organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Dimeth­­oxy­naphthalen-1-yl)(4-phen­­oxy­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 2 February 2013; accepted 19 February 2013; online 23 February 2013)

In the title mol­ecule, C25H20O4, the naphthalene and phen­oxy groups are oriented nearly perpendicular with respect to the benzene ring of the benzoyl group, with dihedral angles of 89.61 (5) and 86.13 (6)°, respectively. The crystal structure features C—H⋯O and C—H⋯π inter­actions.

Related literature

For the formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Sasagawa et al. (2013[Sasagawa, K., Sakamoto, R., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o363.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.], 2012[Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20O4

  • Mr = 384.41

  • Monoclinic, P 21 /n

  • a = 10.9512 (2) Å

  • b = 15.8830 (3) Å

  • c = 11.2184 (2) Å

  • β = 92.460 (1)°

  • V = 1949.51 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.674, Tmax = 0.871

  • 35423 measured reflections

  • 3551 independent reflections

  • 3228 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.05

  • 3551 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C20–C25 and C12–C17 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2i 0.95 2.56 3.3738 (17) 143
C19—H19ACg1ii 0.98 2.74 3.6967 (18) 164
C19—H19CCg2iii 0.98 2.67 3.6249 (18) 165
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1-aroylnaphthalene and 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)-naphthalen-1-yl](naphthalen-2-yl)methanone [1,8-bis(2-naphthoyl)-2,7-dimethoxynaphthalene] (Tsumuki et al., 2011).

The aroyl groups in the 1,8-diaroylnaphthalene compounds are almost perpendicular to the naphthalene rings and oriented in opposite directions (anti-orientation). On the other hand, we have also clarified another structure of the 1,8-diaroylnaphthalene derivatives, with the two aroyl groups are oriented in the same direction (syn-orientation) [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010].

Moreover, we have reported crystal structures of 1-aroylnapthalene compounds such as (2,7-dimethoxynaphthalen-1-yl)-(4-methoxyphenyl)methanone [1-(4-methoxybenzoyl-2,7-dimethoxynaphthalene) (Sasagawa et al., 2013) and 2,7-dimethoxy-1-(2-naphthoyl)naphthalene (Tsumuki et al., 2012). They have essentially the same non-coplanar structure as the homologous 1,8-diaroylnaphthalenes, i.e., the aroyl group is twisted away from the naphthalene ring.

As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, (2,7-dimethoxynaphthalen-1-yl)(4-phenoxyphenyl)methanone, 2,7-dimethoxynaphthalene bearing phenoxybenzoyl group at the 1-position, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The dihedral angle between the best planes of the benzene ring of the internal benzoyl moiety and the naphthalene ring is 89.61 (5) °. In addition, the dihedral angle between the benzene rings of 4-phenoxybenzoyl moiety is 86.13 (6) °.

The ketonic carbonyl moiety (C11O3) and the internal benzene ring are nearly coplanar [torsion angle O3—C11—C12—C13 = -1.98 (17) °].

In the crystal, two kinds of interactions effectively contribute to stabilization of the molecular packing: (i) C—H···O interaction between the ethereal O atom of the methoxy group at the 7-position of the naphthalene ring and the aromatic H atom at the 2-position of the terminal phenoxy group and (ii) C—H···π interaction between a H atom of the methoxy group at the 7-position of the naphthalene ring and the benzene ring of the internal benzoyl moiety (C21—H21···O2 = 2.56 Å, symmetry code: -1/2+x, 1/2-y, 1/2+z; C19—H19C···Cg = 2.67 Å, symmetry code: -1/2+x, 1/2-y, 1/2+z; Fig. 2). Moreover, the molecules are alternately aligned along c axis (Fig. 3).

Related literature top

For the formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Nakaema et al. (2008); Sasagawa et al. (2013); Tsumuki et al. (2011, 2012).

Experimental top

In a 10 ml one-necked flask equipped with a condenser, (2,7-dimethoxynaphthalen-1-yl)-(4-fluorophenyl)methanone (1.0 mmol, 310 mg), phenol (1.0 mmol, 94.1 mg), potassium carbonate (5.0 mmol, 691 mg) and freshly distilled DMAc (2.5 ml) were stirred at 423 K for 6 h. This mixture was poured into 2M aqueous HCl (100 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 3). The combined extracts were washed with water followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 89%). The crude material was purified by column chromatography (silica gel, CHCl3) to give the title compound (isolated yield 74%). The isolated product was recrystallized from hexane and CHCl3 (3:1 v/v) to give block-like colorless single-crystals of the title compound.

Spectroscopic Data: 1H NMR δ (400 MHz, CDCl3): 3.74 (3H, s), 3.82 (3H, s), 6.79 (1H, d, J = 2.3 Hz), 6.95 (2H, d, J = 8.7 Hz), 7.01 (1H, dd, J = 2.3, 7.2 Hz), 7.08 (2H, d, J = 7.4 Hz), 7.15–7.20 (2H, m), 7.39 (2H, t, J =7.8 Hz), 7.71 (1H, d, J = 8.7 Hz), 7.83–7.86 (3H, m) p.p.m.

13C NMR δ (125 MHz, CDCl3): 55.22, 56.39, 102.20, 110.25, 117.02, 117.14, 120.30, 121.91, 124.38, 124.68, 129.65, 130.01, 130.82, 131.94, 132.65, 132.99, 154.73, 155.30, 158.79, 162.34, 196.58 p.p.m.

IR (KBr): 1659 (C=O), 1625, 1599, 1511 (Ar), 1239 (OMe) cm-1

HRMS (m/z): [M+H]+ calcd. for C25H21O4, 385.1440, found, 385.1478

m.p. = 409.7–412.2 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound and the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions between H21 and O2, C—H···π interactions between H19C and Cg [symmetry code: -1/2 + x, 1/2 - y, 1/2 + z; -1/2 + x, 1/2 - y, 1/2 + z] along the a axis (dashed lines).
[Figure 3] Fig. 3. The alignment of the molecules along the c axis.
(2,7-Dimethoxynaphthalen-1-yl)(4-phenoxyphenyl)methanone top
Crystal data top
C25H20O4F(000) = 808
Mr = 384.41Dx = 1.310 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 30559 reflections
a = 10.9512 (2) Åθ = 3.9–68.2°
b = 15.8830 (3) ŵ = 0.71 mm1
c = 11.2184 (2) ÅT = 193 K
β = 92.460 (1)°Block, colourless
V = 1949.51 (6) Å30.60 × 0.40 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3551 independent reflections
Radiation source: fine-focus sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.8°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1817
Tmin = 0.674, Tmax = 0.871l = 1313
35423 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.525P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3551 reflectionsΔρmax = 0.21 e Å3
265 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (4)
Crystal data top
C25H20O4V = 1949.51 (6) Å3
Mr = 384.41Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.9512 (2) ŵ = 0.71 mm1
b = 15.8830 (3) ÅT = 193 K
c = 11.2184 (2) Å0.60 × 0.40 × 0.20 mm
β = 92.460 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3551 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3228 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.871Rint = 0.055
35423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3551 reflectionsΔρmin = 0.16 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00193 (9)0.35588 (7)0.60358 (8)0.0457 (3)
O20.50090 (9)0.46871 (7)0.23813 (9)0.0510 (3)
O30.05797 (8)0.31431 (6)0.32341 (8)0.0414 (2)
O40.36378 (8)0.01835 (6)0.57454 (9)0.0410 (2)
C10.15314 (11)0.39480 (8)0.47929 (11)0.0327 (3)
C20.08369 (12)0.41451 (9)0.57557 (11)0.0367 (3)
C30.10230 (13)0.49068 (9)0.63775 (12)0.0420 (3)
H30.05220.50490.70180.050*
C40.19275 (13)0.54391 (9)0.60541 (12)0.0424 (3)
H40.20500.59510.64810.051*
C50.36492 (13)0.57900 (8)0.47775 (12)0.0420 (3)
H50.37880.63010.52020.050*
C60.43770 (13)0.55914 (9)0.38729 (12)0.0423 (3)
H60.50130.59630.36630.051*
C70.41872 (12)0.48276 (9)0.32399 (11)0.0390 (3)
C80.32550 (11)0.42964 (8)0.35051 (11)0.0349 (3)
H80.31240.37950.30560.042*
C90.24795 (11)0.44941 (8)0.44540 (11)0.0328 (3)
C100.26844 (12)0.52532 (8)0.51068 (11)0.0370 (3)
C110.12728 (10)0.31434 (8)0.41154 (10)0.0316 (3)
C120.18985 (10)0.23641 (8)0.45420 (10)0.0310 (3)
C130.16678 (11)0.16053 (8)0.39508 (11)0.0334 (3)
H130.11200.15960.32710.040*
C140.22189 (11)0.08668 (8)0.43339 (11)0.0347 (3)
H140.20460.03520.39290.042*
C150.30315 (11)0.08859 (8)0.53203 (11)0.0325 (3)
C160.32949 (11)0.16352 (8)0.59129 (11)0.0362 (3)
H160.38610.16440.65780.043*
C170.27248 (11)0.23676 (8)0.55257 (11)0.0348 (3)
H170.28970.28810.59340.042*
C180.06764 (14)0.36858 (11)0.70934 (13)0.0530 (4)
H18A0.00980.37300.77820.064*
H18B0.12270.32090.72070.064*
H18C0.11550.42060.70170.064*
C190.49557 (15)0.38973 (12)0.17944 (16)0.0648 (5)
H19A0.41620.38370.13650.078*
H19B0.50580.34450.23850.078*
H19C0.56100.38640.12270.078*
C200.31156 (11)0.06082 (8)0.55142 (12)0.0349 (3)
C210.22069 (12)0.08914 (9)0.62315 (12)0.0403 (3)
H210.18930.05380.68290.048*
C220.17631 (12)0.17021 (9)0.60612 (13)0.0439 (3)
H220.11430.19090.65500.053*
C230.22158 (13)0.22106 (9)0.51863 (13)0.0450 (3)
H230.19080.27650.50750.054*
C240.31210 (13)0.19118 (9)0.44695 (13)0.0446 (3)
H240.34300.22620.38650.054*
C250.35762 (12)0.11038 (9)0.46320 (12)0.0401 (3)
H250.41960.08950.41430.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0440 (5)0.0554 (6)0.0386 (5)0.0030 (4)0.0117 (4)0.0039 (4)
O20.0424 (5)0.0667 (7)0.0443 (6)0.0153 (5)0.0065 (4)0.0021 (5)
O30.0440 (5)0.0426 (5)0.0365 (5)0.0021 (4)0.0089 (4)0.0001 (4)
O40.0368 (5)0.0320 (5)0.0531 (6)0.0008 (4)0.0097 (4)0.0021 (4)
C10.0341 (6)0.0335 (7)0.0302 (6)0.0057 (5)0.0018 (5)0.0010 (5)
C20.0363 (7)0.0410 (7)0.0325 (6)0.0064 (5)0.0005 (5)0.0016 (5)
C30.0489 (8)0.0453 (8)0.0316 (6)0.0131 (6)0.0001 (6)0.0042 (6)
C40.0566 (8)0.0342 (7)0.0358 (7)0.0092 (6)0.0061 (6)0.0048 (5)
C50.0509 (8)0.0297 (7)0.0441 (7)0.0006 (6)0.0138 (6)0.0030 (5)
C60.0433 (7)0.0391 (8)0.0437 (7)0.0077 (6)0.0100 (6)0.0103 (6)
C70.0361 (7)0.0468 (8)0.0336 (6)0.0027 (6)0.0042 (5)0.0061 (6)
C80.0359 (7)0.0361 (7)0.0325 (6)0.0006 (5)0.0030 (5)0.0005 (5)
C90.0358 (6)0.0312 (7)0.0310 (6)0.0038 (5)0.0049 (5)0.0026 (5)
C100.0445 (7)0.0307 (7)0.0349 (6)0.0066 (5)0.0088 (5)0.0022 (5)
C110.0284 (6)0.0376 (7)0.0289 (6)0.0008 (5)0.0037 (5)0.0011 (5)
C120.0292 (6)0.0343 (7)0.0297 (6)0.0016 (5)0.0030 (5)0.0003 (5)
C130.0329 (6)0.0375 (7)0.0297 (6)0.0020 (5)0.0013 (5)0.0011 (5)
C140.0364 (6)0.0319 (7)0.0358 (6)0.0030 (5)0.0002 (5)0.0039 (5)
C150.0286 (6)0.0323 (7)0.0368 (6)0.0007 (5)0.0031 (5)0.0028 (5)
C160.0335 (6)0.0385 (7)0.0362 (7)0.0009 (5)0.0053 (5)0.0007 (5)
C170.0351 (6)0.0335 (7)0.0356 (6)0.0022 (5)0.0021 (5)0.0037 (5)
C180.0490 (8)0.0731 (11)0.0377 (7)0.0016 (8)0.0115 (6)0.0004 (7)
C190.0486 (9)0.0861 (13)0.0613 (10)0.0172 (9)0.0207 (8)0.0246 (9)
C200.0301 (6)0.0314 (7)0.0426 (7)0.0011 (5)0.0044 (5)0.0034 (5)
C210.0354 (7)0.0437 (8)0.0420 (7)0.0032 (6)0.0022 (5)0.0008 (6)
C220.0355 (7)0.0472 (8)0.0492 (8)0.0043 (6)0.0027 (6)0.0101 (6)
C230.0440 (8)0.0323 (7)0.0581 (9)0.0008 (6)0.0056 (6)0.0057 (6)
C240.0469 (8)0.0363 (8)0.0508 (8)0.0072 (6)0.0035 (6)0.0032 (6)
C250.0355 (7)0.0395 (8)0.0458 (7)0.0028 (6)0.0060 (6)0.0047 (6)
Geometric parameters (Å, º) top
O1—C21.3677 (16)C12—C171.3969 (17)
O1—C181.4282 (16)C13—C141.3794 (18)
O2—C71.3645 (16)C13—H130.9500
O2—C191.417 (2)C14—C151.3903 (17)
O3—C111.2203 (15)C14—H140.9500
O4—C151.3732 (15)C15—C161.3875 (18)
O4—C201.4011 (15)C16—C171.3814 (18)
C1—C21.3833 (17)C16—H160.9500
C1—C91.4174 (18)C17—H170.9500
C1—C111.5074 (17)C18—H18A0.9800
C2—C31.4070 (19)C18—H18B0.9800
C3—C41.363 (2)C18—H18C0.9800
C3—H30.9500C19—H19A0.9800
C4—C101.4068 (19)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.354 (2)C20—C251.3771 (19)
C5—C101.419 (2)C20—C211.3816 (18)
C5—H50.9500C21—C221.387 (2)
C6—C71.416 (2)C21—H210.9500
C6—H60.9500C22—C231.380 (2)
C7—C81.3670 (18)C22—H220.9500
C8—C91.4250 (18)C23—C241.387 (2)
C8—H80.9500C23—H230.9500
C9—C101.4234 (18)C24—C251.386 (2)
C11—C121.4841 (17)C24—H240.9500
C12—C131.3935 (17)C25—H250.9500
C2—O1—C18118.00 (11)C13—C14—C15119.08 (11)
C7—O2—C19117.23 (11)C13—C14—H14120.5
C15—O4—C20118.52 (9)C15—C14—H14120.5
C2—C1—C9120.30 (12)O4—C15—C16116.29 (11)
C2—C1—C11119.20 (11)O4—C15—C14122.83 (11)
C9—C1—C11120.50 (11)C16—C15—C14120.86 (11)
O1—C2—C1115.50 (12)C17—C16—C15119.33 (11)
O1—C2—C3123.90 (12)C17—C16—H16120.3
C1—C2—C3120.60 (13)C15—C16—H16120.3
C4—C3—C2119.52 (12)C16—C17—C12120.91 (12)
C4—C3—H3120.2C16—C17—H17119.5
C2—C3—H3120.2C12—C17—H17119.5
C3—C4—C10121.96 (13)O1—C18—H18A109.5
C3—C4—H4119.0O1—C18—H18B109.5
C10—C4—H4119.0H18A—C18—H18B109.5
C6—C5—C10121.60 (13)O1—C18—H18C109.5
C6—C5—H5119.2H18A—C18—H18C109.5
C10—C5—H5119.2H18B—C18—H18C109.5
C5—C6—C7119.78 (13)O2—C19—H19A109.5
C5—C6—H6120.1O2—C19—H19B109.5
C7—C6—H6120.1H19A—C19—H19B109.5
O2—C7—C8125.03 (13)O2—C19—H19C109.5
O2—C7—C6114.01 (12)H19A—C19—H19C109.5
C8—C7—C6120.96 (13)H19B—C19—H19C109.5
C7—C8—C9120.07 (12)C25—C20—C21121.85 (13)
C7—C8—H8120.0C25—C20—O4119.14 (12)
C9—C8—H8120.0C21—C20—O4118.87 (12)
C1—C9—C10118.78 (12)C20—C21—C22118.62 (13)
C1—C9—C8122.17 (11)C20—C21—H21120.7
C10—C9—C8119.02 (12)C22—C21—H21120.7
C4—C10—C5122.68 (13)C23—C22—C21120.48 (13)
C4—C10—C9118.78 (13)C23—C22—H22119.8
C5—C10—C9118.53 (12)C21—C22—H22119.8
O3—C11—C12121.56 (11)C22—C23—C24119.99 (13)
O3—C11—C1120.38 (11)C22—C23—H23120.0
C12—C11—C1118.05 (10)C24—C23—H23120.0
C13—C12—C17118.53 (11)C25—C24—C23120.17 (13)
C13—C12—C11119.74 (11)C25—C24—H24119.9
C17—C12—C11121.73 (11)C23—C24—H24119.9
C14—C13—C12121.28 (11)C20—C25—C24118.88 (13)
C14—C13—H13119.4C20—C25—H25120.6
C12—C13—H13119.4C24—C25—H25120.6
C18—O1—C2—C1173.66 (12)C2—C1—C11—O393.21 (15)
C18—O1—C2—C36.68 (19)C9—C1—C11—O387.20 (15)
C9—C1—C2—O1177.41 (10)C2—C1—C11—C1287.71 (14)
C11—C1—C2—O12.18 (17)C9—C1—C11—C1291.87 (13)
C9—C1—C2—C32.93 (18)O3—C11—C12—C131.97 (18)
C11—C1—C2—C3177.49 (11)C1—C11—C12—C13178.96 (11)
O1—C2—C3—C4177.88 (12)O3—C11—C12—C17177.75 (11)
C1—C2—C3—C42.48 (19)C1—C11—C12—C171.31 (17)
C2—C3—C4—C100.3 (2)C17—C12—C13—C141.26 (18)
C10—C5—C6—C70.58 (19)C11—C12—C13—C14179.00 (11)
C19—O2—C7—C85.8 (2)C12—C13—C14—C150.83 (18)
C19—O2—C7—C6173.69 (13)C20—O4—C15—C16156.41 (11)
C5—C6—C7—O2177.64 (12)C20—O4—C15—C1425.21 (17)
C5—C6—C7—C81.92 (19)C13—C14—C15—O4178.65 (11)
O2—C7—C8—C9177.58 (11)C13—C14—C15—C160.34 (18)
C6—C7—C8—C91.93 (19)O4—C15—C16—C17179.47 (11)
C2—C1—C9—C101.23 (17)C14—C15—C16—C171.05 (19)
C11—C1—C9—C10179.19 (10)C15—C16—C17—C120.60 (19)
C2—C1—C9—C8176.92 (11)C13—C12—C17—C160.53 (18)
C11—C1—C9—C82.66 (17)C11—C12—C17—C16179.74 (11)
C7—C8—C9—C1177.51 (11)C15—O4—C20—C25102.71 (14)
C7—C8—C9—C100.64 (18)C15—O4—C20—C2181.52 (15)
C3—C4—C10—C5178.39 (12)C25—C20—C21—C220.82 (19)
C3—C4—C10—C91.32 (19)O4—C20—C21—C22174.82 (11)
C6—C5—C10—C4179.03 (12)C20—C21—C22—C230.5 (2)
C6—C5—C10—C90.67 (18)C21—C22—C23—C240.0 (2)
C1—C9—C10—C40.86 (17)C22—C23—C24—C250.2 (2)
C8—C9—C10—C4179.07 (11)C21—C20—C25—C240.6 (2)
C1—C9—C10—C5178.86 (11)O4—C20—C25—C24175.01 (11)
C8—C9—C10—C50.65 (17)C23—C24—C25—C200.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C20-C25 and C12-C17 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21···O2i0.952.563.3738 (17)143
C19—H19A···Cg1ii0.982.743.6967 (18)164
C19—H19C···Cg2iii0.982.673.6249 (18)165
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H20O4
Mr384.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)10.9512 (2), 15.8830 (3), 11.2184 (2)
β (°) 92.460 (1)
V3)1949.51 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.674, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
35423, 3551, 3228
Rint0.055
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.05
No. of reflections3551
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C20-C25 and C12-C17 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21···O2i0.952.563.3738 (17)143
C19—H19A···Cg1ii0.982.743.6967 (18)164
C19—H19C···Cg2iii0.982.673.6249 (18)165
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Sakamoto, R., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o363.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds