organic compounds
Phenyl acridine-9-carboxylate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
The acridine ring system and the benzene ring in the title compound, C20H13NO2, are oriented at a dihedral angle of 6.4 (2)°. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton. The molecules in the crystal are arranged in stacks along the b axis, with two of the acridine rings involved in multiple π–π interactions [centroid–centroid distances in the range 3.536 (2)–3.894 (2) Å]. Stacks arranged parallel are linked via C—H⋯π interactions, forming layers in the ac plane that are in contact with adjacent, inversely oriented layers via other C—H⋯π interactions, giving rise to double layers. The inversely oriented double layers interact dispersively. The acridine units are parallel within the parallel-oriented stacks, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks.
Related literature
For general background to the applications of the title compound, see: Krzymiński et al. (2011); Natrajan et al. (2012); Trzybiński et al. (2010). For related structures, see: Trzybiński et al. (2013). For intermolecular interactions, see: Hunter et al. (2001); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813002055/xu5671sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002055/xu5671Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002055/xu5671Isup3.cml
Phenyl acridine-9-carboxylate was synthesized by the esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Trzybiński et al., 2010). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). Pale-yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 463–464 K).
H atoms were positioned geometrically, with C–H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C20H13NO2 | F(000) = 624 |
Mr = 299.31 | Dx = 1.322 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2651 reflections |
a = 17.094 (2) Å | θ = 3.3–25.0° |
b = 5.4175 (7) Å | µ = 0.09 mm−1 |
c = 16.310 (2) Å | T = 295 K |
β = 95.545 (11)° | Needle, pale-yellow |
V = 1503.3 (3) Å3 | 0.6 × 0.2 × 0.1 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2651 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 1560 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.0°, θmin = 3.3° |
ω scans | h = −17→20 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −5→6 |
Tmin = 0.354, Tmax = 0.986 | l = −16→19 |
9221 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1073P)2] where P = (Fo2 + 2Fc2)/3 |
2651 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C20H13NO2 | V = 1503.3 (3) Å3 |
Mr = 299.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.094 (2) Å | µ = 0.09 mm−1 |
b = 5.4175 (7) Å | T = 295 K |
c = 16.310 (2) Å | 0.6 × 0.2 × 0.1 mm |
β = 95.545 (11)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2651 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1560 reflections with I > 2σ(I) |
Tmin = 0.354, Tmax = 0.986 | Rint = 0.068 |
9221 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 0 restraints |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.29 e Å−3 |
2651 reflections | Δρmin = −0.34 e Å−3 |
209 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.15883 (16) | −0.0807 (5) | 0.28634 (16) | 0.0564 (7) | |
H1 | 0.2005 | −0.0842 | 0.2537 | 0.068* | |
C2 | 0.09977 (17) | −0.2461 (5) | 0.27301 (17) | 0.0602 (8) | |
H2 | 0.1012 | −0.3623 | 0.2312 | 0.072* | |
C3 | 0.03597 (17) | −0.2442 (5) | 0.32180 (18) | 0.0622 (8) | |
H3 | −0.0042 | −0.3592 | 0.3118 | 0.075* | |
C4 | 0.03260 (16) | −0.0781 (5) | 0.38254 (17) | 0.0573 (7) | |
H4 | −0.0098 | −0.0801 | 0.4142 | 0.069* | |
C5 | 0.13817 (18) | 0.5964 (5) | 0.54258 (17) | 0.0621 (8) | |
H5 | 0.0945 | 0.5900 | 0.5724 | 0.075* | |
C6 | 0.1938 (2) | 0.7688 (5) | 0.56161 (18) | 0.0690 (8) | |
H6 | 0.1877 | 0.8807 | 0.6038 | 0.083* | |
C7 | 0.26132 (19) | 0.7811 (5) | 0.51795 (19) | 0.0673 (8) | |
H7 | 0.2996 | 0.9000 | 0.5318 | 0.081* | |
C8 | 0.27029 (17) | 0.6208 (5) | 0.45642 (17) | 0.0581 (7) | |
H8 | 0.3149 | 0.6312 | 0.4281 | 0.070* | |
C9 | 0.21784 (14) | 0.2683 (4) | 0.36980 (15) | 0.0473 (7) | |
N10 | 0.08713 (13) | 0.2595 (4) | 0.46103 (13) | 0.0548 (6) | |
C11 | 0.15783 (14) | 0.0982 (4) | 0.34973 (15) | 0.0451 (6) | |
C12 | 0.09280 (15) | 0.1001 (4) | 0.39897 (15) | 0.0489 (7) | |
C13 | 0.21349 (14) | 0.4373 (4) | 0.43382 (15) | 0.0479 (7) | |
C14 | 0.14481 (15) | 0.4254 (4) | 0.47830 (15) | 0.0506 (7) | |
C15 | 0.29032 (16) | 0.2631 (5) | 0.32487 (17) | 0.0552 (7) | |
O16 | 0.28060 (10) | 0.3857 (3) | 0.25400 (11) | 0.0581 (6) | |
O17 | 0.34884 (13) | 0.1610 (5) | 0.34906 (14) | 0.1104 (10) | |
C18 | 0.34637 (15) | 0.3952 (5) | 0.20676 (15) | 0.0486 (7) | |
C19 | 0.39837 (17) | 0.5859 (5) | 0.21985 (17) | 0.0603 (8) | |
H19 | 0.3919 | 0.7045 | 0.2599 | 0.072* | |
C20 | 0.46112 (17) | 0.5984 (6) | 0.1720 (2) | 0.0695 (9) | |
H20 | 0.4975 | 0.7259 | 0.1801 | 0.083* | |
C21 | 0.46958 (17) | 0.4238 (6) | 0.11312 (19) | 0.0695 (9) | |
H21 | 0.5119 | 0.4321 | 0.0814 | 0.083* | |
C22 | 0.41592 (19) | 0.2364 (6) | 0.10059 (19) | 0.0699 (9) | |
H22 | 0.4216 | 0.1193 | 0.0599 | 0.084* | |
C23 | 0.35334 (17) | 0.2201 (5) | 0.14809 (18) | 0.0613 (8) | |
H23 | 0.3169 | 0.0927 | 0.1401 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0505 (18) | 0.0670 (17) | 0.0530 (16) | 0.0065 (13) | 0.0117 (13) | 0.0049 (14) |
C2 | 0.060 (2) | 0.0634 (17) | 0.0577 (17) | 0.0004 (14) | 0.0095 (14) | −0.0044 (14) |
C3 | 0.0557 (19) | 0.0651 (17) | 0.0657 (19) | −0.0119 (13) | 0.0046 (15) | 0.0053 (16) |
C4 | 0.0440 (17) | 0.0697 (17) | 0.0600 (17) | −0.0022 (13) | 0.0151 (13) | 0.0072 (15) |
C5 | 0.065 (2) | 0.0662 (17) | 0.0579 (17) | 0.0055 (15) | 0.0196 (14) | −0.0019 (15) |
C6 | 0.083 (2) | 0.0668 (18) | 0.0567 (18) | 0.0026 (16) | 0.0038 (16) | −0.0074 (15) |
C7 | 0.071 (2) | 0.0649 (18) | 0.0643 (19) | −0.0087 (15) | −0.0035 (16) | 0.0059 (16) |
C8 | 0.0508 (18) | 0.0667 (17) | 0.0565 (17) | −0.0039 (13) | 0.0045 (13) | 0.0079 (14) |
C9 | 0.0397 (15) | 0.0578 (15) | 0.0460 (14) | 0.0069 (11) | 0.0123 (11) | 0.0092 (12) |
N10 | 0.0488 (15) | 0.0625 (13) | 0.0561 (14) | −0.0013 (11) | 0.0202 (11) | 0.0040 (11) |
C11 | 0.0348 (14) | 0.0565 (14) | 0.0453 (14) | 0.0046 (11) | 0.0111 (11) | 0.0059 (13) |
C12 | 0.0427 (16) | 0.0568 (15) | 0.0479 (15) | 0.0019 (12) | 0.0081 (12) | 0.0084 (13) |
C13 | 0.0415 (16) | 0.0553 (15) | 0.0477 (15) | 0.0028 (11) | 0.0077 (12) | 0.0083 (12) |
C14 | 0.0478 (17) | 0.0557 (15) | 0.0496 (15) | 0.0049 (12) | 0.0108 (12) | 0.0071 (13) |
C15 | 0.0421 (17) | 0.0687 (17) | 0.0564 (17) | 0.0071 (13) | 0.0132 (13) | 0.0141 (14) |
O16 | 0.0396 (11) | 0.0788 (12) | 0.0590 (11) | 0.0076 (8) | 0.0204 (8) | 0.0163 (10) |
O17 | 0.0564 (16) | 0.182 (2) | 0.0990 (18) | 0.0486 (15) | 0.0378 (13) | 0.0715 (17) |
C18 | 0.0376 (15) | 0.0609 (15) | 0.0493 (15) | 0.0022 (12) | 0.0140 (11) | 0.0099 (13) |
C19 | 0.0558 (18) | 0.0657 (17) | 0.0615 (17) | −0.0029 (14) | 0.0169 (14) | −0.0034 (14) |
C20 | 0.051 (2) | 0.0773 (19) | 0.082 (2) | −0.0141 (14) | 0.0167 (16) | 0.0079 (18) |
C21 | 0.0485 (19) | 0.096 (2) | 0.0667 (19) | 0.0011 (16) | 0.0220 (15) | 0.0150 (18) |
C22 | 0.071 (2) | 0.080 (2) | 0.0629 (19) | 0.0036 (16) | 0.0253 (16) | −0.0085 (16) |
C23 | 0.0560 (19) | 0.0645 (17) | 0.0662 (18) | −0.0090 (13) | 0.0193 (14) | −0.0021 (15) |
C1—C2 | 1.352 (4) | C9—C15 | 1.500 (4) |
C1—C11 | 1.418 (3) | N10—C12 | 1.341 (3) |
C1—H1 | 0.9300 | N10—C14 | 1.344 (3) |
C2—C3 | 1.411 (4) | C11—C12 | 1.433 (3) |
C2—H2 | 0.9300 | C13—C14 | 1.440 (3) |
C3—C4 | 1.343 (4) | C15—O17 | 1.177 (3) |
C3—H3 | 0.9300 | C15—O16 | 1.329 (3) |
C4—C12 | 1.418 (4) | O16—C18 | 1.424 (3) |
C4—H4 | 0.9300 | C18—C23 | 1.361 (4) |
C5—C6 | 1.347 (4) | C18—C19 | 1.366 (4) |
C5—C14 | 1.412 (3) | C19—C20 | 1.387 (4) |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.415 (4) | C20—C21 | 1.366 (4) |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C7—C8 | 1.347 (4) | C21—C22 | 1.370 (4) |
C7—H7 | 0.9300 | C21—H21 | 0.9300 |
C8—C13 | 1.413 (4) | C22—C23 | 1.383 (4) |
C8—H8 | 0.9300 | C22—H22 | 0.9300 |
C9—C11 | 1.394 (3) | C23—H23 | 0.9300 |
C9—C13 | 1.396 (3) | ||
C2—C1—C11 | 120.6 (3) | N10—C12—C4 | 118.5 (2) |
C2—C1—H1 | 119.7 | N10—C12—C11 | 123.0 (2) |
C11—C1—H1 | 119.7 | C4—C12—C11 | 118.5 (2) |
C1—C2—C3 | 120.7 (3) | C9—C13—C8 | 124.9 (2) |
C1—C2—H2 | 119.6 | C9—C13—C14 | 116.9 (2) |
C3—C2—H2 | 119.6 | C8—C13—C14 | 118.2 (2) |
C4—C3—C2 | 120.8 (3) | N10—C14—C5 | 119.0 (2) |
C4—C3—H3 | 119.6 | N10—C14—C13 | 122.8 (2) |
C2—C3—H3 | 119.6 | C5—C14—C13 | 118.2 (2) |
C3—C4—C12 | 120.9 (3) | O17—C15—O16 | 123.8 (2) |
C3—C4—H4 | 119.6 | O17—C15—C9 | 124.1 (2) |
C12—C4—H4 | 119.6 | O16—C15—C9 | 112.1 (2) |
C6—C5—C14 | 121.4 (3) | C15—O16—C18 | 116.72 (19) |
C6—C5—H5 | 119.3 | C23—C18—C19 | 122.5 (2) |
C14—C5—H5 | 119.3 | C23—C18—O16 | 118.9 (2) |
C5—C6—C7 | 120.5 (3) | C19—C18—O16 | 118.6 (2) |
C5—C6—H6 | 119.7 | C18—C19—C20 | 118.4 (3) |
C7—C6—H6 | 119.7 | C18—C19—H19 | 120.8 |
C8—C7—C6 | 120.1 (3) | C20—C19—H19 | 120.8 |
C8—C7—H7 | 119.9 | C21—C20—C19 | 120.1 (3) |
C6—C7—H7 | 119.9 | C21—C20—H20 | 119.9 |
C7—C8—C13 | 121.5 (3) | C19—C20—H20 | 119.9 |
C7—C8—H8 | 119.2 | C20—C21—C22 | 120.2 (3) |
C13—C8—H8 | 119.2 | C20—C21—H21 | 119.9 |
C11—C9—C13 | 121.2 (2) | C22—C21—H21 | 119.9 |
C11—C9—C15 | 119.8 (2) | C21—C22—C23 | 120.4 (3) |
C13—C9—C15 | 118.9 (2) | C21—C22—H22 | 119.8 |
C12—N10—C14 | 118.9 (2) | C23—C22—H22 | 119.8 |
C9—C11—C1 | 124.2 (2) | C18—C23—C22 | 118.3 (3) |
C9—C11—C12 | 117.2 (2) | C18—C23—H23 | 120.8 |
C1—C11—C12 | 118.6 (2) | C22—C23—H23 | 120.8 |
C11—C1—C2—C3 | 0.0 (4) | C7—C8—C13—C14 | 0.2 (4) |
C1—C2—C3—C4 | 0.0 (4) | C12—N10—C14—C5 | 178.8 (2) |
C2—C3—C4—C12 | 0.3 (4) | C12—N10—C14—C13 | −1.1 (4) |
C14—C5—C6—C7 | −0.8 (4) | C6—C5—C14—N10 | −179.0 (3) |
C5—C6—C7—C8 | 0.4 (4) | C6—C5—C14—C13 | 0.8 (4) |
C6—C7—C8—C13 | −0.2 (4) | C9—C13—C14—N10 | 0.8 (4) |
C13—C9—C11—C1 | −179.1 (2) | C8—C13—C14—N10 | 179.3 (2) |
C15—C9—C11—C1 | −2.1 (4) | C9—C13—C14—C5 | −179.1 (2) |
C13—C9—C11—C12 | −1.7 (3) | C8—C13—C14—C5 | −0.5 (3) |
C15—C9—C11—C12 | 175.4 (2) | C11—C9—C15—O17 | −95.7 (4) |
C2—C1—C11—C9 | 177.2 (2) | C13—C9—C15—O17 | 81.4 (4) |
C2—C1—C11—C12 | −0.2 (4) | C11—C9—C15—O16 | 83.7 (3) |
C14—N10—C12—C4 | 178.5 (2) | C13—C9—C15—O16 | −99.2 (3) |
C14—N10—C12—C11 | −0.1 (3) | O17—C15—O16—C18 | −1.4 (4) |
C3—C4—C12—N10 | −179.1 (2) | C9—C15—O16—C18 | 179.2 (2) |
C3—C4—C12—C11 | −0.5 (4) | C15—O16—C18—C23 | 92.5 (3) |
C9—C11—C12—N10 | 1.4 (4) | C15—O16—C18—C19 | −90.1 (3) |
C1—C11—C12—N10 | 179.0 (2) | C23—C18—C19—C20 | −0.9 (4) |
C9—C11—C12—C4 | −177.1 (2) | O16—C18—C19—C20 | −178.2 (2) |
C1—C11—C12—C4 | 0.4 (3) | C18—C19—C20—C21 | 0.5 (4) |
C11—C9—C13—C8 | −177.8 (2) | C19—C20—C21—C22 | 0.4 (4) |
C15—C9—C13—C8 | 5.1 (4) | C20—C21—C22—C23 | −0.9 (5) |
C11—C9—C13—C14 | 0.6 (3) | C19—C18—C23—C22 | 0.5 (4) |
C15—C9—C13—C14 | −176.4 (2) | O16—C18—C23—C22 | 177.7 (2) |
C7—C8—C13—C9 | 178.6 (2) | C21—C22—C23—C18 | 0.4 (4) |
Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg2i | 0.93 | 2.98 | 3.712 (3) | 137 |
C7—H7···Cg4ii | 0.93 | 2.84 | 3.646 (3) | 145 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H13NO2 |
Mr | 299.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 17.094 (2), 5.4175 (7), 16.310 (2) |
β (°) | 95.545 (11) |
V (Å3) | 1503.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.6 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.354, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9221, 2651, 1560 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.203, 1.04 |
No. of reflections | 2651 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.34 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg2i | 0.93 | 2.98 | 3.712 (3) | 137 |
C7—H7···Cg4ii | 0.93 | 2.84 | 3.646 (3) | 145 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 2iii | 3.894 (2) | 1.7 (2) | 3.451 (1) | 1.804 (1) |
1 | 3iv | 3.893 (2) | 1.4 (2) | 3.454 (1) | 1.796 (1) |
2 | 1iv | 3.894 (2) | 1.7 (2) | 3.498 (2) | 1.711 (2) |
2 | 3iv | 3.536 (2) | 1.1 (2) | 3.482 (2) | 0.616 (2) |
3 | 1iii | 3.893 (2) | 1.4 (2) | 3.496 (2) | 1.713 (2) |
3 | 2iii | 3.536 (2) | 1.1 (2) | 3.481 (2) | 0.621 (2) |
Symmetry codes: (iii) x, y + 1, z; (iv) x, y – 1, z. Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
Acknowledgements
This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40).
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Blazejowski, J. (2011). J. Org. Chem. 76, 1072–1085. Web of Science PubMed Google Scholar
Natrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432–3447. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o906–o907. Web of Science CrossRef IUCr Journals Google Scholar
Trzybiński, D., Wera, M., Krzymiński, K. & Błażejowski, J. (2013). Acta Cryst. E69, o166. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phenyl acridine-9-carboxylates are the precursors of 9-(phenoxycarbonyl)-10-methylacridinium salts, whose cations exhibit a chemiluminogenic ability that can be utilized analytically (Natrajan et al., 2012). Here we present the structure of phenyl acridine-9-carboxylate, the precursor of a basic chemiluminogen in this group of compounds, whose structure (Trzybiński et al., 2010) and chemiluminogenic features (Krzymiński et al., 2011) have recently been investigated.
The bond lengths and angles characterizing the geometry of the acridine and phenyl moieties of the title compound (Fig. 1) are similar to those found in phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and references cited therein). With respective average deviations from planarity of 0.0143 (3) Å and 0.0037 (3) Å, the acridine ring system and the benzene ring are oriented at a dihedral angle of 6.4 (2)° [this angle varies between 30.0 (2)° – 37.7 (1)°, as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and the references cited therein)]. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton [this angle varies between 58.0 (2)° – 68.1 (2)° as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and the references cited therein)].
The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the parallel oriented molecules of the title compound (Fig. 2) are arranged in stacks along the b axis (Fig. 3) in which two of the acridine rings are involved in multiple π–π interactions (Table 2, Fig. 2) of an attractive nature (Hunter et al., 2001). The stacks arranged parallel linked via C–H···π interactions, of an attractive nature (Takahashi et al., 2001), form layers in the ac plane that are in contact with adjacent, inversely-oriented such layers via other C–H···π interactons giving rise to double layers (Table 1, Figs. 2 and 3). The inversely oriented double layers interact dispersively. The acridine moieties are parallel within the stacks oriented in parallel, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks. This interesting crystal architecture to some extent resembles the crystal structure of 2,6-dimethylphenyl acridine-9-carboxylate (Trzybiński et al., 2013).