'-bipyridine solvent molecules and two solvent water molecules. The ligand L is in a single deprotonated form. The MnII atom is octahedrally coordinated by two N atoms of two bridging 4,4'-bipyridine ligands, three water O atoms and one O atom of a carboxylate function of L (Fig. 1). The bridging mode of the 4,4'-bipyridine ligands leads to the formation of zig-zag chains extending parallel to [011].

Extensive O—H···O and O—H···N hydrogen bonding between water molecules and the carboxy function as donors and 4,4'-bipyridine molecules, carboxyate groups, and water molecules as acceptors (Table 1) leads to the construction of a three-dimensional supramolecular structure (Fig. 2). The hydrogen-bonding scheme resembles that of a related structure discussed by Wang et al. (2009).

Related literature top

For applications of metal-organic coordination polymers, see: Leininger et al. (2000). For a related structure, see: Wang et al. (2009). For synthetic details, see: Cai (2011); Wang et al. (2010).

Experimental top

Compound (I) was synthesized referring to a procedure given by Cai (2011) and Wang et al. (2010). A mixture containing Mn(OAc)2.4H2O (0.049 g, 0.2 mmol), 4,4'-bipyridine (0.031 g, 0.2 mmol), 3-(4-carboxyphenoxy)phthalate (0.030 g, 0.1 mmol), and H2O (15 ml) was sealed in a Teflon-lined stainless steel reactor and heated to 393 K. Pale yellow crystals were separated by filtration and dried in air; yield ca. 32%.

Refinement top

All C-bound H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C—H = 0.93 Å and Uiso = 1.2Ueq(C). The H atoms associated with the carboxyl group and the water molecules were clearly discernible from difference maps. They were refined with distance restraints (O—H and H—H) by using the DFIX command in SHELXTL, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of MnII in the structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The solvent 4,4'-bipyridine as well as the two solvent water molecules are also shown. All H atoms were omitted for clarity. [Symmetry codes: A) -1-x, -y, -z; B) -1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. A view of three-dimensional supramolecular structure of (I) resulting from the hydrogen bonding (dashed lines represent donor···acceptor interactions).
catena-Poly[[[triaqua[3-(4-carboxyphenoxy)phthalato- κO2]manganese(II)]-µ-4,4'-bipyridine-κ2N:N'] 4,4'-bipyridine monosolvate dihydrate] top
Crystal data top
[Mn(C15H8O7)(C10H8N2)(H2O)3]·C10H8N2·2H2OZ = 2
Mr = 757.60F(000) = 786
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.765 (1) ÅCell parameters from 4836 reflections
b = 11.883 (2) Åθ = 2.8–27.3°
c = 14.574 (1) ŵ = 0.45 mm1
α = 110.275 (3)°T = 293 K
β = 95.028 (1)°Block, pale yellow
γ = 94.970 (1)°0.18 × 0.14 × 0.10 mm
V = 1728.4 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6673 independent reflections
Radiation source: fine-focus sealed tube5695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.923, Tmax = 0.956k = 1411
9338 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3087P]
where P = (Fo2 + 2Fc2)/3
6673 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 0.25 e Å3
18 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mn(C15H8O7)(C10H8N2)(H2O)3]·C10H8N2·2H2Oγ = 94.970 (1)°
Mr = 757.60V = 1728.4 (4) Å3
Triclinic, P1Z = 2
a = 10.765 (1) ÅMo Kα radiation
b = 11.883 (2) ŵ = 0.45 mm1
c = 14.574 (1) ÅT = 293 K
α = 110.275 (3)°0.18 × 0.14 × 0.10 mm
β = 95.028 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6673 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5695 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.956Rint = 0.016
9338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03418 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
6673 reflectionsΔρmin = 0.28 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22064 (17)0.38214 (17)0.09394 (13)0.0351 (4)
C20.21923 (16)0.32151 (16)0.16976 (12)0.0306 (4)
C30.30439 (18)0.23977 (18)0.16908 (14)0.0405 (4)
H30.35940.22300.12170.049*
C40.3092 (2)0.1829 (2)0.23714 (17)0.0497 (5)
H40.36540.12710.23470.060*
C50.2290 (2)0.2101 (2)0.30932 (16)0.0460 (5)
H50.23190.17360.35640.055*
C60.14559 (16)0.29131 (17)0.31048 (13)0.0331 (4)
C70.13674 (15)0.34762 (15)0.24158 (12)0.0279 (3)
C80.04632 (16)0.44143 (16)0.25351 (12)0.0297 (4)
C90.03649 (17)0.26350 (17)0.38774 (12)0.0326 (4)
C100.10301 (19)0.31301 (19)0.46616 (14)0.0436 (5)
H100.06920.38390.51750.052*
C110.2197 (2)0.25630 (19)0.46742 (15)0.0452 (5)
H110.26490.28980.51980.054*
C120.27071 (17)0.14997 (17)0.39170 (14)0.0362 (4)
C130.19944 (18)0.09888 (18)0.31669 (14)0.0389 (4)
H130.23100.02550.26730.047*
C140.08209 (18)0.15488 (18)0.31369 (13)0.0390 (4)
H140.03520.12000.26290.047*
C150.40006 (18)0.09199 (19)0.38805 (16)0.0414 (5)
C160.27139 (18)0.5215 (2)0.39115 (14)0.0424 (5)
H160.18400.53270.40070.051*
C170.33425 (18)0.5189 (2)0.46953 (13)0.0411 (5)
H170.28890.52780.52940.049*
C180.46457 (16)0.50325 (16)0.45902 (12)0.0308 (4)
C190.52447 (18)0.4919 (2)0.36711 (14)0.0437 (5)
H190.61180.48220.35580.052*
C200.45483 (18)0.4948 (2)0.29281 (14)0.0418 (5)
H200.49770.48660.23220.050*
C210.33741 (19)0.22192 (17)0.15354 (14)0.0397 (4)
H210.29450.24860.21700.048*
C220.40125 (18)0.10654 (17)0.11631 (14)0.0377 (4)
H220.40180.05850.15490.045*
C230.46453 (16)0.06216 (15)0.02145 (13)0.0301 (4)
C240.4605 (2)0.14042 (18)0.03056 (14)0.0427 (5)
H240.50110.11530.09470.051*
C250.3962 (2)0.25575 (18)0.01303 (14)0.0433 (5)
H250.39660.30690.02290.052*
C260.1322 (3)0.1451 (2)0.10978 (18)0.0611 (6)
H260.21130.16680.12390.073*
C270.1236 (2)0.0724 (2)0.05370 (17)0.0540 (5)
H270.19540.04620.03160.065*
C280.0072 (2)0.03880 (19)0.03055 (15)0.0456 (5)
C290.0937 (3)0.0820 (3)0.0666 (2)0.0759 (8)
H290.17400.06280.05310.091*
C300.0760 (3)0.1537 (3)0.1224 (2)0.0828 (9)
H300.14590.18110.14590.099*
C310.2674 (2)0.1347 (2)0.54507 (17)0.0488 (5)
H310.31700.20310.58970.059*
C320.1434 (2)0.1140 (2)0.55870 (16)0.0476 (5)
H320.11110.16780.61140.057*
C330.06698 (17)0.01304 (17)0.49382 (13)0.0346 (4)
C340.1222 (2)0.0622 (2)0.41663 (16)0.0470 (5)
H340.07510.13100.37040.056*
C350.2468 (2)0.0349 (2)0.40867 (17)0.0503 (5)
H350.28200.08690.35670.060*
N10.33367 (14)0.29750 (13)0.10383 (11)0.0338 (3)
N20.32931 (14)0.50875 (13)0.30290 (10)0.0322 (3)
N30.0353 (3)0.18546 (18)0.14443 (15)0.0660 (6)
N40.31901 (15)0.06186 (16)0.47140 (13)0.0441 (4)
O10.31950 (14)0.38603 (18)0.05648 (12)0.0632 (5)
O20.12403 (13)0.42516 (15)0.07502 (11)0.0503 (4)
O30.09298 (13)0.54964 (12)0.29372 (11)0.0482 (4)
O40.06826 (11)0.40345 (11)0.22663 (9)0.0348 (3)
O50.07611 (12)0.33003 (12)0.39048 (9)0.0390 (3)
O60.45077 (14)0.00500 (14)0.31796 (12)0.0570 (4)
O70.45369 (14)0.14505 (15)0.46598 (12)0.0591 (4)
H7A0.53590.10730.46200.089*
O80.09546 (13)0.65753 (11)0.24523 (10)0.0428 (3)
H8B0.07730.69600.20390.064*
H8A0.01930.63910.27120.064*
O90.13290 (12)0.43834 (12)0.03593 (9)0.0394 (3)
H9A0.04960.41920.04540.059*
H9B0.12680.48860.00250.059*
O100.34951 (13)0.57337 (13)0.10870 (10)0.0467 (4)
H10A0.39920.63710.14570.070*
H10B0.33490.58450.05810.070*
O110.47994 (18)0.25126 (16)0.77447 (14)0.0716 (5)
H11B0.55910.27100.76880.107*
H11A0.45990.17570.74870.107*
O120.7365 (2)0.32408 (19)0.78175 (19)0.0974 (7)
H12A0.74740.35710.73920.146*
H12B0.75180.37670.83940.146*
Mn10.21832 (2)0.48542 (2)0.172224 (18)0.02771 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0356 (10)0.0460 (11)0.0300 (9)0.0099 (8)0.0119 (7)0.0183 (8)
C20.0266 (8)0.0398 (10)0.0286 (8)0.0061 (7)0.0056 (7)0.0151 (7)
C30.0353 (10)0.0514 (12)0.0410 (10)0.0162 (9)0.0126 (8)0.0198 (9)
C40.0471 (12)0.0560 (13)0.0590 (13)0.0237 (10)0.0119 (10)0.0313 (11)
C50.0468 (12)0.0570 (13)0.0485 (11)0.0110 (10)0.0060 (9)0.0354 (10)
C60.0276 (9)0.0441 (10)0.0303 (9)0.0006 (8)0.0040 (7)0.0178 (8)
C70.0232 (8)0.0353 (9)0.0258 (8)0.0018 (7)0.0028 (6)0.0120 (7)
C80.0317 (9)0.0367 (10)0.0230 (8)0.0058 (7)0.0089 (7)0.0121 (7)
C90.0309 (9)0.0435 (10)0.0289 (8)0.0010 (8)0.0043 (7)0.0204 (8)
C100.0453 (11)0.0454 (11)0.0346 (10)0.0045 (9)0.0110 (8)0.0082 (8)
C110.0442 (11)0.0477 (12)0.0438 (11)0.0029 (9)0.0202 (9)0.0137 (9)
C120.0340 (10)0.0403 (10)0.0401 (10)0.0038 (8)0.0058 (8)0.0215 (8)
C130.0383 (10)0.0393 (10)0.0352 (10)0.0006 (8)0.0011 (8)0.0107 (8)
C140.0383 (10)0.0473 (11)0.0308 (9)0.0042 (9)0.0095 (8)0.0124 (8)
C150.0349 (10)0.0448 (11)0.0529 (12)0.0052 (9)0.0066 (9)0.0277 (10)
C160.0278 (9)0.0636 (13)0.0347 (10)0.0014 (9)0.0081 (8)0.0170 (9)
C170.0303 (10)0.0649 (13)0.0255 (9)0.0017 (9)0.0054 (7)0.0141 (9)
C180.0299 (9)0.0355 (9)0.0267 (8)0.0017 (7)0.0084 (7)0.0103 (7)
C190.0274 (10)0.0747 (15)0.0362 (10)0.0059 (9)0.0084 (8)0.0278 (10)
C200.0344 (10)0.0663 (13)0.0301 (9)0.0061 (9)0.0074 (8)0.0232 (9)
C210.0447 (11)0.0381 (10)0.0356 (10)0.0010 (8)0.0047 (8)0.0160 (8)
C220.0436 (11)0.0337 (10)0.0388 (10)0.0023 (8)0.0007 (8)0.0186 (8)
C230.0245 (8)0.0324 (9)0.0349 (9)0.0049 (7)0.0071 (7)0.0129 (7)
C240.0513 (12)0.0432 (11)0.0331 (10)0.0078 (9)0.0046 (8)0.0185 (8)
C250.0511 (12)0.0425 (11)0.0395 (10)0.0071 (9)0.0020 (9)0.0234 (9)
C260.0784 (18)0.0490 (13)0.0538 (14)0.0004 (12)0.0223 (13)0.0144 (11)
C270.0596 (14)0.0508 (13)0.0529 (13)0.0089 (11)0.0139 (11)0.0181 (10)
C280.0546 (13)0.0408 (11)0.0398 (10)0.0057 (9)0.0086 (9)0.0119 (9)
C290.0595 (16)0.091 (2)0.100 (2)0.0088 (15)0.0103 (15)0.0625 (18)
C300.080 (2)0.091 (2)0.099 (2)0.0118 (17)0.0021 (17)0.0623 (19)
C310.0391 (11)0.0498 (12)0.0545 (13)0.0025 (9)0.0011 (9)0.0180 (10)
C320.0404 (11)0.0472 (12)0.0470 (11)0.0034 (9)0.0087 (9)0.0062 (9)
C330.0323 (10)0.0382 (10)0.0359 (9)0.0061 (8)0.0036 (7)0.0162 (8)
C340.0413 (11)0.0472 (12)0.0455 (11)0.0034 (9)0.0085 (9)0.0075 (9)
C350.0452 (12)0.0560 (13)0.0531 (12)0.0142 (10)0.0201 (10)0.0184 (11)
N10.0328 (8)0.0338 (8)0.0363 (8)0.0010 (6)0.0055 (6)0.0150 (7)
N20.0312 (8)0.0373 (8)0.0299 (7)0.0030 (6)0.0108 (6)0.0131 (6)
N30.0975 (18)0.0476 (11)0.0549 (12)0.0008 (11)0.0103 (12)0.0225 (10)
N40.0341 (9)0.0530 (10)0.0556 (10)0.0065 (8)0.0080 (8)0.0315 (9)
O10.0452 (9)0.1113 (14)0.0665 (10)0.0290 (9)0.0302 (8)0.0637 (10)
O20.0394 (8)0.0806 (11)0.0559 (9)0.0230 (7)0.0185 (7)0.0490 (8)
O30.0433 (8)0.0358 (8)0.0540 (9)0.0023 (6)0.0000 (7)0.0039 (6)
O40.0253 (6)0.0415 (7)0.0448 (7)0.0058 (5)0.0076 (5)0.0232 (6)
O50.0361 (7)0.0532 (8)0.0275 (6)0.0054 (6)0.0077 (5)0.0159 (6)
O60.0451 (9)0.0530 (9)0.0670 (10)0.0094 (7)0.0011 (8)0.0191 (8)
O70.0371 (8)0.0688 (10)0.0696 (10)0.0007 (7)0.0192 (7)0.0212 (8)
O80.0461 (8)0.0319 (6)0.0512 (7)0.0025 (5)0.0080 (6)0.0159 (5)
O90.0374 (7)0.0511 (8)0.0389 (6)0.0107 (6)0.0165 (5)0.0238 (5)
O100.0509 (9)0.0626 (9)0.0447 (8)0.0262 (7)0.0211 (6)0.0336 (7)
O110.0669 (11)0.0617 (11)0.0820 (12)0.0184 (9)0.0249 (10)0.0142 (9)
O120.0856 (15)0.0685 (13)0.1202 (18)0.0170 (11)0.0203 (13)0.0158 (12)
Mn10.02765 (15)0.03050 (15)0.02832 (15)0.00391 (10)0.00967 (10)0.01315 (11)
Geometric parameters (Å, º) top
C1—O11.242 (2)C23—C241.389 (3)
C1—O21.248 (2)C23—C23ii1.496 (3)
C1—C21.514 (2)C24—C251.384 (3)
C2—C31.390 (3)C24—H240.9300
C2—C71.402 (2)C25—N11.335 (2)
C3—C41.380 (3)C25—H250.9300
C3—H30.9300C26—N31.317 (4)
C4—C51.388 (3)C26—C271.382 (3)
C4—H40.9300C26—H260.9300
C5—C61.371 (3)C27—C281.387 (3)
C5—H50.9300C27—H270.9300
C6—C71.388 (2)C28—C291.379 (4)
C6—O51.404 (2)C28—C28iii1.495 (4)
C7—C81.518 (2)C29—C301.380 (4)
C8—O31.250 (2)C29—H290.9300
C8—O41.255 (2)C30—N31.324 (4)
C9—O51.378 (2)C30—H300.9300
C9—C141.380 (3)C31—N41.325 (3)
C9—C101.384 (3)C31—C321.381 (3)
C10—C111.378 (3)C31—H310.9300
C10—H100.9300C32—C331.384 (3)
C11—C121.387 (3)C32—H320.9300
C11—H110.9300C33—C341.389 (3)
C12—C131.386 (3)C33—C33iv1.488 (4)
C12—C151.487 (3)C34—C351.377 (3)
C13—C141.387 (3)C34—H340.9300
C13—H130.9300C35—N41.324 (3)
C14—H140.9300C35—H350.9300
C15—O61.218 (3)N1—Mn12.2982 (15)
C15—O71.305 (3)N2—Mn12.2852 (14)
C16—N21.332 (2)O4—Mn12.1842 (12)
C16—C171.385 (3)O7—H7A0.9440
C16—H160.9300O8—Mn12.2002 (13)
C17—C181.387 (3)O8—H8B0.8974
C17—H170.9300O8—H8A0.9473
C18—C191.391 (3)O9—Mn12.1780 (12)
C18—C18i1.493 (3)O9—H9A0.9544
C19—C201.378 (3)O9—H9B0.8941
C19—H190.9300O10—Mn12.1543 (13)
C20—N21.336 (2)O10—H10A0.9941
C20—H200.9300O10—H10B0.8189
C21—N11.335 (2)O11—H11B0.8822
C21—C221.379 (3)O11—H11A0.8438
C21—H210.9300O12—H12A0.8519
C22—C231.386 (2)O12—H12B0.8467
C22—H220.9300
O1—C1—O2125.40 (17)C23—C24—H24120.0
O1—C1—C2116.66 (16)N1—C25—C24123.56 (17)
O2—C1—C2117.94 (15)N1—C25—H25118.2
C3—C2—C7119.39 (16)C24—C25—H25118.2
C3—C2—C1118.72 (16)N3—C26—C27124.1 (2)
C7—C2—C1121.88 (15)N3—C26—H26117.9
C4—C3—C2121.53 (18)C27—C26—H26117.9
C4—C3—H3119.2C26—C27—C28119.6 (2)
C2—C3—H3119.2C26—C27—H27120.2
C3—C4—C5119.19 (18)C28—C27—H27120.2
C3—C4—H4120.4C29—C28—C27116.0 (2)
C5—C4—H4120.4C29—C28—C28iii122.3 (3)
C6—C5—C4119.33 (18)C27—C28—C28iii121.7 (3)
C6—C5—H5120.3C28—C29—C30120.3 (3)
C4—C5—H5120.3C28—C29—H29119.9
C5—C6—C7122.68 (17)C30—C29—H29119.9
C5—C6—O5119.04 (16)N3—C30—C29123.5 (3)
C7—C6—O5117.88 (16)N3—C30—H30118.2
C6—C7—C2117.85 (16)C29—C30—H30118.2
C6—C7—C8118.13 (15)N4—C31—C32123.0 (2)
C2—C7—C8123.80 (15)N4—C31—H31118.5
O3—C8—O4126.15 (16)C32—C31—H31118.5
O3—C8—C7116.44 (15)C31—C32—C33119.97 (19)
O4—C8—C7117.32 (15)C31—C32—H32120.0
O5—C9—C14123.86 (16)C33—C32—H32120.0
O5—C9—C10115.14 (16)C32—C33—C34116.35 (18)
C14—C9—C10121.01 (17)C32—C33—C33iv121.7 (2)
C11—C10—C9119.41 (18)C34—C33—C33iv122.0 (2)
C11—C10—H10120.3C35—C34—C33119.9 (2)
C9—C10—H10120.3C35—C34—H34120.1
C10—C11—C12120.90 (18)C33—C34—H34120.1
C10—C11—H11119.6N4—C35—C34123.2 (2)
C12—C11—H11119.6N4—C35—H35118.4
C13—C12—C11118.54 (17)C34—C35—H35118.4
C13—C12—C15119.71 (18)C25—N1—C21116.29 (16)
C11—C12—C15121.73 (18)C25—N1—Mn1123.23 (12)
C12—C13—C14121.42 (18)C21—N1—Mn1120.44 (12)
C12—C13—H13119.3C16—N2—C20116.29 (15)
C14—C13—H13119.3C16—N2—Mn1120.71 (12)
C9—C14—C13118.57 (17)C20—N2—Mn1122.44 (12)
C9—C14—H14120.7C26—N3—C30116.5 (2)
C13—C14—H14120.7C35—N4—C31117.55 (18)
O6—C15—O7123.89 (19)C8—O4—Mn1130.26 (11)
O6—C15—C12122.74 (19)C9—O5—C6119.08 (14)
O7—C15—C12113.36 (18)C15—O7—H7A112.0
N2—C16—C17123.57 (17)Mn1—O8—H8B113.1
N2—C16—H16118.2Mn1—O8—H8A107.1
C17—C16—H16118.2H8B—O8—H8A108.2
C16—C17—C18120.29 (17)Mn1—O9—H9A111.3
C16—C17—H17119.9Mn1—O9—H9B121.5
C18—C17—H17119.9H9A—O9—H9B104.8
C17—C18—C19115.83 (16)Mn1—O10—H10A126.1
C17—C18—C18i121.8 (2)Mn1—O10—H10B118.1
C19—C18—C18i122.4 (2)H10A—O10—H10B108.6
C20—C19—C18120.22 (17)H11B—O11—H11A110.6
C20—C19—H19119.9H12A—O12—H12B110.1
C18—C19—H19119.9O10—Mn1—O987.89 (5)
N2—C20—C19123.78 (17)O10—Mn1—O4172.92 (5)
N2—C20—H20118.1O9—Mn1—O486.24 (5)
C19—C20—H20118.1O10—Mn1—O890.91 (6)
N1—C21—C22123.81 (17)O9—Mn1—O894.57 (5)
N1—C21—H21118.1O4—Mn1—O885.61 (5)
C22—C21—H21118.1O10—Mn1—N291.23 (5)
C21—C22—C23120.05 (17)O9—Mn1—N2171.20 (5)
C21—C22—H22120.0O4—Mn1—N295.17 (5)
C23—C22—H22120.0O8—Mn1—N294.20 (5)
C22—C23—C24116.28 (16)O10—Mn1—N194.61 (6)
C22—C23—C23ii121.71 (19)O9—Mn1—N186.12 (5)
C24—C23—C23ii122.0 (2)O4—Mn1—N188.96 (5)
C25—C24—C23119.98 (17)O8—Mn1—N1174.46 (5)
C25—C24—H24120.0N2—Mn1—N185.22 (5)
Symmetry codes: (i) x1, y+1, z+1; (ii) x1, y, z; (iii) x, y, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N4v0.941.642.577 (2)170
O8—H8B···N3vi0.901.942.814 (2)166
O8—H8A···O30.951.762.662 (2)158
O9—H9A···O20.951.872.8035 (19)165
O9—H9B···O2vii0.891.772.6595 (18)174
O10—H10A···O11viii0.991.782.771 (2)173
O10—H10B···O1vii0.821.842.6545 (19)174
O11—H11B···O120.881.932.803 (3)170
O11—H11A···O6iv0.842.022.847 (2)168
O12—H12A···O3ix0.852.142.802 (3)134
O12—H12B···O2ix0.852.453.139 (3)139
Symmetry codes: (iv) x, y, z+1; (v) x1, y, z; (vi) x, y+1, z; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C15H8O7)(C10H8N2)(H2O)3]·C10H8N2·2H2O
Mr757.60
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.765 (1), 11.883 (2), 14.574 (1)
α, β, γ (°)110.275 (3), 95.028 (1), 94.970 (1)
V3)1728.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.18 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.923, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
9338, 6673, 5695
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.07
No. of reflections6673
No. of parameters469
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N4i0.941.642.577 (2)170
O8—H8B···N3ii0.901.942.814 (2)166
O8—H8A···O30.951.762.662 (2)158
O9—H9A···O20.951.872.8035 (19)165
O9—H9B···O2iii0.891.772.6595 (18)174
O10—H10A···O11iv0.991.782.771 (2)173
O10—H10B···O1iii0.821.842.6545 (19)174
O11—H11B···O120.881.932.803 (3)170
O11—H11A···O6v0.842.022.847 (2)168
O12—H12A···O3vi0.852.142.802 (3)134
O12—H12B···O2vi0.852.453.139 (3)139
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The University of Science and Technology, Beijing, is acknowledged for support.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X. (2011). Acta Cryst. E67, m60.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Wang, K., Ni, Z.-H., Tian, L. & Jiang, J. (2010). CrystEngComm, 12, 1096–1102.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273–5282.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds