organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl acridine-9-carboxyl­ate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 18 January 2013; accepted 21 January 2013; online 31 January 2013)

The acridine ring system and the benzene ring in the title compound, C20H13NO2, are oriented at a dihedral angle of 6.4 (2)°. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton. The mol­ecules in the crystal are arranged in stacks along the b axis, with two of the acridine rings involved in multiple ππ inter­actions [centroid–centroid distances in the range 3.536 (2)–3.894 (2) Å]. Stacks arranged parallel are linked via C—H⋯π inter­actions, forming layers in the ac plane that are in contact with adjacent, inversely oriented layers via other C—H⋯π inter­actions, giving rise to double layers. The inversely oriented double layers inter­act dispersively. The acridine units are parallel within the parallel-oriented stacks, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks.

Related literature

For general background to the applications of the title compound, see: Krzymiński et al. (2011[Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Blazejowski, J. (2011). J. Org. Chem. 76, 1072-1085.]); Natrajan et al. (2012[Natrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432-3447.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o906-o907.]). For related structures, see: Trzybiński et al. (2013[Trzybiński, D., Wera, M., Krzymiński, K. & Błażejowski, J. (2013). Acta Cryst. E69, o166.]). For inter­molecular inter­actions, see: Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o906-o907.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13NO2

  • Mr = 299.31

  • Monoclinic, P 21 /c

  • a = 17.094 (2) Å

  • b = 5.4175 (7) Å

  • c = 16.310 (2) Å

  • β = 95.545 (11)°

  • V = 1503.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.6 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.354, Tmax = 0.986

  • 9221 measured reflections

  • 2651 independent reflections

  • 1560 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.203

  • S = 1.04

  • 2651 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 0.93 2.98 3.712 (3) 137
C7—H7⋯Cg4ii 0.93 2.84 3.646 (3) 145
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl acridine-9-carboxylates are the precursors of 9-(phenoxycarbonyl)-10-methylacridinium salts, whose cations exhibit a chemiluminogenic ability that can be utilized analytically (Natrajan et al., 2012). Here we present the structure of phenyl acridine-9-carboxylate, the precursor of a basic chemiluminogen in this group of compounds, whose structure (Trzybiński et al., 2010) and chemiluminogenic features (Krzymiński et al., 2011) have recently been investigated.

The bond lengths and angles characterizing the geometry of the acridine and phenyl moieties of the title compound (Fig. 1) are similar to those found in phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and references cited therein). With respective average deviations from planarity of 0.0143 (3) Å and 0.0037 (3) Å, the acridine ring system and the benzene ring are oriented at a dihedral angle of 6.4 (2)° [this angle varies between 30.0 (2)° – 37.7 (1)°, as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and the references cited therein)]. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton [this angle varies between 58.0 (2)° – 68.1 (2)° as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and the references cited therein)].

The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the parallel oriented molecules of the title compound (Fig. 2) are arranged in stacks along the b axis (Fig. 3) in which two of the acridine rings are involved in multiple ππ interactions (Table 2, Fig. 2) of an attractive nature (Hunter et al., 2001). The stacks arranged parallel linked via C–H···π interactions, of an attractive nature (Takahashi et al., 2001), form layers in the ac plane that are in contact with adjacent, inversely-oriented such layers via other C–H···π interactons giving rise to double layers (Table 1, Figs. 2 and 3). The inversely oriented double layers interact dispersively. The acridine moieties are parallel within the stacks oriented in parallel, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks. This interesting crystal architecture to some extent resembles the crystal structure of 2,6-dimethylphenyl acridine-9-carboxylate (Trzybiński et al., 2013).

Related literature top

For general background to the applications of the title compound, see: Krzymiński et al. (2011); Natrajan et al. (2012); Trzybiński et al. (2010). For related structures, see: Trzybiński et al. (2013). For intermolecular interactions, see: Hunter et al. (2001); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Experimental top

Phenyl acridine-9-carboxylate was synthesized by the esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Trzybiński et al., 2010). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). Pale-yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 463–464 K).

Refinement top

H atoms were positioned geometrically, with C–H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The C–H···π interactions are represented by dashed lines, the ππ contacts by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) x, –y + 3/2, z + 1/2; (iii) x, y + 1, z; (iv) x, y – 1, z.]
[Figure 3] Fig. 3. Molecular stacks in the crystal structure, viewed along the b axis. The C–H···π interactions are represented by dashed lines. H atoms not involved in the interactions have been omitted.
Phenyl acridine-9-carboxylate top
Crystal data top
C20H13NO2F(000) = 624
Mr = 299.31Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2651 reflections
a = 17.094 (2) Åθ = 3.3–25.0°
b = 5.4175 (7) ŵ = 0.09 mm1
c = 16.310 (2) ÅT = 295 K
β = 95.545 (11)°Needle, pale-yellow
V = 1503.3 (3) Å30.6 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2651 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 10.4002 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1720
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 56
Tmin = 0.354, Tmax = 0.986l = 1619
9221 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1073P)2]
where P = (Fo2 + 2Fc2)/3
2651 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H13NO2V = 1503.3 (3) Å3
Mr = 299.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.094 (2) ŵ = 0.09 mm1
b = 5.4175 (7) ÅT = 295 K
c = 16.310 (2) Å0.6 × 0.2 × 0.1 mm
β = 95.545 (11)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2651 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1560 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 0.986Rint = 0.068
9221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2651 reflectionsΔρmin = 0.34 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15883 (16)0.0807 (5)0.28634 (16)0.0564 (7)
H10.20050.08420.25370.068*
C20.09977 (17)0.2461 (5)0.27301 (17)0.0602 (8)
H20.10120.36230.23120.072*
C30.03597 (17)0.2442 (5)0.32180 (18)0.0622 (8)
H30.00420.35920.31180.075*
C40.03260 (16)0.0781 (5)0.38254 (17)0.0573 (7)
H40.00980.08010.41420.069*
C50.13817 (18)0.5964 (5)0.54258 (17)0.0621 (8)
H50.09450.59000.57240.075*
C60.1938 (2)0.7688 (5)0.56161 (18)0.0690 (8)
H60.18770.88070.60380.083*
C70.26132 (19)0.7811 (5)0.51795 (19)0.0673 (8)
H70.29960.90000.53180.081*
C80.27029 (17)0.6208 (5)0.45642 (17)0.0581 (7)
H80.31490.63120.42810.070*
C90.21784 (14)0.2683 (4)0.36980 (15)0.0473 (7)
N100.08713 (13)0.2595 (4)0.46103 (13)0.0548 (6)
C110.15783 (14)0.0982 (4)0.34973 (15)0.0451 (6)
C120.09280 (15)0.1001 (4)0.39897 (15)0.0489 (7)
C130.21349 (14)0.4373 (4)0.43382 (15)0.0479 (7)
C140.14481 (15)0.4254 (4)0.47830 (15)0.0506 (7)
C150.29032 (16)0.2631 (5)0.32487 (17)0.0552 (7)
O160.28060 (10)0.3857 (3)0.25400 (11)0.0581 (6)
O170.34884 (13)0.1610 (5)0.34906 (14)0.1104 (10)
C180.34637 (15)0.3952 (5)0.20676 (15)0.0486 (7)
C190.39837 (17)0.5859 (5)0.21985 (17)0.0603 (8)
H190.39190.70450.25990.072*
C200.46112 (17)0.5984 (6)0.1720 (2)0.0695 (9)
H200.49750.72590.18010.083*
C210.46958 (17)0.4238 (6)0.11312 (19)0.0695 (9)
H210.51190.43210.08140.083*
C220.41592 (19)0.2364 (6)0.10059 (19)0.0699 (9)
H220.42160.11930.05990.084*
C230.35334 (17)0.2201 (5)0.14809 (18)0.0613 (8)
H230.31690.09270.14010.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0505 (18)0.0670 (17)0.0530 (16)0.0065 (13)0.0117 (13)0.0049 (14)
C20.060 (2)0.0634 (17)0.0577 (17)0.0004 (14)0.0095 (14)0.0044 (14)
C30.0557 (19)0.0651 (17)0.0657 (19)0.0119 (13)0.0046 (15)0.0053 (16)
C40.0440 (17)0.0697 (17)0.0600 (17)0.0022 (13)0.0151 (13)0.0072 (15)
C50.065 (2)0.0662 (17)0.0579 (17)0.0055 (15)0.0196 (14)0.0019 (15)
C60.083 (2)0.0668 (18)0.0567 (18)0.0026 (16)0.0038 (16)0.0074 (15)
C70.071 (2)0.0649 (18)0.0643 (19)0.0087 (15)0.0035 (16)0.0059 (16)
C80.0508 (18)0.0667 (17)0.0565 (17)0.0039 (13)0.0045 (13)0.0079 (14)
C90.0397 (15)0.0578 (15)0.0460 (14)0.0069 (11)0.0123 (11)0.0092 (12)
N100.0488 (15)0.0625 (13)0.0561 (14)0.0013 (11)0.0202 (11)0.0040 (11)
C110.0348 (14)0.0565 (14)0.0453 (14)0.0046 (11)0.0111 (11)0.0059 (13)
C120.0427 (16)0.0568 (15)0.0479 (15)0.0019 (12)0.0081 (12)0.0084 (13)
C130.0415 (16)0.0553 (15)0.0477 (15)0.0028 (11)0.0077 (12)0.0083 (12)
C140.0478 (17)0.0557 (15)0.0496 (15)0.0049 (12)0.0108 (12)0.0071 (13)
C150.0421 (17)0.0687 (17)0.0564 (17)0.0071 (13)0.0132 (13)0.0141 (14)
O160.0396 (11)0.0788 (12)0.0590 (11)0.0076 (8)0.0204 (8)0.0163 (10)
O170.0564 (16)0.182 (2)0.0990 (18)0.0486 (15)0.0378 (13)0.0715 (17)
C180.0376 (15)0.0609 (15)0.0493 (15)0.0022 (12)0.0140 (11)0.0099 (13)
C190.0558 (18)0.0657 (17)0.0615 (17)0.0029 (14)0.0169 (14)0.0034 (14)
C200.051 (2)0.0773 (19)0.082 (2)0.0141 (14)0.0167 (16)0.0079 (18)
C210.0485 (19)0.096 (2)0.0667 (19)0.0011 (16)0.0220 (15)0.0150 (18)
C220.071 (2)0.080 (2)0.0629 (19)0.0036 (16)0.0253 (16)0.0085 (16)
C230.0560 (19)0.0645 (17)0.0662 (18)0.0090 (13)0.0193 (14)0.0021 (15)
Geometric parameters (Å, º) top
C1—C21.352 (4)C9—C151.500 (4)
C1—C111.418 (3)N10—C121.341 (3)
C1—H10.9300N10—C141.344 (3)
C2—C31.411 (4)C11—C121.433 (3)
C2—H20.9300C13—C141.440 (3)
C3—C41.343 (4)C15—O171.177 (3)
C3—H30.9300C15—O161.329 (3)
C4—C121.418 (4)O16—C181.424 (3)
C4—H40.9300C18—C231.361 (4)
C5—C61.347 (4)C18—C191.366 (4)
C5—C141.412 (3)C19—C201.387 (4)
C5—H50.9300C19—H190.9300
C6—C71.415 (4)C20—C211.366 (4)
C6—H60.9300C20—H200.9300
C7—C81.347 (4)C21—C221.370 (4)
C7—H70.9300C21—H210.9300
C8—C131.413 (4)C22—C231.383 (4)
C8—H80.9300C22—H220.9300
C9—C111.394 (3)C23—H230.9300
C9—C131.396 (3)
C2—C1—C11120.6 (3)N10—C12—C4118.5 (2)
C2—C1—H1119.7N10—C12—C11123.0 (2)
C11—C1—H1119.7C4—C12—C11118.5 (2)
C1—C2—C3120.7 (3)C9—C13—C8124.9 (2)
C1—C2—H2119.6C9—C13—C14116.9 (2)
C3—C2—H2119.6C8—C13—C14118.2 (2)
C4—C3—C2120.8 (3)N10—C14—C5119.0 (2)
C4—C3—H3119.6N10—C14—C13122.8 (2)
C2—C3—H3119.6C5—C14—C13118.2 (2)
C3—C4—C12120.9 (3)O17—C15—O16123.8 (2)
C3—C4—H4119.6O17—C15—C9124.1 (2)
C12—C4—H4119.6O16—C15—C9112.1 (2)
C6—C5—C14121.4 (3)C15—O16—C18116.72 (19)
C6—C5—H5119.3C23—C18—C19122.5 (2)
C14—C5—H5119.3C23—C18—O16118.9 (2)
C5—C6—C7120.5 (3)C19—C18—O16118.6 (2)
C5—C6—H6119.7C18—C19—C20118.4 (3)
C7—C6—H6119.7C18—C19—H19120.8
C8—C7—C6120.1 (3)C20—C19—H19120.8
C8—C7—H7119.9C21—C20—C19120.1 (3)
C6—C7—H7119.9C21—C20—H20119.9
C7—C8—C13121.5 (3)C19—C20—H20119.9
C7—C8—H8119.2C20—C21—C22120.2 (3)
C13—C8—H8119.2C20—C21—H21119.9
C11—C9—C13121.2 (2)C22—C21—H21119.9
C11—C9—C15119.8 (2)C21—C22—C23120.4 (3)
C13—C9—C15118.9 (2)C21—C22—H22119.8
C12—N10—C14118.9 (2)C23—C22—H22119.8
C9—C11—C1124.2 (2)C18—C23—C22118.3 (3)
C9—C11—C12117.2 (2)C18—C23—H23120.8
C1—C11—C12118.6 (2)C22—C23—H23120.8
C11—C1—C2—C30.0 (4)C7—C8—C13—C140.2 (4)
C1—C2—C3—C40.0 (4)C12—N10—C14—C5178.8 (2)
C2—C3—C4—C120.3 (4)C12—N10—C14—C131.1 (4)
C14—C5—C6—C70.8 (4)C6—C5—C14—N10179.0 (3)
C5—C6—C7—C80.4 (4)C6—C5—C14—C130.8 (4)
C6—C7—C8—C130.2 (4)C9—C13—C14—N100.8 (4)
C13—C9—C11—C1179.1 (2)C8—C13—C14—N10179.3 (2)
C15—C9—C11—C12.1 (4)C9—C13—C14—C5179.1 (2)
C13—C9—C11—C121.7 (3)C8—C13—C14—C50.5 (3)
C15—C9—C11—C12175.4 (2)C11—C9—C15—O1795.7 (4)
C2—C1—C11—C9177.2 (2)C13—C9—C15—O1781.4 (4)
C2—C1—C11—C120.2 (4)C11—C9—C15—O1683.7 (3)
C14—N10—C12—C4178.5 (2)C13—C9—C15—O1699.2 (3)
C14—N10—C12—C110.1 (3)O17—C15—O16—C181.4 (4)
C3—C4—C12—N10179.1 (2)C9—C15—O16—C18179.2 (2)
C3—C4—C12—C110.5 (4)C15—O16—C18—C2392.5 (3)
C9—C11—C12—N101.4 (4)C15—O16—C18—C1990.1 (3)
C1—C11—C12—N10179.0 (2)C23—C18—C19—C200.9 (4)
C9—C11—C12—C4177.1 (2)O16—C18—C19—C20178.2 (2)
C1—C11—C12—C40.4 (3)C18—C19—C20—C210.5 (4)
C11—C9—C13—C8177.8 (2)C19—C20—C21—C220.4 (4)
C15—C9—C13—C85.1 (4)C20—C21—C22—C230.9 (5)
C11—C9—C13—C140.6 (3)C19—C18—C23—C220.5 (4)
C15—C9—C13—C14176.4 (2)O16—C18—C23—C22177.7 (2)
C7—C8—C13—C9178.6 (2)C21—C22—C23—C180.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.983.712 (3)137
C7—H7···Cg4ii0.932.843.646 (3)145
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H13NO2
Mr299.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)17.094 (2), 5.4175 (7), 16.310 (2)
β (°) 95.545 (11)
V3)1503.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.354, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9221, 2651, 1560
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.203, 1.04
No. of reflections2651
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.983.712 (3)137
C7—H7···Cg4ii0.932.843.646 (3)145
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.
ππ interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12iii3.894 (2)1.7 (2)3.451 (1)1.804 (1)
13iv3.893 (2)1.4 (2)3.454 (1)1.796 (1)
21iv3.894 (2)1.7 (2)3.498 (2)1.711 (2)
23iv3.536 (2)1.1 (2)3.482 (2)0.616 (2)
31iii3.893 (2)1.4 (2)3.496 (2)1.713 (2)
32iii3.536 (2)1.1 (2)3.481 (2)0.621 (2)
Symmetry codes: (iii) x, y + 1, z; (iv) x, y – 1, z.

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKrzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Blazejowski, J. (2011). J. Org. Chem. 76, 1072–1085.  Web of Science PubMed Google Scholar
First citationNatrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432–3447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o906–o907.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrzybiński, D., Wera, M., Krzymiński, K. & Błażejowski, J. (2013). Acta Cryst. E69, o166.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds