organic compounds
(2,7-Dimethoxynaphthalen-1-yl)(4-phenoxyphenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title molecule, C25H20O4, the naphthalene and phenoxy groups are oriented nearly perpendicular with respect to the benzene ring of the benzoyl group, with dihedral angles of 89.61 (5) and 86.13 (6)°, respectively. The features C—H⋯O and C—H⋯π interactions.
Related literature
For the formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Nakaema et al. (2008); Sasagawa et al. (2013); Tsumuki et al. (2011, 2012).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813004820/gk2553sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813004820/gk2553Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813004820/gk2553Isup3.cml
In a 10 ml one-necked flask equipped with a condenser, (2,7-dimethoxynaphthalen-1-yl)-(4-fluorophenyl)methanone (1.0 mmol, 310 mg), phenol (1.0 mmol, 94.1 mg), potassium carbonate (5.0 mmol, 691 mg) and freshly distilled DMAc (2.5 ml) were stirred at 423 K for 6 h. This mixture was poured into 2M aqueous HCl (100 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 3). The combined extracts were washed with water followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 89%). The crude material was purified by
(silica gel, CHCl3) to give the title compound (isolated yield 74%). The isolated product was recrystallized from hexane and CHCl3 (3:1 v/v) to give block-like colorless single-crystals of the title compound.Spectroscopic Data: 1H NMR δ (400 MHz, CDCl3): 3.74 (3H, s), 3.82 (3H, s), 6.79 (1H, d, J = 2.3 Hz), 6.95 (2H, d, J = 8.7 Hz), 7.01 (1H, dd, J = 2.3, 7.2 Hz), 7.08 (2H, d, J = 7.4 Hz), 7.15–7.20 (2H, m), 7.39 (2H, t, J =7.8 Hz), 7.71 (1H, d, J = 8.7 Hz), 7.83–7.86 (3H, m) p.p.m.
13C NMR δ (125 MHz, CDCl3): 55.22, 56.39, 102.20, 110.25, 117.02, 117.14, 120.30, 121.91, 124.38, 124.68, 129.65, 130.01, 130.82, 131.94, 132.65, 132.99, 154.73, 155.30, 158.79, 162.34, 196.58 p.p.m.
IR (KBr): 1659 (C=O), 1625, 1599, 1511 (Ar), 1239 (OMe) cm-1
HRMS (m/z): [M+H]+ calcd. for C25H21O4, 385.1440, found, 385.1478
m.p. = 409.7–412.2 K
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uĩso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C25H20O4 | F(000) = 808 |
Mr = 384.41 | Dx = 1.310 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2yn | Cell parameters from 30559 reflections |
a = 10.9512 (2) Å | θ = 3.9–68.2° |
b = 15.8830 (3) Å | µ = 0.71 mm−1 |
c = 11.2184 (2) Å | T = 193 K |
β = 92.460 (1)° | Block, colourless |
V = 1949.51 (6) Å3 | 0.60 × 0.40 × 0.20 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3551 independent reflections |
Radiation source: fine-focus sealed tube | 3228 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 4.8° |
ω scans | h = −13→13 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −18→17 |
Tmin = 0.674, Tmax = 0.871 | l = −13→13 |
35423 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0483P)2 + 0.525P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3551 reflections | Δρmax = 0.21 e Å−3 |
265 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0082 (4) |
C25H20O4 | V = 1949.51 (6) Å3 |
Mr = 384.41 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.9512 (2) Å | µ = 0.71 mm−1 |
b = 15.8830 (3) Å | T = 193 K |
c = 11.2184 (2) Å | 0.60 × 0.40 × 0.20 mm |
β = 92.460 (1)° |
Rigaku R-AXIS RAPID diffractometer | 3551 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3228 reflections with I > 2σ(I) |
Tmin = 0.674, Tmax = 0.871 | Rint = 0.055 |
35423 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.21 e Å−3 |
3551 reflections | Δρmin = −0.16 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.00193 (9) | 0.35588 (7) | 0.60358 (8) | 0.0457 (3) | |
O2 | 0.50090 (9) | 0.46871 (7) | 0.23813 (9) | 0.0510 (3) | |
O3 | 0.05797 (8) | 0.31431 (6) | 0.32341 (8) | 0.0414 (2) | |
O4 | 0.36378 (8) | 0.01835 (6) | 0.57454 (9) | 0.0410 (2) | |
C1 | 0.15314 (11) | 0.39480 (8) | 0.47929 (11) | 0.0327 (3) | |
C2 | 0.08369 (12) | 0.41451 (9) | 0.57557 (11) | 0.0367 (3) | |
C3 | 0.10230 (13) | 0.49068 (9) | 0.63775 (12) | 0.0420 (3) | |
H3 | 0.0522 | 0.5049 | 0.7018 | 0.050* | |
C4 | 0.19275 (13) | 0.54391 (9) | 0.60541 (12) | 0.0424 (3) | |
H4 | 0.2050 | 0.5951 | 0.6481 | 0.051* | |
C5 | 0.36492 (13) | 0.57900 (8) | 0.47775 (12) | 0.0420 (3) | |
H5 | 0.3788 | 0.6301 | 0.5202 | 0.050* | |
C6 | 0.43770 (13) | 0.55914 (9) | 0.38729 (12) | 0.0423 (3) | |
H6 | 0.5013 | 0.5963 | 0.3663 | 0.051* | |
C7 | 0.41872 (12) | 0.48276 (9) | 0.32399 (11) | 0.0390 (3) | |
C8 | 0.32550 (11) | 0.42964 (8) | 0.35051 (11) | 0.0349 (3) | |
H8 | 0.3124 | 0.3795 | 0.3056 | 0.042* | |
C9 | 0.24795 (11) | 0.44941 (8) | 0.44540 (11) | 0.0328 (3) | |
C10 | 0.26844 (12) | 0.52532 (8) | 0.51068 (11) | 0.0370 (3) | |
C11 | 0.12728 (10) | 0.31434 (8) | 0.41154 (10) | 0.0316 (3) | |
C12 | 0.18985 (10) | 0.23641 (8) | 0.45420 (10) | 0.0310 (3) | |
C13 | 0.16678 (11) | 0.16053 (8) | 0.39508 (11) | 0.0334 (3) | |
H13 | 0.1120 | 0.1596 | 0.3271 | 0.040* | |
C14 | 0.22189 (11) | 0.08668 (8) | 0.43339 (11) | 0.0347 (3) | |
H14 | 0.2046 | 0.0352 | 0.3929 | 0.042* | |
C15 | 0.30315 (11) | 0.08859 (8) | 0.53203 (11) | 0.0325 (3) | |
C16 | 0.32949 (11) | 0.16352 (8) | 0.59129 (11) | 0.0362 (3) | |
H16 | 0.3861 | 0.1644 | 0.6578 | 0.043* | |
C17 | 0.27248 (11) | 0.23676 (8) | 0.55257 (11) | 0.0348 (3) | |
H17 | 0.2897 | 0.2881 | 0.5934 | 0.042* | |
C18 | −0.06764 (14) | 0.36858 (11) | 0.70934 (13) | 0.0530 (4) | |
H18A | −0.0098 | 0.3730 | 0.7782 | 0.064* | |
H18B | −0.1227 | 0.3209 | 0.7207 | 0.064* | |
H18C | −0.1155 | 0.4206 | 0.7017 | 0.064* | |
C19 | 0.49557 (15) | 0.38973 (12) | 0.17944 (16) | 0.0648 (5) | |
H19A | 0.4162 | 0.3837 | 0.1365 | 0.078* | |
H19B | 0.5058 | 0.3445 | 0.2385 | 0.078* | |
H19C | 0.5610 | 0.3864 | 0.1227 | 0.078* | |
C20 | 0.31156 (11) | −0.06082 (8) | 0.55142 (12) | 0.0349 (3) | |
C21 | 0.22069 (12) | −0.08914 (9) | 0.62315 (12) | 0.0403 (3) | |
H21 | 0.1893 | −0.0538 | 0.6829 | 0.048* | |
C22 | 0.17631 (12) | −0.17021 (9) | 0.60612 (13) | 0.0439 (3) | |
H22 | 0.1143 | −0.1909 | 0.6550 | 0.053* | |
C23 | 0.22158 (13) | −0.22106 (9) | 0.51863 (13) | 0.0450 (3) | |
H23 | 0.1908 | −0.2765 | 0.5075 | 0.054* | |
C24 | 0.31210 (13) | −0.19118 (9) | 0.44695 (13) | 0.0446 (3) | |
H24 | 0.3430 | −0.2262 | 0.3865 | 0.054* | |
C25 | 0.35762 (12) | −0.11038 (9) | 0.46320 (12) | 0.0401 (3) | |
H25 | 0.4196 | −0.0895 | 0.4143 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0440 (5) | 0.0554 (6) | 0.0386 (5) | −0.0030 (4) | 0.0117 (4) | −0.0039 (4) |
O2 | 0.0424 (5) | 0.0667 (7) | 0.0443 (6) | −0.0153 (5) | 0.0065 (4) | −0.0021 (5) |
O3 | 0.0440 (5) | 0.0426 (5) | 0.0365 (5) | 0.0021 (4) | −0.0089 (4) | −0.0001 (4) |
O4 | 0.0368 (5) | 0.0320 (5) | 0.0531 (6) | −0.0008 (4) | −0.0097 (4) | 0.0021 (4) |
C1 | 0.0341 (6) | 0.0335 (7) | 0.0302 (6) | 0.0057 (5) | −0.0018 (5) | 0.0010 (5) |
C2 | 0.0363 (7) | 0.0410 (7) | 0.0325 (6) | 0.0064 (5) | −0.0005 (5) | 0.0016 (5) |
C3 | 0.0489 (8) | 0.0453 (8) | 0.0316 (6) | 0.0131 (6) | −0.0001 (6) | −0.0042 (6) |
C4 | 0.0566 (8) | 0.0342 (7) | 0.0358 (7) | 0.0092 (6) | −0.0061 (6) | −0.0048 (5) |
C5 | 0.0509 (8) | 0.0297 (7) | 0.0441 (7) | 0.0006 (6) | −0.0138 (6) | 0.0030 (5) |
C6 | 0.0433 (7) | 0.0391 (8) | 0.0437 (7) | −0.0077 (6) | −0.0100 (6) | 0.0103 (6) |
C7 | 0.0361 (7) | 0.0468 (8) | 0.0336 (6) | −0.0027 (6) | −0.0042 (5) | 0.0061 (6) |
C8 | 0.0359 (7) | 0.0361 (7) | 0.0325 (6) | −0.0006 (5) | −0.0030 (5) | −0.0005 (5) |
C9 | 0.0358 (6) | 0.0312 (7) | 0.0310 (6) | 0.0038 (5) | −0.0049 (5) | 0.0026 (5) |
C10 | 0.0445 (7) | 0.0307 (7) | 0.0349 (6) | 0.0066 (5) | −0.0088 (5) | 0.0022 (5) |
C11 | 0.0284 (6) | 0.0376 (7) | 0.0289 (6) | −0.0008 (5) | 0.0037 (5) | 0.0011 (5) |
C12 | 0.0292 (6) | 0.0343 (7) | 0.0297 (6) | −0.0016 (5) | 0.0030 (5) | −0.0003 (5) |
C13 | 0.0329 (6) | 0.0375 (7) | 0.0297 (6) | −0.0020 (5) | −0.0013 (5) | −0.0011 (5) |
C14 | 0.0364 (6) | 0.0319 (7) | 0.0358 (6) | −0.0030 (5) | −0.0002 (5) | −0.0039 (5) |
C15 | 0.0286 (6) | 0.0323 (7) | 0.0368 (6) | −0.0007 (5) | 0.0031 (5) | 0.0028 (5) |
C16 | 0.0335 (6) | 0.0385 (7) | 0.0362 (7) | −0.0009 (5) | −0.0053 (5) | −0.0007 (5) |
C17 | 0.0351 (6) | 0.0335 (7) | 0.0356 (6) | −0.0022 (5) | −0.0021 (5) | −0.0037 (5) |
C18 | 0.0490 (8) | 0.0731 (11) | 0.0377 (7) | 0.0016 (8) | 0.0115 (6) | 0.0004 (7) |
C19 | 0.0486 (9) | 0.0861 (13) | 0.0613 (10) | −0.0172 (9) | 0.0207 (8) | −0.0246 (9) |
C20 | 0.0301 (6) | 0.0314 (7) | 0.0426 (7) | 0.0011 (5) | −0.0044 (5) | 0.0034 (5) |
C21 | 0.0354 (7) | 0.0437 (8) | 0.0420 (7) | 0.0032 (6) | 0.0022 (5) | −0.0008 (6) |
C22 | 0.0355 (7) | 0.0472 (8) | 0.0492 (8) | −0.0043 (6) | 0.0027 (6) | 0.0101 (6) |
C23 | 0.0440 (8) | 0.0323 (7) | 0.0581 (9) | −0.0008 (6) | −0.0056 (6) | 0.0057 (6) |
C24 | 0.0469 (8) | 0.0363 (8) | 0.0508 (8) | 0.0072 (6) | 0.0035 (6) | −0.0032 (6) |
C25 | 0.0355 (7) | 0.0395 (8) | 0.0458 (7) | 0.0028 (6) | 0.0060 (6) | 0.0047 (6) |
O1—C2 | 1.3677 (16) | C12—C17 | 1.3969 (17) |
O1—C18 | 1.4282 (16) | C13—C14 | 1.3794 (18) |
O2—C7 | 1.3645 (16) | C13—H13 | 0.9500 |
O2—C19 | 1.417 (2) | C14—C15 | 1.3903 (17) |
O3—C11 | 1.2203 (15) | C14—H14 | 0.9500 |
O4—C15 | 1.3732 (15) | C15—C16 | 1.3875 (18) |
O4—C20 | 1.4011 (15) | C16—C17 | 1.3814 (18) |
C1—C2 | 1.3833 (17) | C16—H16 | 0.9500 |
C1—C9 | 1.4174 (18) | C17—H17 | 0.9500 |
C1—C11 | 1.5074 (17) | C18—H18A | 0.9800 |
C2—C3 | 1.4070 (19) | C18—H18B | 0.9800 |
C3—C4 | 1.363 (2) | C18—H18C | 0.9800 |
C3—H3 | 0.9500 | C19—H19A | 0.9800 |
C4—C10 | 1.4068 (19) | C19—H19B | 0.9800 |
C4—H4 | 0.9500 | C19—H19C | 0.9800 |
C5—C6 | 1.354 (2) | C20—C25 | 1.3771 (19) |
C5—C10 | 1.419 (2) | C20—C21 | 1.3816 (18) |
C5—H5 | 0.9500 | C21—C22 | 1.387 (2) |
C6—C7 | 1.416 (2) | C21—H21 | 0.9500 |
C6—H6 | 0.9500 | C22—C23 | 1.380 (2) |
C7—C8 | 1.3670 (18) | C22—H22 | 0.9500 |
C8—C9 | 1.4250 (18) | C23—C24 | 1.387 (2) |
C8—H8 | 0.9500 | C23—H23 | 0.9500 |
C9—C10 | 1.4234 (18) | C24—C25 | 1.386 (2) |
C11—C12 | 1.4841 (17) | C24—H24 | 0.9500 |
C12—C13 | 1.3935 (17) | C25—H25 | 0.9500 |
C2—O1—C18 | 118.00 (11) | C13—C14—C15 | 119.08 (11) |
C7—O2—C19 | 117.23 (11) | C13—C14—H14 | 120.5 |
C15—O4—C20 | 118.52 (9) | C15—C14—H14 | 120.5 |
C2—C1—C9 | 120.30 (12) | O4—C15—C16 | 116.29 (11) |
C2—C1—C11 | 119.20 (11) | O4—C15—C14 | 122.83 (11) |
C9—C1—C11 | 120.50 (11) | C16—C15—C14 | 120.86 (11) |
O1—C2—C1 | 115.50 (12) | C17—C16—C15 | 119.33 (11) |
O1—C2—C3 | 123.90 (12) | C17—C16—H16 | 120.3 |
C1—C2—C3 | 120.60 (13) | C15—C16—H16 | 120.3 |
C4—C3—C2 | 119.52 (12) | C16—C17—C12 | 120.91 (12) |
C4—C3—H3 | 120.2 | C16—C17—H17 | 119.5 |
C2—C3—H3 | 120.2 | C12—C17—H17 | 119.5 |
C3—C4—C10 | 121.96 (13) | O1—C18—H18A | 109.5 |
C3—C4—H4 | 119.0 | O1—C18—H18B | 109.5 |
C10—C4—H4 | 119.0 | H18A—C18—H18B | 109.5 |
C6—C5—C10 | 121.60 (13) | O1—C18—H18C | 109.5 |
C6—C5—H5 | 119.2 | H18A—C18—H18C | 109.5 |
C10—C5—H5 | 119.2 | H18B—C18—H18C | 109.5 |
C5—C6—C7 | 119.78 (13) | O2—C19—H19A | 109.5 |
C5—C6—H6 | 120.1 | O2—C19—H19B | 109.5 |
C7—C6—H6 | 120.1 | H19A—C19—H19B | 109.5 |
O2—C7—C8 | 125.03 (13) | O2—C19—H19C | 109.5 |
O2—C7—C6 | 114.01 (12) | H19A—C19—H19C | 109.5 |
C8—C7—C6 | 120.96 (13) | H19B—C19—H19C | 109.5 |
C7—C8—C9 | 120.07 (12) | C25—C20—C21 | 121.85 (13) |
C7—C8—H8 | 120.0 | C25—C20—O4 | 119.14 (12) |
C9—C8—H8 | 120.0 | C21—C20—O4 | 118.87 (12) |
C1—C9—C10 | 118.78 (12) | C20—C21—C22 | 118.62 (13) |
C1—C9—C8 | 122.17 (11) | C20—C21—H21 | 120.7 |
C10—C9—C8 | 119.02 (12) | C22—C21—H21 | 120.7 |
C4—C10—C5 | 122.68 (13) | C23—C22—C21 | 120.48 (13) |
C4—C10—C9 | 118.78 (13) | C23—C22—H22 | 119.8 |
C5—C10—C9 | 118.53 (12) | C21—C22—H22 | 119.8 |
O3—C11—C12 | 121.56 (11) | C22—C23—C24 | 119.99 (13) |
O3—C11—C1 | 120.38 (11) | C22—C23—H23 | 120.0 |
C12—C11—C1 | 118.05 (10) | C24—C23—H23 | 120.0 |
C13—C12—C17 | 118.53 (11) | C25—C24—C23 | 120.17 (13) |
C13—C12—C11 | 119.74 (11) | C25—C24—H24 | 119.9 |
C17—C12—C11 | 121.73 (11) | C23—C24—H24 | 119.9 |
C14—C13—C12 | 121.28 (11) | C20—C25—C24 | 118.88 (13) |
C14—C13—H13 | 119.4 | C20—C25—H25 | 120.6 |
C12—C13—H13 | 119.4 | C24—C25—H25 | 120.6 |
C18—O1—C2—C1 | 173.66 (12) | C2—C1—C11—O3 | 93.21 (15) |
C18—O1—C2—C3 | −6.68 (19) | C9—C1—C11—O3 | −87.20 (15) |
C9—C1—C2—O1 | −177.41 (10) | C2—C1—C11—C12 | −87.71 (14) |
C11—C1—C2—O1 | 2.18 (17) | C9—C1—C11—C12 | 91.87 (13) |
C9—C1—C2—C3 | 2.93 (18) | O3—C11—C12—C13 | −1.97 (18) |
C11—C1—C2—C3 | −177.49 (11) | C1—C11—C12—C13 | 178.96 (11) |
O1—C2—C3—C4 | 177.88 (12) | O3—C11—C12—C17 | 177.75 (11) |
C1—C2—C3—C4 | −2.48 (19) | C1—C11—C12—C17 | −1.31 (17) |
C2—C3—C4—C10 | 0.3 (2) | C17—C12—C13—C14 | 1.26 (18) |
C10—C5—C6—C7 | −0.58 (19) | C11—C12—C13—C14 | −179.00 (11) |
C19—O2—C7—C8 | −5.8 (2) | C12—C13—C14—C15 | −0.83 (18) |
C19—O2—C7—C6 | 173.69 (13) | C20—O4—C15—C16 | 156.41 (11) |
C5—C6—C7—O2 | −177.64 (12) | C20—O4—C15—C14 | −25.21 (17) |
C5—C6—C7—C8 | 1.92 (19) | C13—C14—C15—O4 | −178.65 (11) |
O2—C7—C8—C9 | 177.58 (11) | C13—C14—C15—C16 | −0.34 (18) |
C6—C7—C8—C9 | −1.93 (19) | O4—C15—C16—C17 | 179.47 (11) |
C2—C1—C9—C10 | −1.23 (17) | C14—C15—C16—C17 | 1.05 (19) |
C11—C1—C9—C10 | 179.19 (10) | C15—C16—C17—C12 | −0.60 (19) |
C2—C1—C9—C8 | 176.92 (11) | C13—C12—C17—C16 | −0.53 (18) |
C11—C1—C9—C8 | −2.66 (17) | C11—C12—C17—C16 | 179.74 (11) |
C7—C8—C9—C1 | −177.51 (11) | C15—O4—C20—C25 | 102.71 (14) |
C7—C8—C9—C10 | 0.64 (18) | C15—O4—C20—C21 | −81.52 (15) |
C3—C4—C10—C5 | −178.39 (12) | C25—C20—C21—C22 | 0.82 (19) |
C3—C4—C10—C9 | 1.32 (19) | O4—C20—C21—C22 | −174.82 (11) |
C6—C5—C10—C4 | 179.03 (12) | C20—C21—C22—C23 | −0.5 (2) |
C6—C5—C10—C9 | −0.67 (18) | C21—C22—C23—C24 | 0.0 (2) |
C1—C9—C10—C4 | −0.86 (17) | C22—C23—C24—C25 | 0.2 (2) |
C8—C9—C10—C4 | −179.07 (11) | C21—C20—C25—C24 | −0.6 (2) |
C1—C9—C10—C5 | 178.86 (11) | O4—C20—C25—C24 | 175.01 (11) |
C8—C9—C10—C5 | 0.65 (17) | C23—C24—C25—C20 | 0.1 (2) |
Cg1 and Cg2 are the centroids of the C20-C25 and C12-C17 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···O2i | 0.95 | 2.56 | 3.3738 (17) | 143 |
C19—H19A···Cg1ii | 0.98 | 2.74 | 3.6967 (18) | 164 |
C19—H19C···Cg2iii | 0.98 | 2.67 | 3.6249 (18) | 165 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H20O4 |
Mr | 384.41 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 10.9512 (2), 15.8830 (3), 11.2184 (2) |
β (°) | 92.460 (1) |
V (Å3) | 1949.51 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.60 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.674, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35423, 3551, 3228 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.097, 1.05 |
No. of reflections | 3551 |
No. of parameters | 265 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.16 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg1 and Cg2 are the centroids of the C20-C25 and C12-C17 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···O2i | 0.95 | 2.56 | 3.3738 (17) | 143 |
C19—H19A···Cg1ii | 0.98 | 2.74 | 3.6967 (18) | 164 |
C19—H19C···Cg2iii | 0.98 | 2.67 | 3.6249 (18) | 165 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sasagawa, K., Sakamoto, R., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o363. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1-aroylnaphthalene and 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)-naphthalen-1-yl](naphthalen-2-yl)methanone [1,8-bis(2-naphthoyl)-2,7-dimethoxynaphthalene] (Tsumuki et al., 2011).
The aroyl groups in the 1,8-diaroylnaphthalene compounds are almost perpendicular to the naphthalene rings and oriented in opposite directions (anti-orientation). On the other hand, we have also clarified another structure of the 1,8-diaroylnaphthalene derivatives, with the two aroyl groups are oriented in the same direction (syn-orientation) [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010].
Moreover, we have reported crystal structures of 1-aroylnapthalene compounds such as (2,7-dimethoxynaphthalen-1-yl)-(4-methoxyphenyl)methanone [1-(4-methoxybenzoyl-2,7-dimethoxynaphthalene) (Sasagawa et al., 2013) and 2,7-dimethoxy-1-(2-naphthoyl)naphthalene (Tsumuki et al., 2012). They have essentially the same non-coplanar structure as the homologous 1,8-diaroylnaphthalenes, i.e., the aroyl group is twisted away from the naphthalene ring.
As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, (2,7-dimethoxynaphthalen-1-yl)(4-phenoxyphenyl)methanone, 2,7-dimethoxynaphthalene bearing phenoxybenzoyl group at the 1-position, is discussed in this article.
The molecular structure of the title compound is displayed in Fig 1. The dihedral angle between the best planes of the benzene ring of the internal benzoyl moiety and the naphthalene ring is 89.61 (5) °. In addition, the dihedral angle between the benzene rings of 4-phenoxybenzoyl moiety is 86.13 (6) °.
The ketonic carbonyl moiety (C11═O3) and the internal benzene ring are nearly coplanar [torsion angle O3—C11—C12—C13 = -1.98 (17) °].
In the crystal, two kinds of interactions effectively contribute to stabilization of the molecular packing: (i) C—H···O interaction between the ethereal O atom of the methoxy group at the 7-position of the naphthalene ring and the aromatic H atom at the 2-position of the terminal phenoxy group and (ii) C—H···π interaction between a H atom of the methoxy group at the 7-position of the naphthalene ring and the benzene ring of the internal benzoyl moiety (C21—H21···O2 = 2.56 Å, symmetry code: -1/2+x, 1/2-y, 1/2+z; C19—H19C···Cg = 2.67 Å, symmetry code: -1/2+x, 1/2-y, 1/2+z; Fig. 2). Moreover, the molecules are alternately aligned along c axis (Fig. 3).